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Cyclin-dependent kinase 9 (CDK9) and cytochrome P450 3A4 (CYP3A4) have
emerged as promising targets in the development of anticancer drugs, presenting
a consistent challenge in the quest for potent inhibitors. CDK9 inhibitors can
selectively target fast-growing cancer cells by disrupting transcription elongation,
which in turn hinders the production of proteins essential for cell cycle
progression and survivaŚ. Understanding how CYP3A4 metabolizes specific
chemotherapy drugs allows for personalized treatment plans, optimizing drug
dosages according to a patient’s metabolic profile. Since many cancer patients
undergo combination therapies, and CYP3A4 is vital in drug metabolism, its
inhibition or induction by one drug can alter the plasma levels of others,
potentially leading to treatment failure or increased toxicity. Therefore,
managing CYP3A4 activity is critical for effective cancer treatment. Employing
a range of computational methodologies, this study systematically investigated
the bindingmechanisms of pyrimidine derivatives against CDK9 and CYP3A4. The
field-based model demonstrated high R2 values (0.99), with Q2 (0.66),
demonstrating its ability to predict in silico inhibitory activity against the target
of this study. The screening process followed in this work led to the discovery of
powerful new inhibitor compounds. Of the 15 new compounds designed, three
have a high affinity with the target (ranging from −8 to −9 kcal/mol kcal/mol) and
were singled out through docking filtration for more detailed investigation. As
well as, a reference compound with a substantial pIC50 value of 8.4, serving as the
foundation for the development of the new compounds, was included for
comparative analysis. To elucidate the essential features of CDK9 and
CYP3A4 inhibitor design, a comparative analysis was conducted between 3D-
QSAR-generated contours and molecular docking conformations of ligands.
Molecular dynamics simulations were carried out for a duration of 100 ns on
selected docked complexes, specifically those involving novel compounds with
CDK9 and CYP3A4 enzymes. Additionally, the binding free energy for these
complexes was assessed using the MM/PBSA method, which evaluates the
free energy landscape of protein-ligand interactions. The results of MM/PBSA
highlighted the strength of the new compounds in enhancing interactions with
the target protein, which favors the results of molecular docking and MD

OPEN ACCESS

EDITED BY

Belgin Sever,
Anadolu University, Türkiye

REVIEWED BY

Maqsood Ur Rehman,
University of Malakand, Pakistan
Mahmoud A. Al-Sha’er,
Zarqa University, Jordan
Khaled Mohamed Darwish,
Suez Canal University, Egypt

*CORRESPONDENCE

Aisha A. Alsfouk,
aaalsfouk@pnu.edu.sa

Abdelmoujoud Faris,
abdelmoujoud.faris@usmba.ac.ma

RECEIVED 30 July 2024
ACCEPTED 10 September 2024
PUBLISHED 21 October 2024

CITATION

Alsfouk AA, Faris A, Cacciatore I and Alnajjar R
(2024) Development of novel CDK9 and
CYP3A4 inhibitors for cancer therapy through
field and computational approaches.
Front. Chem. 12:1473398.
doi: 10.3389/fchem.2024.1473398

COPYRIGHT

© 2024 Alsfouk, Faris, Cacciatore and Alnajjar.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Chemistry frontiersin.org01

TYPE Original Research
PUBLISHED 21 October 2024
DOI 10.3389/fchem.2024.1473398

https://www.frontiersin.org/articles/10.3389/fchem.2024.1473398/full
https://www.frontiersin.org/articles/10.3389/fchem.2024.1473398/full
https://www.frontiersin.org/articles/10.3389/fchem.2024.1473398/full
https://www.frontiersin.org/articles/10.3389/fchem.2024.1473398/full
https://orcid.org/0000-0001-6253-0443
https://orcid.org/0000-0003-1869-9596
https://crossmark.crossref.org/dialog/?doi=10.3389/fchem.2024.1473398&domain=pdf&date_stamp=2024-10-21
mailto:aaalsfouk@pnu.edu.sa
mailto:aaalsfouk@pnu.edu.sa
mailto:abdelmoujoud.faris@usmba.ac.ma
mailto:abdelmoujoud.faris@usmba.ac.ma
https://doi.org/10.3389/fchem.2024.1473398
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org/journals/chemistry#editorial-board
https://www.frontiersin.org/journals/chemistry#editorial-board
https://doi.org/10.3389/fchem.2024.1473398


simulation. These insights contribute to a deeper understanding of themechanisms
underlying CDK9 and CYP3A4 inhibition, offering potential avenues for the
development of innovative and effective CDK9 inhibitors.
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Introduction

Epigenetic mutations are important for the onset and spread of
cancer (Baylin and Jones, 2016; Jones et al., 2016; Alsfouk et al.,
2022). The aging process and the accumulation of genetic and
epigenetic modifications can lead to changes in gene expression,
including the silence of tumor suppressor genes (Issa, 2014; Alsfouk
et al., 2023). When methyl-binding proteins are attracted to the
promoters of tumor suppressor genes, DNA methylation frequently
results in the silence of those genes (Raynal et al., 2012; Duan et al.,
2022). These proteins then attract repressor complexes, which lead
to the creation of heterochromatin and the preservation of gene
inactivation (Nan et al., 1998).

Cyclin-dependent kinases (CDKs), including CDK7 and CDK9,
play a pivotal role in regulating transcription (Malumbres, 2014).
CDK9, as part of the P-TEFb complex, functions as a transcriptional
kinase by phosphorylating negative elongation factors. This
phosphorylation facilitates the release of promoter-proximal
stalled RNA polymerase II, thereby enabling transcriptional
elongation. (Adelman and Lis, 2012; Budhiraja et al., 2013).
Recruitment of RNA processing components is thus made
possible by CDK9’s phosphorylation of RNA polymerase II’s
C-terminal domain (Church et al., 2017; Eyvazi et al., 2019).
Therefore, numerous genes involved in essential activities,
including stress response, survival, and proliferation, are
encouraged to elongate through the action of CDK9 (Garriga
et al., 2003; Bacon and D’Orso, 2019). Its overexpression or
hyperactivation can result in unchecked cell proliferation, a key
feature of cancer. Thus, targeting CDK9 presents a potential
therapeutic strategy to inhibit tumor growth by interfering with
the specific DNA programs that drive oncogenesis. CYP3A4
(Cytochrome P450 Family 3 Subfamily A Member 4) is a key
enzyme involved in the metabolism of various drugs, including
chemotherapeutic agents (Alsfouk et al., 2023). In cancer,
CYP3A4 can affect the efficacy of chemotherapy by metabolizing
anticancer drugs, which may lead to drug resistance. Additionally,
alterations in CYP3A4 expression in cancerous tissues can influence
the bioavailability and therapeutic effectiveness of treatments
(Marra and Curigliano, 2019; Roncato et al., 2020). Targeting
CYP3A4 has the potential to enhance the sensitivity of tumors to
chemotherapy and counteract resistance mechanisms. Although
CDK9 and CYP3A4 perform distinct biological functions,
targeting both could yield synergistic effects in cancer treatment.
Inhibiting CDK9 disrupts transcriptional processes crucial for
cancer cell survival and proliferation while modulating
CYP3A4 activity could optimize the pharmacokinetics of
chemotherapeutic agents, improving their efficacy. This
combined approach might offer a more comprehensive strategy
against cancer by addressing both the intrinsic proliferative capacity
of cancer cells and external factors that influence drug response.

Understanding the mechanisms by which CDK9 and
CYP3A4 contribute to cancer development and progression is
essential for the development of new therapeutic strategies.
Further research is required to elucidate the molecular
interactions involving these targets and to identify biomarkers
that predict response to CDK9 and CYP3A4 inhibitors (Marra
and Curigliano, 2019). CDK9 and CYP3A4 are critical
components of the complex network underlying cancer biology,
and their inhibition represents promising targets for therapeutic
intervention. This approach has the potential to advance
personalized medicine, enabling the development of more
effective, tailored treatment regimens for cancer patients (Marra
and Curigliano, 2019).

The crucial role played by Computer-Aided Drug Design
(CADD) in the in silico molecular design to reduce the time
required for drug conceptualization and to preserve the material,
as demonstrated in recent significant works, is highlighted (Faris
et al., 2024). In these studies, the emphasis is placed on guiding
in vitro investigations through computer methods (Kapetanovic,
2008; Moroy and Tuffery, 2022; Nascimento et al., 2022; Al-
Karmalawy et al., 2023). Various methods were employed in this
research, leading us to design potent inhibitors against CDK9 and
CYP3A4 enzymes.

In the first stage, the field-based 3D-QSAR method was used,
starting with a collection of aligned ligands with known activity
capable of inferring the impact of electrostatic, hydrophobic, and
steric fields on biological activity or inactivity, field-Based QSAR
swiftly transforms existing datasets into valuable QSAR models.
Molecular docking was then used to obtain molecules exhibiting
high interaction with the CDK9 and CYP3A4 enzymes, which may
explain the strong response to the target. This step involved selecting
the best candidates based on their affinity (kcal/mol). Subsequently,
md and MM/PBSA, which are powerful in silico tools (Kukol, 2014),
were employed to arrive at highly stable molecules. An ADMET
study was conducted to understand the pharmacokinetic properties
comprehensively. Additionally, predictive analysis of biological
activity between active and inactive compounds was achieved
using the Way2Drug portal.

Results and discussion

3D-QSAR field-based analysis

The 3D-QSAR analysis, conducted using field-based tools in
Schrödinger’s Maestro software, provides valuable insights. The
preparation of input molecules aimed to establish a robust field-
based model, guiding our understanding of the intricate relationship
between pIC50 activity and influencing elements for enhancement.
Through meticulous examination, four factors were identified for
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further exploration, guided by specific validation criteria outlined
in Table 1.

The analysis produced significant results, as shown in Table 1
and Figure 1. The model’s variability was reflected by a standard
deviation (SD) of 0.18, while a high goodness of fit was
demonstrated by an (R2) value of 0.94, accounting for 94% of the
variance in the data. This high R2 value indicates a strong correlation
between the independent and dependent variables. The
0.18 standard deviation (SD) illustrates how the model’s
predictions vary from the mean. While a high SD suggests that
data points are dispersed throughout a larger range, a low SD
suggests that data points often tend to be near the mean. These
metrics shed light on the significance of each predictor variable and
the model’s overall predictive ability. The connection between the
independent and dependent variables is shown graphically in
Figure 1, often as a scatter plot superimposed on the regression
line. This graphic aids in demonstrating how well the model fits the
data points and identifies any patterns or trends. The strong
R-squared value and low standard deviation show that the model
can often explain data variability in the RAL L analysis. These
findings imply that, based on the independent variables examined in
the research, the model is a trustworthy resource for understanding
or forecasting the dependent variable. R2

(CV) obtained by applying
cross-validation. This reflects the performance of the model outside
the training sample, on new or unseen data. A value of 0.62 indicates
that the model explains 62% of the variance in the data when
predicting unseen compounds. Additionally, the model’s efficacy
was highlighted by an R2 value of 0.76 for the scrambled data. This

value serves as a baseline for comparison, helping to confirm that the
model is not merely fitting noise or random patterns in the data. A
scrambled data R2 close to that of the actual data might suggest
potential overfitting, The stability value of 0.78 further supports the
model’s robustness, indicating that it performs consistently across
different subsets of the data. This value suggests that the model is not
overly sensitive to changes in the data, which is a desirable
characteristic in predictive modeling. The overall significance of
the model was assessed through an F-statistic of 85.5, indicating
statistical importance with analysis of the model performance
parameters, including regression coefficients, p-values (optimal
model with a p-value of 0), and confidence ranges, which are
also given in Table 1. The Root Mean Square Error (RMSE) of
0.4 represented the average difference between observed and
predicted values. According to the rule, a model with a Q2 value
greater than 0.5 is considered reliable. A value of 0.66 indicates that
the model explains 62% of the variance in the data when predicting
unseen compounds, showcasing its reliability. A robust positive
correlation between observed and predicted values, suggested by a
Pearson correlation coefficient (Pearson-r) of 0.82, further
reinforced the model’s validity.

Analysis of contour maps

The analysis of contour maps for the best model four suggests
the following key findings: In Figure 2A, red contours indicate an
increase in biological activity within the cyclopentanamine group,

TABLE 1 Performance metrics and statistical indicators for various factors in the study.

Factors SD R2 R2
CV R2 scramble Stability F P RMSE Q2 Pearson-r

1 0.31 0.79 0.69 0.35 0.98 95.60 0 0.51 0.44 0.72

2 0.27 0.84 0.71 0.59 0.96 67.10 0 0.48 0.51 0.75

3 0.22 0.90 0.68 0.70 0.90 74.10 0 0.42 0.61 0.80

4 0.18 0.94 0.62 0.76 0.78 85.50 0 0.40 0.66 0.82

FIGURE 1
Contrasting the pIC50 values predicted by field-based methodologies for ’ training and test sets with their corresponding actual values.
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attributed to acceptor groups in this region enhancing inhibitory
activity. Conversely, magenta contours suggest a reduction in
inhibitory activity, particularly in the hydrogen group of
cyclopentanamine. In Figure 2B, yellow contours highlight the
significance of chlorine in the cyclopentanamine group,
emphasizing its role in CDK9 inhibition. The proximity of
hydrophobic groups to propane further underscores their
importance in this process. Figure 2C features green contours,
underscoring the essential role of the chlorine atom, with steric
effects near (1S,3S)-3-(12-azaneyl)cyclopentane-1-amine favoring
increased inhibitory activity. In Figure 2D, purple contours
predominate over cyan, indicating that donor groups in these
regions contribute to increased inhibitory activity. Finally,
Figure 2E shows blue contours on cyclopentanamine and 4-
chloro-1H-pyrazole, suggesting electrostatic effects in these
regions that favor an increase in biological activity.

Table 2 displays statistical analysis values for a Field-based
model in 3D-QSAR. The factors considered are steric,
electrostatic, hydrophobic, Hbonds acceptor, and Hbonds donor,
each with corresponding numerical values: steric - 0.16 electrostatic
- 0.18 hydrophobic - 0.28 Hbonds acceptor - 0.14 Hbonds donor -
0.24 these numerical values represent the contribution or
importance of each factor in the 3D-QSAR model. Higher values
indicate a greater impact of that specific factor on the model’s
predictive capability. In this context, hydrophobic (0.28): This
signifies a relatively significant role of hydrophobic interactions

in the predictive power of the model. Varied hydrophobic
characteristics in compounds likely result in substantial
differences in their activities. Electrostatic (0.18): Indicates a
contribution of electrostatic interactions to the model, albeit to a
lesser extent compared to hydrophobic interactions. Hbonds Donor
(0.24): Notes a notable impact of Hbonds Donor interactions on the
model, suggesting that compounds with different abilities to donate
hydrogen bonds exhibit distinct activities. Steric (0.16): Indicates a
contribution of steric interactions to the model, with a relatively
lower impact compared to other factors. Hbonds Acceptor (0.14):
This suggests that Hbonds Acceptor interactions have the lowest
impact among the considered factors in this model. These values
offer insights into the relative importance of different molecular
characteristics in influencing the biological activity predicted by the
3D-QSAR model.

Designing novel compounds

As a result of the analysis of the best model obtained fromModel
Four, for the field-based approach and the contour maps analysis, we
obtain guidance that will facilitate the design of new inhibitors
against CDK9 (Figure 3; Table 3). This leads us to design
15 molecules (See Supplementary Table S1), which will
subsequently undergo molecular docking to select the best
molecules with good affinity.

FIGURE 2
The contour maps generated for the compounds in the test set illustrate distinct fields, with specific colors indicating various characteristics. (A) Red
signifies Gaussian hydrogen bond acceptor fields, indicating favored regions, while magenta denotes disfavored regions. (B) Yellow is employed for
Gaussian hydrophobic fields to denote favored regions, while white signifies disfavored regions. (C) Green illustrates Gaussian steric fields, highlighting
favored regions, and yellow indicates unfavorable regions. (D) Purple is used to depict Gaussian hydrogen bond donor fields for favored regions,
while cyan represents disfavored regions. (E) Blue represents Gaussian electrostatic fields, showcasing favored electropositive regions and disfavored
electronegative regions.

TABLE 2 Statistical analysis of Field-based model in 3D-QSAR.

Factors Steric Electrostatic Hydrophobic Hbonds acceptor Hbonds donor

1 0.17 0.14 0.33 0.06 0.30

2 0.19 0.14 0.29 0.08 0.29

3 0.12 0.16 0.28 0.14 0.30

4 0.16 0.18 0.28 0.14 0.24
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The statistical results from Model four provide insight into the
relative importance of various factors influencing the biological
activity of this molecule. The steric factor, as outlined in Table X,
pertains to the size and shape of the molecule. With its aromatic
rings and carbon chain, this molecule exhibits structural rigidity,
which can influence its interactions with other molecules or
biological targets. Regarding electrostatics, the reference structure
indicates that the quaternary ammonium group imparts a positive
charge to the molecule, while the carbonyl and hydroxyl groups can
engage in electrostatic interactions, including hydrogen bonding.
These electrostatic properties are critical for molecular interactions
and target recognition. In terms of hydrophobicity, the aromatic

portions of the molecule contribute to its hydrophobic nature. The
aromatic rings and the chlorine group, primarily composed of
nonpolar carbon atoms, promote hydrophobic interactions with
similar environments. The oxygen atoms in the hydroxyl and
carbonyl groups can act as hydrogen bond acceptors, forming
bonds with suitable donors, which can stabilize molecular
complexes and influence the molecule’s affinity for biological
targets. Although less pronounced, the molecule can also
function as a hydrogen bond donor, primarily through the
quaternary ammonium group, though this capacity is limited by
the molecule’s positive charge. Model four highlights the relative
importance of each factor in determining the biological activity of
this molecule. In this specific case, electrostatic and hydrophobic
interactions appear to play a more decisive role than hydrogen
bonding interactions. This insight could guide the modification of
the molecular structure to optimize the desired activity by adjusting
steric, electrostatic, and hydrophobic properties while considering
hydrogen bond acceptor and donor capacities.

Molecular docking investigation

Molecular docking for CDK9 exploration

In molecular docking, the identification of active sites remains a
key factor for target inhibition. In our study, for the determination of
active sites, we relied on the coordinates of co-crystallized ligands to

FIGURE 3
Guide for the design of new molecules based on a Field-based
model; the best molecules were selected based on their affinity using
the field-based model, and their predicted pIC50 values were utilized
for the selection.

TABLE 3 The best new molecule designs using 3D-QSAR field-based methodology.

No 2D pIC50(pred) “Affinity in kcal/mol”

T1 8.59 −8.81

T2 7.24 −8.78

T3 8.043 −8.68

Reference 8.40 −8.40
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accurately define them, as these are based on previous experimental
data and precise biological analyses, as shown in Figures 4, 5.

The analysis of molecular docking results for the new molecules
with the CDK9 protein suggests the following: Compound T1
(Figure 6) presents five hydrogen bonds with Cys106, Ile25,
Gly28, Asn154, and a salt-bridge bond with Asp167. It also
exhibits alkyl and pi-alkyl bonds and pi-pi stacked interactions
with various residues, including Leu156, Phe105, and Ala46.
Next, Compound T2 (Figure 6) features three hydrogen bonds
with Cys106 and Ile26, various pi-alkyl and alkyl bonds, pi-pi
stacked interactions with residues such as Phe105, Val79, Ala66,
Fhe103, Leu156, Ile25, and a salt bridge with Asp109. Additionally,
Compound T3 (Figure 7) shows three hydrogen bonds with
Cys106 and Ile25, along with various alkyl, pi-alkyl, and pi-pi

stacked interactions with residues like Ala46, Phe103, Val79,
Leu156, Phe105, and a salt bridge with Asp109. Finally, the
reference compound (Figure 7) exhibits three hydrogen bonds
with Asp109 and Cys106, along with various pi-alkyl and alkyl
bonds, pi-pi stacked interactions with residues Val33, Ile25, Phe103,
Val79, Ala46, Leu156, and Phe105.

Upon analyzing the docking results, it is evident that for
molecules T1, T2, and the reference, the predominance of
hydrogen bonds occurs at the pyrazolopyrimidine and diazaneyl)
methyl)cyclopentanone groups, and for molecule T2, at the -OH
groups. Molecule T1 is in the SO2-NH group, and for the reference
molecule, it is in the propane group. This suggests that replacing
propane with a donor or acceptor group favors the creation of
hydrogen bonds. Despite the absence of a hydrogen bond at the

FIGURE 4
The representation of co-crystallized ligand in the active site of CDK9, the target with PDB: 7nwk.

FIGURE 5
The representation of HEM (Heme is a complex formed by a porphyrin ring (which contains carbon, hydrogen, and nitrogen) with an iron atom at its
center.) in the active site of CYP3A4, the target with PDB: 8wes.
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pyrazolopyrimidine groups for molecule T3, the presence of
hydrogen bonds at the diazaneyl)methyl) cyclopentanone group
suggests the significant presence of hydrogen bonds facilitated by
newly substituted groups. Furthermore, in comparison to the
reference, the presence of a hydrogen bond at the -OH groups
is indicated.

The docking results help explain the good non-covalent
interactions for the new compounds with the CDK9 protein.

Docking molecular for CYP3A4

The metabolism of the enzyme CYP3A4, involving compounds
T1, T2, T3, and reference, was investigated (Figures 8, 9). The

CYP3A4 (ID: 8EWS) selected for this study also exhibits a high
resolution and is a good fit for experimental data through the better
ligand structure. This protein choice provides valuable insights into
the metabolic processes within the enzyme. Notably, a co-ligand,
HEM, remains a target of interest due to its ability to activate
CYP3A4. Consequently, there is a focus on inhibiting this enzyme as
a potential strategy to modulate its activity.

Molecular docking analysis with the CYP3A4 enzyme and new
compounds suggests the following: Molecule T1 exhibits non-
covalent interactions, including a hydrogen bond with Arg372,
an alkyl bond with Phe108, four pi-alkyl bonds, attractive charge,
and van der Waals interactions with Arg105, and two pi-cation
bonds with HEM601. Next, for molecule T2, non-covalent
interactions are observed, including a hydrogen bond with

FIGURE 6
Non-covalent binding interactions of novel compounds (A) (T1) and (B) (T2) with CDK9 (PDB ID: 7NWK): 3D and 2D diagram illustrations.
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Ser119, an alkyl bond with Ala305, three pi-alkyl bonds, pi-pi
stacked interactions with HEM601, and two pi-alkyl and carbon-
hydrogen bonds with Ala370. Additionally, for molecule T3, non-
covalent interactions include a hydrogen bond with Ser119, an alkyl
bond with Ala305, two pi-alkyl bonds with HEM601, and one pi-
alkyl bond with Ala370. There is also a carbon-hydrogen bond with
Arg372 and an attractive charge interaction with Glu374. Finally, the
reference molecule represents non-covalent interactions, including a
hydrogen bond and a carbon-hydrogen bond with Arg372, two alkyl
bonds with Ala305, one alkyl bond with Ile301, and two bonds with
HEM601 involving pi-alkyl and alkyl interactions. Additionally,
there are two pi-alkyl bonds with Ala37.

The most crucial aspect in the molecular docking analysis for the
new compounds with CYP3A4 is to have interactions with HEM601,
which plays a crucial role as an essential cofactor. Heme is a complex
organic molecule containing a porphyrin nucleus linked to a ferrous

ion (Fe2+). In the context of CYP3A4, heme is associated with the
protein that forms a heme-protein structure. The CYP3A4 vital
contains a heme molecule connected to an iron atom. This iron-
heme bond allows cytochromes P450 to perform the oxidation-
reduction processes necessary for drug metabolism. Without heme
iron, CYP3A4 could not carry out its metabolic job. That is why the
target molecules were selected for this position. Compounds that act
as inhibitors for CYP3A4 are those exhibiting good interactions with
HEM601 (a chemical substance that is not a protein instead is
necessary for a protein, frequently an enzyme, to function
biologically. Cofactors can be thought of as helpers for
biochemical transformations because they are commonly engaged
in catalytic processes), as observed particularly in the case of
molecule T2, followed by molecule T3 and the reference
compound. These interactions with HEM601 are important as
they may influence the efficiency and specificity of enzyme

FIGURE 7
Non-covalent binding interactions of novel compounds (A) (T3) and (B) (Reference) with CDK9 (PDB ID: 7NWK): 3D and 2D diagram illustrations.
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inhibition by these compounds. Thus, the presence of strong
interactions with HEM601 can serve as an indicator of the
potential effectiveness of the compounds as CYP3A4 inhibitors.

Molecular Dynamic’s

RMSD, RMSF, Rg, SASA and DSSP analyses

The RMSD, RMSF, Rg, solvent accessible surface area (SASA),
FEL, and PCA studies offer important insights into several facets of
the complexes under study. The average deviations in atomic
locations between the initial and final structures are measured by
RMSD, which makes it possible to evaluate the complexes’ stability
and conformational changes. By measuring the average changes in
atomic locations throughout the simulation, RMSF reveals the

relative stability and flexibility of residues. Rg calculates a
molecule’s three-dimensional compactness, revealing details on
the dimensions and form of the complex under study. SASA
assesses a molecule’s solvent-accessible surface to provide
information about residue accessibility and environmental
exposure. FEL assesses a molecule’s structural flexibility by
measuring its capacity to deform or alter shape. PCA analysis is
a statistical method that identifies the primary modes of variation in
the structures under study, therefore reducing the complexity of the
data. By enabling the evaluation of the investigated complexes’
interactions, stability, flexibility, compactness, solvent
accessibility, and variation modes, these metrics provide
information that improves our comprehension of their structural
behavior and characteristics.

The analyses of RMSD, RMSF, Rg, and SASA in Supplementary
Figure S1 provide the following results: The RMSD analyses for the

FIGURE 8
Non-covalent binding interactions of novel compounds: (A) T1 and (B) T2 with CYP3A4 (PDB ID: 8EWS), illustrated in 3D and 2D diagrams.
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compounds show a favorable stability ranging between 1 and 3 Å
during the 100 ns simulation. Analysis of Rg and SASA of the novel
design compound compared to the reference with SASA (2,300 Å2)
and Rg (22.5 Å) suggests the compactness of all new compounds
with CDK9 tend to have the same compactness as compound T1,
which shows a good compactness with a Rg and SASA of 22.56 Å
and 2,300 Å2 respectively, unlike the others, which show little
variation. Fortunately, as the results suggest, the Rg and SASA of
all complexes indicate stability without exhibiting excessively
high peaks.

The results of RMSD (Supplementary Figure S2) for new ligands
with CYP3A4 It has been noted that it exhibits remarkable stability
and yields satisfactory results for those who calculate RMSD. The
T1, T2, and T3 RMSDs fall between 1 and 2 Å compared to the
reference. Similarly, the Rg and SASA (Supplementary Figure S2)

studies show a good understanding of the ligand-protein structures,
with the Rg queue highlighting this understanding at 50 ns. The
analyzed Hbonds clearly show how important it is to have enough
Hbonds (Supplementary Figure S2) during simulation without
occupation, which validates the target’s docking results. With a
minimum of one and a maximum of up to 5, the hydrogen bonding
results for the novel compounds with the target indicate good
results. This suggests the existence of hydrogen bonds and
highlights their significance for the stability of the resulting
complexes. For the results of the RMSF (Supplementary Figure
S3) analysis indicate the stability of the complexes concerning the
residues during the simulation, exhibiting moderate flexibility.

Throughout the simulation, an analysis was carried out using the
defined secondary structure of proteins (DSSP) (Supplementary
Figures S4, S5) to look at secondary structural elements such as

FIGURE 9
Non-covalent binding interactions of novel compounds: (A) T1 and (B) T2 with CYP3A4 (PDB ID: 8EWS), illustrated in 3D and 2D diagrams.
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alpha helices, beta sheets, and coils. Multiple time intervals were
used to acquire the trajectories. The DSSP analysis for the new
molecules over 100 ns reveals a clear change from Turn to Coil
starting at 530 ns for residue SER7, based on the reference of new
compounds, compound T1, interacting with the protein. In
complexes T2 and T3, which interact with the protein, reagent
LYS56 undergoes a transition from 0 ns. These findings suggest that
the protein may experience significant conformational changes in its
interaction with the previously described chemicals over time.

The outcomes presented in Supplementary Figures S4–S8, and
S9 reveal the following from PCA and FEL analyses. In terms of PCA
results, T1 exhibited PC1 and PC2 values ranging from −2 to −3,
respectively. T2 displayed PCA values for PC1 and PC2 within the
ranges of −2 to −2 and two to −4, respectively. T3 showcased PCA
results for PC1 and PC2, spanning from −2 to −2 and −2 to −3,
respectively. The reference compound demonstrated PCA values for
PC1 and PC2 ranging from −2 to −2 and −2 to −3, respectively.
Moving on to FEL, T1 displayed a stable conformation energy
minimum within an RMSD range of 0.3 nm and an Rg range
between 2.04 and 2.06 nmT2 exhibited a stable conformation energy
minimum within an RMSD of 0.34 nm and an Rg of 2.04 nm
T3 demonstrated stable conformation energy minima located
between an RMSD of 0.25 nm and an Rg of 2.04. The reference
compound showed stable conformation energy minima within an
RMSD of 0.2 nm and an Rg of 2.02 nm. Similarly, using the same
methodology as the earlier findings shown in Figure 10 supply the
conformational analysis results for the most stable energies in the
FEL study of the novel compounds, including CYP3A4.

Free binding energy (MM/PBSA)

The findings from MM/PBSA analysis serve as a basis for
prioritizing compounds for additional optimization or steering
the development of new ligands with enhanced binding affinity

(Table 4). This analytical approach proves invaluable in
comprehending and foreseeing the binding energetics of
molecular complexes, thereby assisting in the design and
optimization of drugs based on the structure. The MM/PBSA
analysis results, presented in Table 4 unveil the energy
contributions of various components and complexes. The van der
Waals energy values (ΔVDWAALS) indicate non-covalent
interactions (dispersion) between the ligand and protein. The
energies are slightly weaker for T1-CDK9 and T2-CDK9
compared to T3-CDK9 and Ref-CDK9, suggesting weaker van
der Waals interactions for T1 and T2. The polar solvation energy
(ΔEPB) represents the solvent’s polar effect on the complex. T3-
CDK9 has the highest polar solvation energy, which could
compensate for the strong electrostatic interactions observed. The
total solvation energy (ΔGSOLV) represents the sum of gas-phase
energies and solvation energies. T1-CDK9 has the most negative
total energy, indicating the strongest overall interaction with CDK9,
closely followed by T2-CDK9, then T3-CDK9, and finally Ref-
CDK9. For global energy, T1-CDK9 has the most favorable
interaction energy, making it the best candidate in terms of
complex stability. T2-CDK9 is very similar to T1-CDK9 but
slightly less favorable. T3-CDK9 has very strong electrostatic
interactions and high solvation energy, reducing its total energy
despite strong gas-phase interaction. Ref-CDK9 has the least
favorable total energy, indicating weaker interactions with
CDK9 compared to the other complexes.

ADME-Tox analysis

Under ADMET rules (Pires et al., 2015; Xiong et al., 2021; Faris
et al., 2024c), for designing new compounds (Tables 5, 6), the value
of logS reflects the drug’s solubility. The smaller the value, the less
soluble the compound is in water. When logS are less than −6, the
compounds are considered poorly soluble and insoluble. A molecule

FIGURE 10
The most stable conformations of the new compounds and ref with CYP3A4 corresponding to the energy minima for the new inhibitors.
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with less than 30% absorption is considered weakly absorbed, while
molecules with an absorption greater than 30% are considered to
have high absorption. The unit of BBB penetration is cm/s.
Molecules with logBB greater than −1 are classified as BBB+

(Category 1), while molecules with logBB less than or equal
to −1 are classified as BBB− (Category 0). BBB− indicates that the
molecule has a low capacity to penetrate the blood-brain barrier
(BBB) or does not penetrate at all. This may be desirable for certain
drugs targeting the central nervous system (CNS) to minimize side

effects or undesirable interactions with the brain. BBB+ indicates
that the molecule has a high capacity to penetrate the BBB. This may
be desirable for certain drugs that require direct access to the brain to
be effective in treating CNS diseases.

The interpretation of the SwissADME results suggests the following:
The analysis of boiled egg predicts (Figure 11) that molecule four is in
the yellow zone of the blood-brain barrier (BBB), indicating potential
permeability, while the rest of the molecules (1, 2, and 3) are situated in
the white zone of high absorption (HA). Additionally, molecules 1, 2,
and four are identified as P-glycoprotein substrates (PGP+), implying
that theymay interact with P-glycoprotein. On the other hand, molecule
three is classified as a P-glycoprotein non-substrate (PGP-), suggesting a
different interaction profile with P-glycoprotein compared to the
other compounds.

ADMET analysis indicates that Compound T1 exhibits the
lowest forecasted Caco-2 cell permeability and human intestinal
absorption, potentially limiting its oral bioavailability. Except for
REF, all compounds are projected to be non-substrates for major
drug-metabolizing CYP enzymes like CYP2D6 and CYP3A4, while
REF’s clearance might be elevated due to its CYP3A4 substrate
status. Only reference is anticipated to inhibit CYP1A2 and
CYP3A4 activities, raising concerns about potential drug-drug
interactions. Total clearance values suggest that Compound
T2 may have the shortest half-life, whereas 18 and REF could

TABLE 4 Energy contributions and binding characteristics of complexes.

Energy (kcal/mol) T1-CDK9 T2-CDK9 T3-CDK9 Ref-CDK9

ΔVDWAALS −2.97 −3.61 −12.9 −13.21

ΔEEL −104.6 −105.93 −186.78 −74.29

ΔEPB 94.53 96.98 192.29 81.23

ΔGGAS −107.57 −109.54 −199.68 −87.50

ΔGSOLV 92.77 95.18 189.02 79.53

ΔTOTAL −14.8 −14.35 −10.66 −7.98

TABLE 5 Pharmacological profiling of compounds T1, T2, T3, and reference: Assessing permeability, absorption, enzyme interactions, and toxicity.

Compound T1 T2 T3 Reference

Caco2 permeability 0.18 0.74 −0.05 1

Intestinal absorption (human) 68 76 78 93

substrate CYP2D6 No No No No

CYP3A4 No No No Yes

inhibitor CYP1A2 No No No Yes

CYP2C19 No No No No

CYP2C9 No No No No

CYP2D6 No No No No

CYP3A4 No Yes No No

Total Clearance 0.44 1.22 1.19 0.82

AMES toxicity No Yes No No

TABLE 6 Physicochemical characterization of compounds T1, T2, T3, and
reference: Evaluating molecular weight, lipophilicity, and structural
features.

Compound Rule T1 T2 T3 Ref

MOL_WEIGHT 100–600 410.705 317.2 298 293

LogP 0 to 3 log mol/L −0.021 0.66 −0.58 2.79

ROTATABLE_BONDS 0–11 3 3 3 3

ACCEPTORS 0–12 6 5 6 5

DONORS 0–7 3 3 4 2

SURFACE_AREA 0–140 139 125 120 123
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have longer durations of action. Compound T2 is predicted to be
positive in the AMES toxicity assay, indicating potential mutagenic
effects, while the other compounds are expected to be non-
mutagenic. Reference demonstrates undesirable interactions with
drug-metabolizing enzymes, posing potential challenges to its
efficacy or safety. T3 and T1 display better ADMET profiles,
although they may have lower oral bioavailability than 33 based
on permeability/absorption predictions. Overall, Compound
T3 appears to strike the most favorable balance of properties.

Drug-Liknes

The analysis of physicochemical properties indicates that all
compounds possess molecular weights falling within the range of
100–600 g/mol, as specified by Rule 1. T2 and 39 exhibit LOGP
values within the 0–3 log mol/L range, aligning with Rule 2.
Conversely, T3 and REF deviate from this range. All compounds
feature between 0-11 rotatable bonds, meeting the criteria of Rule 3.
T2, 18, and REF demonstrate hydrogen bond acceptor counts within
the 0-12 range defined by Rule 4. However, Compound 39 surpasses
this limit with 13 acceptors. T2 and 18 have hydrogen bond donor
counts within the 0-7 range, by Rule 5. On the contrary, T1 and REF
fall outside this specified range. The surface areas of all compounds
fall between 0–140 A2, as per Rule 6. T2 and T1 adhere to some but
not all rules. Compound 33 satisfies most rules, making it a
potentially acceptable candidate. T3 and REF violate multiple
rules, making them less desirable for the design of new molecules.

ADMET analysis reveals distinct physicochemical properties
among the compounds. Compound T3 emerges as a potential
candidate, meeting more criteria and displaying a balanced
ADMET profile. T3 and Ref, while violating multiple rules, may

present challenges in designing new molecules. Consideration of
these factors aids in identifying promising drug candidates.

Activity biology

TheWay2Drugweb server was utilized to determine the probability
of activity for newly designed molecules against CDK9 (Table 7). The
results indicate that Compound T1 exhibits a Pa (probability of being
active) of 0.344 and a Pi (probability of being inactive) of 0.081,
classifying it as a CDK9/cyclin inhibitor. T2 and T3, along with the
Ref, have Pa values of 0.444, 0.458, and 0.452, respectively, and Pi values
of 0.028, 0.024, and 0.026, respectively. The specific activity for T2 and
T3, as well as the reference, is not provided.

The results suggest potential activity for the designed molecules,
and further interpretation is encouraged based on these probabilities
and associated activities.

From the CADD analysis, T1-CDK9 exhibits strong binding
interactions with CDK9, indicated by a notably negative total energy
of −14.8 kcal/mol, which suggests enhanced complex stability.
However, its van der Waals interactions are weaker compared to

FIGURE 11
Analysis of boiled egg using SwissADME: T1, T2, T3, and reference.

TABLE 7 Probability assessment of CDK9/Cyclin T1 inhibition for designed
compounds.

Compound Pa Pi Activity

T1 0.458 0.024 CDK9/cyclin T1 inhibitor

T2 0.444 0.028

T3 0.344 0.081

Ref 0.452 0.026
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other compounds. Despite its strong binding affinity, T1-CDK9
encounters pharmacokinetic limitations, including low predicted
Caco-2 cell permeability and moderate human intestinal absorption
(68%), which could hinder its oral bioavailability. Although it does
not interact with major drug-metabolizing enzymes, which is a
positive feature, its overall drug-likeness profile indicates it may not
fully meet the criteria for an ideal drug candidate.

Conclusion

In conclusion, this study has effectively utilized a computer-
assisted design approach to identify potential inhibitors for
CDK9 and CYP3A4 proteins. By employing a predictive QSAR
model and in silico synthesis, the study has identified several
promising compounds. The new compounds (T1, T2, T3)
showed encouraging results for their potential as inhibitors of
CDK9 and CYP3A4 proteins in molecular docking, molecular
dynamics, and ADMET analyses when compared with a
reference compound. According to molecular docking, these
compounds exhibit considerable and stable non-covalent
interactions with both target proteins. Of particular note are
strong hydrogen bonding and pi-alkyl interactions, which are
critical for the compounds’ binding affinity. The stability of these
interactions was verified by molecular dynamics simulations,
wherein the compounds demonstrated favorable RMSD, RMSF,
Rg, and SASA values, signifying strong structural stability and
compactness during the simulations. Furthermore, according to
the MM/PBSA analysis, T1 and T2 have the best binding
energies, suggesting that they have a great potential for
interaction with CDK9. T3 also showed promising but marginally
weaker interactions. The drugs usually have favorable
pharmacokinetic features, according to ADMET profiling, with
T3 having the best balance of toxicity profiles, enzyme
interaction, and absorption. In contrast to the reference, T1 and
T3 can have reduced oral bioavailability. Notably, T2 displayed
possible mutagenic properties that may restrict its application in
medicine. With its good binding affinity, stability, and ADMET
qualities, compound T3 stands out as the most drug-like candidate
overall. This makes it a viable contender for further development
and optimization as a therapeutic agent targeting CYP3A4 and
CDK9. Methods and Materials.

Dataset

In this study, a series of new molecules, KB-0742, a potent,
selective, orally bioavailable small molecule inhibitor of CDK9 for
MYC-dependent cancers, was relied upon (Freeman et al., 2023).
These molecules have not yet been treated using in silicomethods to
test the best molecules in this series. Based on it, powerful new
molecules can be produced. The series comprises 39 molecules with
their IC50 (nm) activity treated at pIC50 based on the logarithm
-log(10*-9*IC50(nm)). These molecules were divided into a training
set of 28 molecules and a test set of 11 molecules (Supplementary
Table S1), with the most active molecule in the training set to ensure
good predictivity of the activity predicted to obtain a reliable field-
based model (Faris et al., 2023b; 2024a).

Constructing resilient models:
investigating the development of
3D-QSAR

Ligand preparation

Ensuring the accuracy and predicted activity of the 3D-QSAR
and pharmacophore models depends on the precise alignment of
molecules (Yadav et al., 2018). Before being converted into 3D
structures, the molecular structures were originally in the 2D-
SDF format.

The ligands were prepared using the LigPrep module of
Schrödinger version 2021-3, which guaranteed the production of
high-quality structures with the proper tautomeric forms, ring
conformations, ionization states, and stereochemistry. To
optimize their structures, all the molecules’ energies were
minimized using the OPLS_2005 force field. The molecules were
aligned using the Flexible Ligand Alignment Panel in Schrödinger
version 2021-3 into Maestro, which offered the opportunity to carry
out a flexible alignment for the chosen entries in the Project Table.
The first chosen entry served as a template and was not altered.
ConfGen was used to do a ligand torsional search on the following
ligands (Ozgencil et al., 2020). Following a sequential alignment of
the conformers produced by ConfGen with the reference ligand, the
conformer that showed the best overlap with the reference ligand
was chosen. It was necessary to replicate the original structures if you
wanted to keep them, as this selected conformer superseded the
previous entry. Well-minimized structures as input for flexible
ligand alignment are advised. The template molecule with the
highest pIC50 value must be taken into consideration. Implicit
hydrogens are not permitted in the structures.

Field-based approach

Over the years, researchers have come to emphasize quantitative
structure-activity relationships (QSAR) for lead compound
optimization. However, traditional QSAR methods typically only
use imprecise estimates of three-dimensional structures. Maestro
offers two approaches for QSAR modeling: field-based QSAR
applies the ComFA/ComSIA approach, fitting and predicting
properties using potential values on a grid, and atom-based
QSAR uses atom types and their occupancy within a grid of
cubes as independent variables. Make your choice in Maestro
appropriately.

To create 3D-QSAR models, the PHASE module from
Maestro—an interface to Schrödinger’s version 2021-
3 utility—was used. Our goal was to create atom-based and field-
based 3D-QSAR models to gain a better understanding of the
relationship between structural features and biological activity.
The models were created by randomly choosing a training set
and a test set by the widely accepted 80:20 split suggested in the
literature (Janet and Kulik, 2017; Jawarkar et al., 2023). To be sure
the produced models were not the product of chance, we took
additional measures and assessed them for statistical significance
through both internal and external validation. Both active and
inactive molecules were included in the training and test sets to
guarantee the validity of the created models. We employed the same
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approach for MLR-based QSAR models, and we evaluated our
models’ robustness in detail in each scenario. The dataset was
split at random into 80% training and 20% test sets, and both
3D-QSARmodels were trained using a PLS factor of 4. To guarantee
that the molecules in the training and test sets were diverse, the
software’s random selection process was visually confirmed. We
stuck to a grid spacing of 1 Å for the chosen hypothesis. We created
four field-based and four atom-based 3D-QSAR models.

Assessing 3D-QSAR model predictive
capability

We will explore the essential metrics utilized to assess 3D-QSAR
models. These metrics offer crucial insights into the quality and
reliability of models, guiding the compound optimization process.
R2 (coefficient of determination): This measures the proportion of
the variance in the dependent variable explained by the independent
variables, indicating an optimal fit when R2 is close to 1. R2

CV (cross-
validated coefficient of determination): Calculated through cross-
validation methods, it assesses the model’s ability to generalize to
independent data, similar to R2. RMSE (root mean square error):
This metric indicates the average of errors between predicted and
observed values, providing an overall measure of model accuracy. Q2

(cross-validated coefficient of determination): Like R2
CV, it evaluates

how well the model predicts new, unseen data using cross-validation
methods. These metrics, when applied, furnish a comprehensive
understanding of the predictive power and reliability of 3D-QSAR
models, thereby contributing to informed decision-making in
compound design and optimization.

The evaluation of the 3D-QSAR model encompassed the
scrutiny of key statistical parameters, which included the squared
cross-validation coefficient (Q2), squared non-cross-validation
coefficient (R2), predictive R2, and standard error of estimate
(SEE). To gauge the internal quality of the developed model,
particular attention was given to the Q2 value, with a criterion
of >0.5 considered statistically significant (Faris et al., 2024c). The R2

value served as a relative measure of the regression fit, and a value
approaching 1.0 indicated a robust fit. Additionally, insights into the
variation in residuals or the regression line were gleaned from the
standard error of estimate (Clark et al., 1989; Shinde et al., 2017).

Molecular docking (reversible)

Reversible (non-covalent) docking stands out as a prevalent
approach in the realm of molecular docking, a computational
technique utilized to forecast the binding affinity and orientation
of a small molecule (ligand) within a receptor or target protein
(Aljoundi et al., 2020; Faris et al., 2024b).

Reversible (non-covalent)

Reversible (non-covalent) docking entails forecasting the non-
covalent interactions between the ligand and the target protein.
These interactions encompass hydrogen bonding, van der Waals
forces, and hydrophobic, and electrostatic interactions. The primary

goal of reversible docking is to predict the most favorable binding
pose and affinity of the ligand within the target protein without
forming a covalent bond. Widely employed in drug discovery and
virtual screening, reversible docking aids in identifying potential
lead compounds capable of binding to the target protein with high
affinity and specificity. An advantage of reversible docking lies in the
potential for ligand dissociation, facilitating the development of
drugs with favorable pharmacokinetic properties.

Before conducting molecular docking, the ligands designated for
docking underwent optimization using the Ligprep tool.
Subsequently, we retrieved the structures of CDK9 and
CYP3A4 from the RCSB database (PDB ID: 7NWK and 8EWS).
The crystal complex of 7NWK included water molecules and the co-
crystallized ligand bound to the protein. For protein preparation, we
removed all water molecules and co-crystallized ligands from
7NWK, and polar hydrogens were added to the CDK9 protein
structure using Discovery Studio software 2021. Similar steps were
applied to 8EWS, with the exception that the included ligands were
retained, as they are integral to the metabolism of CYP3A4.
Following the preparation of ligands and proteins, molecular
docking was executed using Autodock4 and Autodock-Vina to
explore the active site of 7NWK and 8EWS, determined by the
region encompassing the co-crystallized ligands (Morris et al., 2008).
The three-dimensional grid was established using the AUTOGRID
algorithm, which calculates the binding energy between ligands and
their receptor. The default grid size for CDK9 (7NWK) and CYP3A4
(8EWS) with new compounds was configured as x = 60, y = 60, and
z = 60, with a spacing of 0.375 Å between grid points. The center of
the grid corresponds to the active site of the receptors CDK9-4LH
and CYP3A4, specified by coordinates (x = −42.62 Å, y = −39.29 Å,
and z = −2.86 Å) and (x = −-15.37 Å, y = −30.74 Å, and
z = −10.29 Å), respectively.

ADME-TOX

ADMET analysis, medicinal chemistry, and the evaluation of
lead-like and drug-like properties were performed using easily
accessible online tools. One such tool employed for these
analyses is SwissADME (Daina et al., 2017) and pkCSM (Pires
et al., 2015); assessing drug candidates and compounds involves
evaluating their potential toxicity for human use.

Molecular dynamics simulation

The newly created compounds, which exhibited enhanced
binding affinity with CDK9 and CYP3A4, underwent all-atom
molecular dynamics simulations using GROMACS 2021
(Groningen Machine for Chemical Simulation) software (Van
Der Spoel et al., 2005; Abraham et al., 2015). Before initiating the
MD simulations, the CHARMM-GUI web server (Jo et al., 2008) was
employed to generate the initial input parameters, implementing the
CHARMM36 force field (Huang andMacKerell Jr, 2013; Ziada et al.,
2022; Faris et al., 2023a, n. d.). The simulation was conducted at a
pH of 7. Before entering the production phase, each complex was
solved within a rectangular grid box, surrounded by TIP3P water
molecules, and supplemented with the requisite counter-ions (Na+,
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Cl−) to maintain a salt concentration of 0.15 M, achieved through
Monte Carlo ion displacement. Energy minimization was executed
for each system using the steepest descent algorithm, encompassing
a maximum of 50,000 steps and a maximum force of 10.0 kJ/mol.
The temperature and atmospheric pressure were set to 310 K and
1.01325 bar, respectively. For NVT equilibration, two stages were
carried out, each lasting 10 ns. Canonical (NVT) and isothermal-
isobaric (NPT) ensembles were utilized to equilibrate each system.
Subsequently, MD simulations were conducted for a duration of
100 nanoseconds. To assess the structural stability of the designed
molecules, various parameters, including root mean square
deviation (RMSD), the radius of gyration (RoG), solvent
accessible surface area (SASA), and root mean square flexibility
(RMSF), were analyzed based on the dynamics trajectory results.

Molecular Mechanics/Poisson-
Boltzmann surface area (MM/PBSA)

The MM/PBSA calculation is a powerful method for estimating
the binding energy between a ligand molecule and a protein. This
method combines molecular mechanics (MM) calculations and
Poisson-Boltzmann (PB) computations to account for both
stoichiometric and electrostatic interactions between molecular
components. The outcomes of these calculations can assist in
understanding the underlying forces of molecular bonding, which
is essential for drug design, exploring new therapies, and studying
protein structure and dynamics. In this study, the calculation was
performed using the latest version of the gmx_MMPBSA tool
(Valdés-Tresanco et al., 2021).

Various terms of energy calculated by MM/PBSA include
(Miller et al., 2012; Valdés-Tresanco et al., 2021): Energy (kcal/
mol): The total energy calculated by MM/PBSA, which is the sum of
all other terms listed below. ΔVDWAALS: The variation in van der
Waals energy, reflecting weak interactions between atoms due to
induced dipole charges. ΔEEL: The variation in long-range
electrostatic energy, representing electrostatic interactions
between fixed atomic charges. ΔEPB: The variation in polarizable
solvent energy, considering the solvent effect on charges and dipole
moments. ΔGSOLV: The variation in solvent energy, measuring the
solvent effect on the overall energy of the molecule. ΔTOTAL: The
total variation in energy, which is the sum of all preceding terms.

These terms offer a detailed view of individual contributions to
binding energy, thus allowing for a fine analysis of the forces that
maintain the ligand molecule’s bound conformation to the protein.
Interpretation of these terms can aid in identifying critical binding
sites, understanding bonding mechanisms, and guiding the
development of new ligands with desirable properties.
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