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A series of highly emissive inert and chiral CrIII complexes displaying positive and
negative circularly polarized luminescence (CPL) within the near-infrared (NIR)
region at room temperature have been prepared and characterized to decipher
the effect of ligand substitution on the photophysical properties, more
specifically on the chiroptical properties. The helical homoleptic [Cr(dqp-R)2]

3+

(dqp = 2,6-di(quinolin-8-yl)pyridine; R = Ph, ≡-Ph, DMA, ≡-DMA (DMA = N,N-
dimethylaniline)) and heteroleptic [Cr(dqp)(L)]3+ (L = 4-methoxy-2,6-di(quinolin-
8-yl)pyridine (dqp-OMe) or L = N2,N6-dimethyl-N2,N6-di(pyridin-2-yl)pyridine-
2,6-diamine (ddpd)) molecular rubies were synthesized as racemic mixtures and
then resolved and isolated into their respective pure PP and MM enantiomeric
forms by chiral stationary phase HPLC. The corresponding enantiomers show
two opposite polarized emission bands within the 700–780 nm range
corresponding to the characteristic metal-centered Cr(2E’→4A2) and
Cr(2T1

’→4A2) transitions with large glum ranging from 0.14 to 0.20 for the
former transition. In summary, this study reports the rational use of different
ligands on CrIII and their effect on the chiroptical properties of the complexes.
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1 Introduction

Chiral chromophores displaying intense circularly polarized luminescence (CPL) signal
and high CPL brightness (BCPL) are up-and-coming candidates for applications as
molecular probes in biological systems (Carr et al., 2012; Staszak et al., 2019), in bio-
imaging (Heffern et al., 2014), in light-emitting devices (e.g., CP-OLEDs) (Brandt et al.,
2017; Zinna et al., 2017; Furlan et al., 2024), and in counterfeiting agents (e.g., security inks)
(MacKenzie and Pal, 2021). The dissymmetry factor glum is used to estimate the excess of
emitted right- or left-circularly polarized light in an isotropic solution. It is deduced from IL
and IR, which represent the emission intensities of left and right circularly polarized light,
respectively (Equation 1 center, Richardson, 1979; Arrico et al., 2020). This parameter is
directly related to the electric dipole (μij

�→), the magnetic dipole (mij
��→) transitionmoment, and

the angle between these two vectors (θ) (Equation 1 right).
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glum

∣∣∣∣ ∣∣∣∣ � 2 × IL − IR( )
IL + IR( ) � 4 ×

μij
�→/mij

��→( ) × cos θ

μij
�→/mij

��→( )2

+ 1
. (1)

An important number of photons must be detected to apply
chiral chromophores in CPL materials. To account for that, Zinna
and coworkers introduced the CPL brightness (BCPL), which
combines the molar absorption extinction coefficient (ελexc), the
photoluminescence quantum yield (ϕPL), and the dissymmetry
factor in Equation 2 (Arrico et al., 2020).

BCPL � ελexc × ϕPL × glum

∣∣∣∣ ∣∣∣∣ /2. (2)

Improving BCPL is a current challenge as commonly bright
luminescent molecules (displaying high ελexc and ϕPL) are usually
accompanied with weak glum, as rationalized by Equation 1 because
intense ED-allowed transitions (ligand-to-metal charge transfer, metal-
to-ligand charge transfer, or π* → π transitions) imply μij

�→≫mij
��→,

typically in the range of |μij�→|2 ≈ 75000 · |mij
��→|2 (Reiné et al., 2018;

Albano et al., 2020). Consequently, organic dyes and 4d/5d complexes,
which display large ϕPL and ελexc, are very challenging systems for
improving the BCPL due to the limiting weak glum (Saleh et al., 2014;
Reiné et al., 2018; Gauthier et al., 2020; Song et al., 2022; Yoshida et al.,
2024). Many strategies have been put in place to counter this limitation
and to improve the dissymmetry factor, such as (i) the use of
supramolecular assemblies (Sang et al., 2020) or (ii) enclosing chiral
molecules into liquid crystals (Albano et al., 2020), into excimers
(Nakanishi et al., 2016; Homberg et al., 2018; Hara et al., 2019;
Mori, 2020), or into cyclic aromatic structures (Sato et al., 2017).
The competitor to this type of molecules is lanthanide-based
luminescent complexes as, thanks to the primogenic effect, the
intrashell ED forbidden/MD allowed character of some emissive f-f
transitions brings |mij

��→| in the range of |μij�→|, thus maximizing the
dissymmetry factor (Equation 1). A large dissymmetry factor often
comes with weak luminescence through direct metal center excitation
(Lunkley et al., 2008; Nagata andMori, 2020). For that purpose, intense
activity in the field is dedicated to improving ϕPL and ελexc using
approaches such as the antenna effect, which avoids the unfavorable
direct excitation of the emissive metallic centers (Ward, 2010). Limited
by their high cost and, more importantly, by their intrinsic kinetic
lability, 4f metal ions could be difficult to handle due to the challenges of
maintaining their molecular structures for applications. Chiral 3d metal
ions are drawing more attention as an alternative due to their low cost
and also because they benefit from the primogenic effect. However, they
are limited by (i) their usual kinetic lability, (ii) the lack of efficient
Laporte-forbidden d–d emissive states due toweak ligand-field strength,
(iii) themixing of the energy states with ligand-to-metal charge transfers
(LMCT)/MLCT, and (iv) the important non-radiative deexcitation
pathways that correspond to major handicaps. CrIII complexes in
octahedral geometry are exceptions because the large crystal-field
stabilization energy (CFSE) found for the 3d3 electronic
configuration (CSFE = 1.2 Δoct) makes these complexes kinetically
inert (Helm and Merbach, 2005; Richens, 2005). In addition, the linear
correlation of the Cr(4T2) energy level with ligand-field splitting (LFS)
limits damaging back intersystem crossing (BISC) from the low-lying
excited state when strong donor atoms are bound to Cr3+ (Figure 1). As
a result, this kind of CrIII complex is known to display characteristic
long-lived ED-forbidden/MD-allowed metal-centered spin-flip

Cr(2E→4A2) and Cr(2T1→4A2) NIR emission (Maiman, 1960; Kirk,
1999; Otto et al., 2015; Jimenez et al., 2019; Jiménez et al., 2020; Jimenez
et al., 2021; Sinha et al., 2021).

Despite uniting the searched intrinsic kinetic inertness with emissive
spin-flip transitions, the design of chiral CrIII complexes with adapted
absorption and emission properties remains scarce. Recently, the
meridional coordination of bis-terdentate six-membered chelates
rings to CrIII has been demonstrated to be an interesting approach
for inducing intense spin-flip chiroptical responses (Jimenez et al., 2019;
Jimenez et al., 2023). In contrast, introducing chiral centers in the ligand
scaffold did not lead to strong CPL emission in related complexes
(Poncet et al., 2021; Cheng et al., 2023). In this context, the recent chiral
resolution of the inert emissive complexes [Cr(dqp)2]

3+ (dqp = 2,6-
di(quinolin-8-yl)pyridine) (Jimenez et al., 2019) and [Cr(ddpd)2]

3+

(ddpd = N2,N6-dimethyl-N2,N6-di(pyridin-2-yl)pyridine-2,6-diamine)
(Dee et al., 2019) displaying large dissymmetry factors reactivated the
interest for this topic. Concomitant high quantum yields could be
obtained, making cheap and earth-abundant chromium assemblies
promising candidates for CPL applications.

This work follows this strategy with the synthesis of four novel
homoleptic complexes [Cr(dqp-R)2]

3+ (R = Ph (1), ≡-Ph (2), DMA
(3), and ≡-DMA (4), DMA = N,N-dimethylaniline). The
photophysics of these complexes can be compared with those of
the heteroleptic complexes [Cr(dqp)(dqp-OMe)]3+ (5, dqp-OMe =
4-methoxy-2,6-di(quinolin-8-yl)pyridine) and [Cr(dqp)(ddpd)]3+

(6) (Jimenez et al., 2020) The enantiomeric resolutions proved to
be successful for all complexes, which paved the way for addressing
their chiroptical properties.

2 Results and discussion

The ligands dqp-OMe, ddpd, and dqp; the salt
Cr(CF3SO3)2·2H2O; and the heteroleptic complexes 5 and 6 were
prepared according to published methods (Supplementary

FIGURE 1
Simplified Tanabe–Sugano diagram for a d3 electronic
configuration in an octahedral field with C/B = 4.5. Two deexcitation
pathways are shown: radiative (kr, red arrow) and back intersystem
crossing (BISC, blue domain). A strong LFS prevents the non-
radiative deexcitation of the excited state through BISC.
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Appendix 1; Cantuel et al., 2002; Otto et al., 2015; Jimenez et al.,
2019; Jiménez et al., 2020). The preparation of the homoleptic
complexes [Cr(dqp-R)2]

3+ is achieved by mixing one equivalent
of CrII precursor and two equivalents of the corresponding ligands

dqp-R (dqp-Ph for 1, dqp-≡-Ph for 2, dqp-DMA for 3, and dqp-
≡-DMA for 4) under anaerobic conditions at room temperature.
The formed rac-[CrII(dqp-R)2]

2+ are oxidized to the kinetically inert
rac-[CrIII(dqp-R)2]

3+ using AgSO3CF3, affording the desired
complexes in good-to-excellent yields (74%–96%, Figure 2).

Single crystals suitable for X-ray diffraction analysis
(Supplementary Tables S1–S13; Supplementary Figures S1–S7 in
the Supplementary Material) were obtained through slow diffusion
of diethyl ether into a concentrated methanol solution for 1, 2, 3
(with triflate counterions), and 4 (with chlorine counterions). The
dqp derivatives systematically adopt the thermodynamically more
stablemeridional binding around the kinetic labile CrII intermediate,
leading to meridional arrangement in the final CrIII complexes after
oxidation. Under acidic conditions, the tertiary amine groups in 3
and 4 can be further protonated to yield [Cr(dqp-DMAH)2]

5+ (H2-3,
DMAH = N,N-dimethylanilininum) and [Cr(dqp-≡-DMAH)2]

5+

(H2-4). Single crystals suitable for X-ray diffraction of both
protonated complexes could also be successfully isolated by
crystallization. The semi-flexible nature of the dqp backbone
upon mer binding joined with the kinetic inertness of CrIII results
in the formation of racemic mixtures of helical PP and MM
enantiomers of D2-symmetry in the crystals (Figure 2). As
previously reported, the two instances of intramolecular,
interligand π-stacking between the aromatic quinolines produce
stabilizing interactions compatible with the exclusive formation of

FIGURE 2
Synthesis of homoleptic complexes rac-[Cr(dqp-R)2]

3+. Racemic mixtures of the PP and MM enantiomers are isolated for both homoleptic and
heteroleptic complexes.

FIGURE 3
Absorption spectra of complexes 1–4 in H2O and H2-3 and H2-4
in aqueous HCl (1 M) at 293 K.
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the PP and MM enantiomers (Jimenez et al., 2021). No meso PM
complex could be observed, likely due to steric hindrance, as
simulated in the parent [Cr(dqp)2]

3+ (Jimenez et al., 2021). To
better appreciate the intramolecular interligand π-stacking, the
interplanar angle is calculated as the angle between the mean
plane of the 10 atoms of each quinoline (Supplementary Figures
S8–S15). The closer the angle is to 0, the more parallel to each other
the quinolines are. The calculated values for the complexes 1–5, [H2-
3] and [H2-4] lie within the 15.54°–16.68° range. In the heteroleptic
complex [Cr(dqp)(ddpd)]3+ (6), the corresponding
quinoline–pyridine interplanar angle reaches 31.48°, far larger
than in the other compounds, but yet smaller than the parent
[Cr(ddpd)2]

3+ (46.52°) (Otto et al., 2015). The transoid bite
angles N-Cr-N are in the 176.0(1)°–177.7(8)° range for the
homoleptic complexes (1–4, H2-3, and H2-4) and in the
175.5(9)°–176.1(10)° range for the heteroleptic complexes (5 and
6). In addition, to evaluate the structural distortion with respect to a
perfect octahedron, the following parameter Σ � ∑12

i�1|90 − φi| is
computed with φi being the cisoid bite angles N-Cr-N. The
distortion in complexes 1–6, H2-3, and H2-4 ranges from
22.73° ≤ Σ ≤ 31.49°, with the largest distortion in the
heteroleptic complex 6.

The absorption spectra of the homoleptic complexes (1–4) were
recorded in water at room temperature. Complexes H2-3 and H2-4
were recorded in acidic media (aqueous HCl 1 M) to ensure full
protonation of the terminal tertiary amine (Figure 3).

The maxima observed within the 345–250 nm range
(29,000–40,000 cm−1) are associated with π*←π transitions

located on the ligands. Ligand-to-metal charge transfers (LMCTs)
are observed at lower energies from 435 nm to 345 nm
(23,000–29,000 cm−1). Additionally, a shoulder is observed within
the 420–400 nm range (23,800–25,000 cm−1), which has been
assigned to the spin-allowed, parity-forbidden metal-centered
(MC) Cr(4T2←4A2) transition according to TD-DFT calculations
performed on the parent [Cr(dqp)2]

3+ complex (Jimenez et al.,
2019). Because Δ = E(Cr(4T2←4A2)) in octahedral complexes, the
extracted energy values point to similar ligand-field splitting for all
complexes within the 24,272–24,876 cm−1 range (Supplementary
Table S14). Complexes 3 and 4 display an additional intense broad
absorption band in the visible range of the electromagnetic spectrum
800–435 nm (12,500–23,000 cm−1) assigned to the intraligand
charge transfer (ILCT) from the terminal nitrogen of the aniline
to the trivalent chromium center, as observed in related terpyridine-
based complexes (Barbour et al., 2017). Ensuring full protonation
using acidic conditions (aqueous 1 M HCl) removes the CT band in
H2-3 and H2-4 (Figure 3). Moving down in energy and using an
increased concentration of complexes, the spin-forbidden/parity-
forbidden spin-flip (SF) transitions Cr(2T1,

2E←4A2) can be observed
with low molar extinction coefficients ranging from 0.1 M−1 cm−1

to 0.6 M−1 cm−1.
Because of the slightly distorted geometry going fromOh to D2,

a splitting of the two expected bands produces five distinct excited
energy levels. The Cr(2T1) splits into three non-degenerated energy
levels, and the Cr(2E) splits into two (Figure 4; Supplementary
Figures S16–S19) (Jimenez et al., 2023). Recording the SF bands
was impossible in complexes 3 and 4 because of the overlap with

FIGURE 4
Perrin–Jablonski diagram for a CrIII in O geometry. Excitation (blue arrows), internal conversion (dashed arrows), ILCT quenching in 3 and 4 (black
arrow), and expected emission in a D2 distorted geometry (red arrow) are represented. The splitting of the 2T1 and

2E energy levels leads to five expected
optically active energy levels in D2 symmetry.
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the intense charge transfer absorption band in the visible region of
the spectrum. Individual assignments of the absorption bands
together with experimental radiative rate constants krad,
radiative lifetimes τrad, oscillator strengths fexp, and dipole
strengths Dexp are compiled in Supplementary Table S14. From
the absorption spectra and the calculated energies of the accessible
excited levels, the ligand-field parameter Δ and the Racah
parameters B and C can be estimated using Equations 3–6
(Supplementary Table S15) (Jorgensen, 1963; Witzke, 1971;
Chong et al., 2022).

E 4T2( ) � Δ. (3)

E 2T1( ) � 9B + 3C − 24
B2

Δ
( ). (4)

E 2E( ) � 9B + 3C − 50
B2

Δ
( ). (5)

E 2T2( ) � 15B + 5C − 176
B2

Δ
( ). (6)

E 4T1( ) � 1.5Δ + 7.5B − 0.5
������������������
225B2 + Δ2 − 18ΔB( ).√

(7)

For all studied complexes, B ranges from 611 cm−1 to 655 cm−1,
and C ranges from 2,743 cm–−1 to 2,885 cm−1, which implies a weak
impact of the extension of the π-delocalized conjugated system
contrariwise to a previously reported substitution of methoxy
groups in the same position in the homoleptic [Cr(dqp-OMe)2]

3+

(Jimenez et al., 2021). We note that for the [Cr(dqp)2]
3+, the ratio C/

B equals 4.7, but the ratio is only 3.1 for [Cr(dqp-OMe)2]
3+. Typical

values are in the range of 4.2–4.9 and are sometimes assumed to be
4.7 (Adachi, 2024).

Upon UV–VIS excitation (λexc = 350–435 nm) at room
temperature, the typical sharp NIR dual emissions (FWHM
≈200 cm−1) observed in complexes 1 and 2 (Figure 5A) can be
assigned to the radiative relaxation of the Cr(2E) and Cr(2T1) excited
state levels to the Cr(4A2) ground state level in approximate O
symmetry (Jimenez et al., 2019; Jimenez et al., 2021). The most
intense band is attributed to the Cr(2T1’→4A2) SF transition
(maxima 13,227 cm−1 (756 nm) in 1 and 2) and the less intense
to Cr(2E’→4A2) (maxima at 13,698 cm−1 (730 nm) for 1 and
13,661 cm−1 (732 nm) for 2). Contrariwise, the luminescence of
complexes 3 and 4 is completely quenched, likely due to energy back
transfer into the non-emissive CT levels (Figure 4). Upon
protonation of the anilines (H2-3 and H2-4), a weak
luminescence is retrieved with an overall photoluminescence
quantum yield of ΦPL ≤ 0.0011% (Supplementary Table S16;
Figure 5A), in contrast to the non-luminescent terpyridine analog
(Barbour et al., 2017).

Upon changing the temperature, the Boltzmann distribution of
the thermally equilibrated Cr(2E’) and Cr(2T1’) levels is modified,
and 77 K measurements result in a close to single emission assigned
to Cr(2T1’→4A2) (Figure 5B). Interestingly, the total (3 and 4) and
partial (H2-3 and H2-4) quenching pathways of the luminescence
happening at 293 K vanish at 77 K, and strong luminescence is
recovered (Figure 5B). For both H2-3 and H2-4 at 77 K, the main
emission band is blue-shifted compared to the non-protonated 3
and 4 complexes. The room temperature ΦPL values determined in
aerobic and anaerobic conditions (CH3CN, λexc = 435 nm) are
gathered in Supplementary Table S16. The obtained values in
oxygen-free solutions are 12.4%, making complexes 1 and 2 in
the same range as the previously reported record-holding
deuterium-free CrIII complexes (Jimenez et al., 2019; Jimenez
et al., 2021). The origin of the high ΦPL observed is attributed to
(i) the weak trigonal distortion forming the octahedral geometry,
preventing the non-radiative deexcitation pathways (Kitzmann
et al., 2022) and (ii) the strong LFS induced by the dqp-type
ligands, avoiding BISC to the Cr(4T2) excited state level (Figure 1).

Time-resolved experiments were conducted and displayed
mono-exponential decays, resulting in τ

2E′,2T1
′

Cr,obs > 1 ms in the
deaerated solution at 293 K and up to 2.62(2) ms at 77 K (2,
Supplementary Table S16; Supplementary Figures S20–S25). Air-
equilibrated experiments demonstrated the extreme dependence on
dissolved dioxygen, as previously reported for CrIII chromophores
(τ

2E′,2T1
′

Cr,obs < 65 µs) (Kirk, 1999). For more insight, the reader is referred
to the in-depth analysis of the mechanism discussed by Alazaly
et al. (2023).

Additionally, the rate of energy transfer from Cr(2E’/2T1’) to O2,
kq, can be estimated in 1 and 2 with the relationship kq = 1/[O2]·(1/
τair −1/τAr) (Burgin et al., 2022), in which [O2] is the oxygen
concentration in the solvent at the experimental temperature

FIGURE 5
Near-infrared emission spectra with λexc = 435 nm of (A)
Complexes 1–4 in H2O and H2-3 and H2-4 in aqueous 1 M HCl at
293 K and (B) Complexes 1–4 in DMSO/H2O 1:1 and H2-3 and H2-4 in
aqueous 1 M HCl at 77 K.
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(2.42 mM in CH3CN at 293 K), τair is the Cr(2E’/2T1’) lifetime under
air-equilibrated conditions, and τAr is the respective lifetime under
deaerated conditions. The obtained values of 6.23•106 s−1 (1) and
7.59•106 s−1 (2) demonstrate the effectiveness of O2 quenching
(Supplementary Table S16).

The thermal equilibrium of the Cr(2T1’) and Cr(2E’) levels was
confirmed by the recording of identical excited state lifetimes at
both maxima. The sensitization efficiency for transferring the
energy from the ligand to the Cr(2E’/2T1’) excited state ηL→Cr

sens is
found to be above 71% (Supplementary Table S16). The
measurement of certain photophysical properties in 3, 4, H2-3,

and H2-4was limited by (i) the weak emitted signals (H2-3 and H2-
4) that prevented reliable measurements of the excited state
lifetimes and (ii) the lack of emissive properties in 3 and 4.
Nevertheless, the retrieval of the luminescence at 77 K allowed
time-resolved measurements on all complexes. Excitation spectra
were recorded in dilute solutions and closely match the absorption
spectra of the corresponding compounds (Supplementary
Figures S26–S29).

Chiral stationary phase high-performance liquid
chromatography (CSP-HPLC) was proven to be effective,
straightforward, and quick in the separation of the racemic

FIGURE 6
CSP-HPLC conditions required for the enantiomeric resolution of complexes (A) 1, (B) 2, (C) 3, (D) 4, (E) 5, and (F) 6.
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mixture of d-block complexes such as RuIII, CrIII, and CoIII

(Yoshida et al., 2013; Cortijo et al., 2017; Dee et al., 2019).
Isocratic elution using a CH2Cl2/CH3CH3OH/triethylamine/
trifluoroacetic acid 50/49.2/0.5/0.3 (v:v) mixture resulted in the
separation of the complexes 1–6 (Figures 6A–F). For complexes 1,
2, and 5, the elutions of MM enantiomers tail and slightly overlap
with the elution peaks of the PP enantiomers. As a result, a small
amount of contamination was observed upon reinjection in the
analytical column (Supplementary Figures S30–S32). Nevertheless,
thorough integrations of the chromatogram reveal that ≤0.5% mol
was present in the sample. Therefore, the chiroptical studies were
carried out while considering these contaminations as negligible.
The obtention of a mirror image of the circular dichroism (CD)
and CPL signals confirmed the adequacy of the latter assumption.
Note that the efficient separation of 3 and 4 would allow a larger
scale separation.

The CD was recorded, and mirror images were systematically
obtained for all complexes 1–6, H2-3, and H2-4 (Figures 7, 8). The
study of the analogous crystallizedMM-[Cr(dqp)2]

3+ in CD allowed
the assignment of the measured complexes (Jimenez et al., 2019). In
all complexes except for 6 (Figure 8D), a strong Cotton effect could
be observed in the 410–430 nm range, corresponding to the MC
Cr(4T2←4A2) transition. The UV range is also dominated by
considerable Cotton effect matching with π*←π transitions
located on the ligands. Despite the significant absorption of the
CT bands in complexes 3 and 4 (ε = 25,000–32000M−1cm−1), little to
no Cotton effect was observed, confirming the low gabs for these
specific transitions (Figures 7A, C). Because 3 and 4 could be
protonated in solution, their conversion to the respective
protonated species H2-3 and H2-4 could be followed by CD
upon successive addition of hydrochloric acid (0.05 M) in the
aqueous solution (Figures 7E, F). The MC ligand-field

FIGURE 7
Crystalline structures of PP andMM enantiomers and the corresponding absorption (gray traces) and CD spectra (red and green traces) for (A) 3, (B)
H2-3, (C) 4, and (D) H2-4. CD titration of complexes (E) 3 to H2-3 and (F) 4 to H2-4 in aqueous media.
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Cr(4T2←4A2) transition is less affected by the protonation of the
ligands than the π*←π transitions, which display important changes
in the 250–400 nm range.

Circularly polarized luminescence (CPL) measurements were
recorded on each enantiomer of the emissive complexes 1, 2, 5, and 6
(Figures 8A–D). The low photoluminescence quantum yield of H2-3
and H2-4 and the non-emissive character of 3 and 4 prevented CPL
measurements. To ensure a correct determination of the
dissymmetry factor, the highest resolution of the CPL spectra is

ensured with the smallest emission slit aperture settings available at
the cost of the signal intensity (Sickinger et al., 2024). The
experimental bandwidth (EBW) used in these experiments is
0.5 nm for 1, 2, and 5 and 5 nm for 6. A better signal-to-noise
ratio can be obtained by opening the slits (larger EBW), but the
resolution of the spectra must be sacrificed, skewing the results and
the value of glum. It is, therefore, more correct to measure the
sample at the smallest slit aperture available and divide the CPL
spectra by the maximum read value of the corresponding emission.

FIGURE 8
Crystalline structure of the PP andMM enantiomers and the corresponding CD (middle, red, and green traces) and CPL (λexc = 340 nm, right, (red and
green traces)) spectra for (A) 1, (B) 2, (C) 5, and (D) 6. The experimental bandwidth (EBW) for the CPL spectra in A–C is 0.5 nm and 5 nm for (D). The gray
traces show the absorption (middle) and emission (right) spectra.
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Under unpolarized excitation (λexc = 340 nm), complexes 1, 2, 5,
and 6 (Figures 8A–D) displayed strong circularly polarized
emission within the 720–780 nm range. The dissymmetry
factors |glum| obtained for the Cr(2E’→4A2) transition reach
0.07–0.08 for all four complexes (Supplementary Figures
S33–S36). Interestingly, for the Cr(2T1’→4A2) transition,
complexes 1, 2, and 5 display |glum| = 0.20, whereas complex 6
reaches only |glum| = 0.14.

Putting these results in perspective with those of the
previously reported homoleptic complexes of [Cr(ddpd)2]

3+

and [Cr(dqp-R)2]
3+ (R = H, Br, OMe, C≡CH, Table 1) (Otto

et al., 2015; Jimenez et al., 2019; Jimenez et al., 2021), a trend
emerges for the Cr(2T1’→4A2) transitions. Indeed, all complexes
containing two dqp-based ligands display the same dissymmetry
factor of 0.2, whereas the more flexible [Cr(ddpd)2]

3+ culminated
at 0.093 (Dee et al., 2019). By exploiting the chemical inertness of
CrIII, one of each ligand could be implemented in the same
complex to give the heteroleptic complex [Cr(dqp)(ddpd)]3+

(6), for which |glum| = 0.14 corresponds to the average of the
dissymmetry factors of the two parent homoleptic complexes. As
an attempt to rationalize this result, a hypothetical “ligand
dissymmetry factor” gL

lum could be imagined for a given
transition defined as Equation 8.

gL
lum

∣∣∣∣ ∣∣∣∣ � ηL

n
· gtotal,homoleptic

lum

∣∣∣∣∣ ∣∣∣∣∣. (8)

ηL is the denticity of the ligand, n the number of available
coordination sites around the metal center (6 for octahedral
symmetry), and gtotal,homoleptic

lum is the dissymmetry factor of the

corresponding homoleptic complex of a specific transition.
Therefore, in the cases of [Cr(dqp)2]

3+ and [Cr(ddpd)2]
3+, the

following values are obtained: gdqp
lum � 0.1 and gddpd

lum � 0.0465.
From these values, the dissymmetry factor of a heteroleptic
complex could be estimated by applying Equation 9.

gtotal,heteroleptic
lum

∣∣∣∣∣ ∣∣∣∣∣ � ∑ gL
lum

∣∣∣∣ ∣∣∣∣. (9)

For 2, one obtains gdqp
lum + gddpd

lum � 0.1 + 0.0465 � 0.1465, which
corresponds closely to the experimental value of 0.14, verifying the
hypothesis. Unfortunately, the number of available compounds is
limited; thus, to validate or invalidate the statement, more flexible
tridentate ligands must be studied. As a general conclusion to the
chiroptic luminescence, an extension of the organic π-delocalized
electronic cloud in the para position of the pyridine does not
influence the dissymmetry factor, while the implementation of
ddpd ligands results in an attenuated glum. A plausible
explanation for this observation is that the rigidification of the
complex is key in the obtention of a large dissymmetry factor, and
the rigidity must be maximized.

The BCPL of the emissive complexes can be calculated using
Equation 2. Because the glum values associated with the two observed
emissions Cr(2T1’→4A2) and Cr(2E’→4A2) are of opposite signs in
the same enantiomer, BCPL must be similarly split into two
components. Accordingly, the ϕPL must be split relative to the
intensity of each band at the temperature measurement (293 K).
The emission spectrum of the corresponding complex is
approximated as two Gaussian curves, deconvoluted as such, and
the ratio between them is calculated (idealized Cr(2T1→4A2) and

TABLE 1 CPL brightness (BCPL) calculation for each emissive transition in complexes 1, 2, 5, and 6.

Complex ε/M−1cm−1 ϕPL/%
(a) 2T1’/

2E’ ratio |glum| BCPL/M
−1cm−1

1 34,622 (b) 12.4 2E’ 0.324 8·10−2 56

2T1’ 0.676 2·10−1 290

2 36,118 (b) 12.4 2E’ 0.333 8·10−2 60

2T1’ 0.667 2·10−1 299

5 29,881(b) 6.5 2E’ 0.308 8·10−2 24

2T1’ 0.692 2·10−1 134

6 32,684 (b) 6.0 2E’ 0.181 7·10−2 14

2T1’ 0.819 1.4·10−1 112

[Cr(dqp)2]
3+ (c) 20,000 (d) 5.2 2T1’ - 2·10−1 104

[Cr(dqp-Br)2]
3+ (e) 10,591 (f) 14 2T1’ - 1.9·10−1 140

[Cr(dqp-OMe)2]
3+ (e) 5,000 (f) 17 2T1’ - 1.8·10−1 76.5

[Cr(dqp-≡)2]3+ (e) 13,553 (f) 15 2T1’ - 1.7·10−1 173

[Cr(ddpd)2]
3+ (g) 30,000 (h) 11 2T1’ - 9.3·10−2 153

aDeaerated conditions.
bλabs = 340 nm.
cJimemez et al., 2019.
dλabs = 370 nm.
eJimemez et al., 2021.
fλabs = 405 nm.
gDee et al., 2019.
hλabs = 300 nm.
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Cr(2E→4A2) transitions, Supplementary Figures S37–S40). The
calculated values of BCPL are compiled in Table 1 and range from
299 M−1cm−1 to 122 M−1cm−1 for the Cr(2T1’→4A2) transition and
60–14M−1cm−1 for the Cr(2E’→4A2) transition, which are among the
highest reported values for CPL active compounds (Arrico et al.,
2020). A higher BCPL can be achieved by exciting the maxima of the
absorption band to increase the value of ε in the BCPL calculation.
The ϕPL is considered invariant with the excitation wavelength.

3 Conclusion

A series of new chiral homoleptic and heteroleptic CrIII

chromophores with dqp-based ligands with para
functionalization of the central pyridine have been synthesized
and characterized. The addition of N,N-dimethylaniline to the
complex resulted in a large increase in absorbance in the VIS
region (CT) accompanied by quenching of the luminescence.
Interestingly, weak luminescence is retrieved upon protonation
of the aniline (ΦPL ≤ 0.0011%). The highly luminescent complexes
[Cr(dqp-Ph)2]

3+ and [Cr(dqp-≡-Ph)2]3+ are promising candidates
for use as chiral luminescent probes. Enantiomeric resolution of
all six racemic complexes could be achieved by CSP-HPLC.
Implementing N,N-dimethylaniline as a substituent to the
complex resulted in a baseline separation of the two
enantiomers, allowing a potential large-scale separation.
Moreover, the evolution of the circular dichroism from the
non-protonated to the protonated species in [Cr(dqp-DMA)2]
3+/[Cr(dqp-DMAH)2]

5+ and [Cr(dqp-≡-DMA)2]
3+/[Cr(dqp-

≡-DMAH)2]
5+ could be followed. Near-perfect octahedral

geometries are obtained with the help of the six-membered
chelate rings, providing long excited state lifetime and high
overall photoluminescence quantum yields at room
temperature. Dual circularly polarized luminescence arises
from the Cr(2T1’) and Cr(2E’) excited level to the Cr(4A2)
ground state within the 720–780 nm range. The observed |glum|
for the emissive complexes amounts to 0.2 except for
[Cr(dqp)(ddpd)]3+, for which the |glum| was measured to be in
between the two corresponding parent homoleptic complexes
[Cr(dqp)2]

3+ (|glum| = 0.2) and [Cr(ddpd)2]
3+ (|glum| = 0.093).

High BCPL values, ranging from 299 −1cm−1 to 122 M−1cm−1 for the
Cr(2T1’→4A2) transition and 60–14 M−1cm−1 for the Cr(2E’→4A2)
transition, were obtained, reaching the typical range of 4f-based
chiral chromophores with the added value of the inertness and
low cost of trivalent chromium.
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