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Calcium carbonate (CaCO3) is an incredibly abundant mineral on Earth, with over
90% of it being found in the lithosphere. To address the CO2 crisis and combat
ocean acidification, it is essential to producemore CaCO3 using various synthetic
methods. Additionally, this approach can serve as a substitute for energy-
intensive processes like cement production. By doing so, we have the
potential to not only reverse the damage caused by climate change but also
protect biological ecosystems and the overall environment. The key lies in
maximizing the utilization of CaCO3 in various human activities, paving the
way for a more sustainable future for our planet.
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Introduction

The significance of inorganic materials in the chemical industry cannot be overstated.
These materials, derived from non-carbon-based compounds, play a foundational role in
various processes, applications, and innovations (Gągol et al., 2020; Industrial inorganic
chemistry, 2010; Wang andWang, 2021; Wang et al., 2022; Waris et al., 2021) (Figure 1). As
we navigate an era emphasizing sustainability, the importance of inorganic materials in
fostering sustainable chemistry becomes increasingly apparent (Huang and Zhai, 2021;
Lima et al., 2020; Van Soest et al., 2021). Inorganic materials serve as essential building
blocks for countless chemical products, ranging from catalysts and reagents to structural
components (Clark and Rhodes, 2000; Furukawa and Komatsu, 2017; Mitzi, 2009; Osterloh,
2008; Schubert and Hüsing, 2019; Song and Lee, 2002; Zheng et al., 2022). Their versatility
extends into diverse sectors such as electronics, pharmaceuticals, energy, technology and
materials science (Al Zoubi and Ko, 2020; Avouris andMartel, 2010; Boles et al., 2016; Chen
and Park, 2018; Chen et al., 2015; Ebadi Jamkhaneh et al., 2021; Fadia et al., 2021; Fan et al.,
2021; Moon et al., 2007; Niemeyer, 2001; Qi et al., 2020; Servin and White, 2016; Sun and
Rogers, 2007; Vallet-Regí et al., 2007).

Crucially, in the context of sustainable chemistry, inorganic materials contribute to
environmentally conscious practices (Caballero-Calero et al., 2021; Mazari et al., 2021; Nelson
and Schelter, 2019; Pham et al., 2020). Their role in catalysts (Boles et al., 2016; K.-G; Liu et al.,
2021; Shen et al., 2020) and processes designed for cleaner and more energy-efficient
production and applications (Kitchen et al., 2014; Zheng et al., 2022) exemplifies their
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significance. Additionally, their use in energy storage (Cheng et al.,
2021; Junaid et al., 2021; Liu et al., 2020; Piątek et al., 2021), renewable
energy technologies (Chandrasekaran et al., 2011; Liang et al., 2017),
and waste treatment (Goh and Ismail, 2018; Kayvani Fard et al., 2018;
Manikandan et al., 2022; Xiang et al., 2022) underscores their pivotal
role in addressing global sustainability challenges.

Calcium carbonate serves as a versatile reagent in inorganic
chemistry, contributing to various reactions and processes (Al-
Hosney and Grassian, 2004; Baltrusaitis et al., 2007; Lin et al.,
2020; Salek et al., 2015; Suppes et al., 2001). Moreover, its unique
properties such as its porous structure and high surface area (Durand
et al., 2018), make it a suitable substrate for anchoring catalytically
active components (García-Mota et al., 2011; Liu et al., 2013; Saetan
et al., 2017; Schlägl et al., 1987). Calcium carbonate plays a role in the
production of biodiesel, catalyzing transesterification of natural oils
(Alonso et al., 2010; Chutia and Phukan, 2024; Kouzu et al., 2008; Ling
et al., 2019; X; Liu et al., 2021; Ngamcharussrivichai et al., 2010; Suppes
et al., 2001; Thangaraj et al., 2019). Calcium carbonate is employed in
carbon capture applications as a sorbent for CO2 removal (Dou et al.,
2016; Erans et al., 2016; Florin et al., 2010; Liu et al., 2010; Witoon,
2011). In a process called mineral carbonation, it reacts with carbon
dioxide to form stable carbonates, contributing to carbon capture and
storage efforts (Abanades, 2002; Bewernitz et al., 2024; Erans et al.,
2020; Gadikota, 2021; Gambhir and Tavoni, 2019; Levey et al., 2024;
Olajire, 2013; Sanna et al., 2014; Sanz-Pérez et al., 2016). Like in
biological materials, various mineral phases of CaCO3 can be

processed to obtain customized chemical reactivity and
functionality (Briegel and Seto, 2012; Cho et al., 2019; Seto et al.,
2014; 2013). This method aids in mitigating greenhouse gas emissions
and addresses climate change concerns (Neeraj and Yadav, 2020;
Snæbjörnsdóttir et al., 2020; Thonemann et al., 2022). Understanding
these diverse properties unveils calcium carbonate’s significance in
addressing environmental concerns.

This material emerges as a linchpin for fostering robust soil
health, vibrant plant growth, and bountiful crop yields (Hamdan
et al., 2017; Soon et al., 2014; Wang et al., 2015; Xie et al., 2024).
From soil pH adjustment in acidic terrains (Neina, 2019) to serving
as a vital calcium supplement for plants (Shabtai et al., 2023),
calcium carbonate’s agricultural significance is underscored by its
ability to rectify deficiencies that may impede the optimal
development of crops. Furthermore, its impact extends beneath
the surface, where it actively participates in enhancing soil structure
(Dou et al., 2023). By promoting aggregation, calcium carbonate
facilitates improved water retention and drainage, creating an
environment conducive to the flourishing of roots (Figure 1).

As an additive in fertilizers, it takes on the role of a nourishing
component, supplying essential calcium that supports the formation
of robust cell walls and overall plant structure (Abo-Sedera, 2016;
Hua et al., 2015). Acting as a buffering agent, calcium carbonate
becomes a guardian of soil pH stability, curbing rapid fluctuations
that could detrimentally affect plant health (McFarland et al., 2020;
Zhang et al., 2016). Beyond the crop fields, its practical application

FIGURE 1
Schematic representation of current uses of calcium carbonate discussed in this mini review.
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even extends to dust control in agricultural settings, where it
contributes to creating a more comfortable environment,
particularly in livestock farming (Hamdan and Kavazanjian,
2016; Meyer et al., 2011; Song et al., 2020). In essence, the
diverse applications of calcium carbonate in agriculture stand as
a testament to its integral role in promoting soil fertility, sustaining
healthy plant growth, and ultimately cultivating agricultural
landscapes that thrive (Figure 1).

CaCO3 in carbon capture and
mineralization applications

Carbon capture, utilization, and storage (CCUS) technologies
aim to decrease the greenhouse gas effect by capturing emitted

carbon and transforming it for long term storage or chemical utility
(Chang et al., 2017). Industrial mineralization of carbon dioxide to
produce calcium carbonate is a promising CCUS method with high
economic potential (Chang et al., 2017; Teir et al., 2016). These
reaction pathways valorize waste streams from processes such as
steelmaking and cement production while reducing energy
consumption (Jin et al., 2022; Katsuyama et al., 2005; Marin
Rivera and Van Gerven, 2020; Teir et al., 2016). By utilizing
chemicals in waste flue gas, steelmaking slag and cement powder,
calcium carbonate production provides a green alternative to
disposal and storage of carbon dioxide (Czaplicka and
Konopacka-Łyskawa, 2020; Teir et al., 2016) (Figure 2). There are
many methods to precipitate calcium carbonate from CO2 streams
such as microbially induced precipitation, ultrasonication of
supercritical carbon dioxide, and other methods, most of which

FIGURE 2
Diverse methods of utilizing CaCO3 at various length-scales. (A) By utilizing a biogeomimetic mineralization route, recycled geomass can be
harvested to make tonnes of aggregates. [inset: CaCO3 aggregates formed] (images courtesy of Blue Planet Systems, Inc). (B) CaCO3 can serve as
catalysts with specific functional groups to enhance the formation of chemical feedstocks. (conceptual graph inspired by, among others, Lindlar and
Dubuis, 2003; Senra et al., 2008; Lizandara-Pueyo et al., 2021).
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TABLE 1 Publications related to calcium carbonate sustainability arranged by year.

Application Topic Scope Year published Author(s)

Carbon capture Transformation Carbonation 2002 Abanades, J.C

Sorbent 2010 FlorinN.H.

Sorbent 2010 Liu, W. et al

Sorbent 2019 Gambhir, A

MICP 2020 Chuo, S.C. et al

Carbonation 2020 Czaplicka, N. et al

Carbonation 2020 Yadav, S

Mineralization 2020 Marin Rivera, R. et al

Mineralization 2021 Gadikota, G

Chemical looping 2022 Jin, Z. et al

Liquid condensed phase 2024 Bewernitz, M.A. et al

Absorption Biomineralization 2013 Dhami, N.K et al

Sorbent 2016 Erans, M

Carbonation 2016 Sanz-Pérez, E.S. et al

Sorbent 2020 Erans, M

Prolonged storage Scale up 2011 HerzogH.J.

Carbonation 2017 Chang, R. et al

Carbonation 2020 Snæbjörnsdóttir, S.Ó. et al

Carbonation 2021 Campo, F.P et al

Cement 2021 Hargis, C.W. et al

Cement 2023 Hanifa, M. et al

Cement 2024 Levey, C. et al

Catalysis Biodiesel Transesterification 2008 Kouzu, M. et al

Transesterification 2010 Alonso, D.M. et al

Transesterification 2010 Ngamcharussrivichai, C. et al

Transesterification 2010 Liu, X. et al

Transesterification 2024 Chutia, G.P. et al

Catalytic support Selective hydrogenation 1987 Schlägl, R. et al

Selective hydrogenation 2008 Senra, J.D. et al

Selective hydrogenation 2011 García-Mota, M. et al

Cross coupling reactions 2013 Liu, H. et al

Cross coupling reactions 2017 Saetan, T. et al

Selective hydrogenation 2020 Laverdura, U.P. et al

Asymmetric Michael addition 2021 Lizandara-Pueyo, C. et al

Selective hydrogenation 2022 Ballesteros-Soberanas, J. et al

Organic reactions Alcoholysis 2001 Suppes, G.J. et al

Intermediate surface reactions 2004 Al-Hosney, H.A. et al

Sulfur dioxide reactions 2007 Baltrusaitis, J. et al

(Continued on following page)
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are based on biomimetics or CO2 bubbling (Boyjoo et al., 2014;
Chuo et al., 2020; López-Periago et al., 2010). When using sorbent
technology, a compromise must be made between sorbent
performance and the increasing cost (Erans et al., 2016).
Modified materials and advanced chemical reactors increase
sorbent utility, but can be vastly more expensive than their
simpler counterparts. Also, the activity of sorbents decay over
time due to sintering and attrition, further limiting utility (Erans
et al., 2016).

In recent years, chemical looping and mineralization has been
gaining attention as a promising CCSU technology, with
publications such as those from Jin, Z. et al. and Bewernitz, M.A.
et al. (Table 1). CaCO3 aggregates can be used to replace
cementitious products (Hargis et al., 2021; Pu et al., 2021).
Through an exponential increase in the built environment,
cement production has become an ever-increasing source of CO2

and dust pollution. It approximately accounts for 8% of the
anthropogenic CO2 produced per year and is a process with very
little technical improvement since its utilization from Roman times
(Stefaniuk et al., 2023). Only through recent advances like
replacements with clinker as well as new formulations with lower

energy substitutes (Martinez et al., 2023) as well as aggregates
(Hanifa et al., 2023). can we envision a world with more
infrastructure, but without the pollution attached to building
it (Figure 2).

It is indisputable that the indiscriminate emissions of
greenhouse gas have resulted in increased surface temperature on
Earth and environmental degradation (Yoro and Daramola, 2020).
Given the tremendous amount of CO2 in Earth’s atmosphere, CCUS
technology would have to make gigaton-scale changes to have a
meaningful impact on the global scale (Figure 3). Through reduction
of emissions and increasing global CCUS usage, humanity has been
trying to reduce the impact of climate change caused by
anthropogenic CO2 emissions (Dey and Dhal, 2019; Huisingh
et al., 2015; Sanna et al., 2014).

The relationship between average surface temperature and CO2

concentration is directly proportional (Humlum et al., 2013). Ice
core records indicate that CO2 concentration has varied with
temperature over long time scales for the past 420,000 years or
even longer (Humlum et al., 2013; Lüthi et al., 2008). Also, it is
suggested that rising atmospheric CO2 levels amplify or even
precede global temperature changes initiated by Milankovitch

TABLE 1 (Continued) Publications related to calcium carbonate sustainability arranged by year.

Application Topic Scope Year published Author(s)

Soil health Pesticide delivery Nanoparticles 2018 Zhao, X. et al

Fungicide 2022 Zhou, Z. et al

Sporopollenin 2023 Xiang, S. et al

Encapsulation Sunflower pollen 2016 Mundargi, R.C. et al

Slow release 2023 Abhiram, G. et al

Remediation Pond soil 2004 Queiroz, J.F.D. et al

MICP 2011 Meyer, F.D. et al

MICP 2014 Soon, N.W. et al

MICP 2020 Song, J.Y. et al

pH control 2015 Salek, S. et al

pH control 2016 Juang, Y. et al

pH control 2018 Gentili, R. et al

pH control 2020 McFarland, C. et al

Foliar spray 2016 Abo-Sedera, F

Dust control 2016 Hamdan, N. et al

Denitrification 2017 Hamdan, N. et al

Improved tomato yield 2018 Patanè, C. et al

Metal remediation 2019 Bashir, M.A. et al

Metal remediation 2020 Lin, P.-Y. et al

Cauliflower development 2020 Santos, C.A.D. et al

Carbon regulation 2023 Dou, X. et al

Improved wheat yield 2023 Gao, Y. et al

Pathogen elimination 2023 Liu, Q. et al

*MICP, microbially induced calcium carbonate precipitation.
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cycles (Humlum et al., 2013; Shakun et al., 2012; Toggweiler and Lea,
2010). With these facts in mind, data from the National Center for
Environmental Information (NOAA National Centers for
Environmental Information, 2024; U.S. Global Change Research
Program et al., 2017) was plotted and regression was performed to
derive Equation 1, describing the relationship between global
average surface temperature (as compared to the
1901–200 average), time, and atmospheric CO2 concentration.

T � 1 − α × t( ) 3.5 × 10−26( ) exp 0.029 × t( ) (1)

The factor (1 − α × t) in Equation 1 accounts for humanity’s
intervention and efforts to halt the rising global temperatures. The
variable ⍺ is proportional to the amount of CO2 being captured and
removed from the atmosphere. With a higher amount of CCS
technology used globally, α would increase proportionally. If no
changes are made to humanity’s current emission rates,
(1 − α × t) � 1, and the current trend is expected to continue,
increasing surface temperatures and further harming global
ecosystems (Ainsworth et al., 2020; Karnosky, 2003; Moore et al.,
2021; Prakash, 2021; U.S. Global Change Research Program et al.,
2017). Improving CCS technology has the potential to slow this
temperature increase, but not enough to see impactful differences at
current rates (Davis, 2017). Even if carbon dioxide emission was
completely halted, and all emitted CO2 were captured and stored,
the Earth’s temperature is expected to remain the same or continue
increasing at a very slow rate for centuries (Frölicher et al., 2014).
Such a carbon neutral state can only be accomplished through
radical improvements to CCS technologies, and drastically
decreasing reliance on fossil fuels (Budinis et al., 2018; Stone
et al., 2009). CCS technology will only become a reasonable
solution to rising surface temperatures through sequestering
billions of metric tons (gigatons) of carbon dioxide per year
(Herzog, 2011; Valone, 2023) (Figure 4).

Given Earth’s tremendously large surface area, and high water
content, it takes an enormous amount of energy to raise the

average surface temperature even by a small amount. Though
1°C may seem like an insignificant change, the global effects are
drastic due to the tremendous amount of trapped heat (Lindsey
and Dahlman, 2024; NOAA National Centers for Environmental
Information, 2024; U.S. Global Change Research Program et al.,
2017). If dramatic industrial and legal changes are not made, the
disastrous effects may be irreversible (Armstrong McKay et al.,
2022; Ridley et al., 2010).

CaCO3 in chemical catalysis

One of the most relevant processes in the chemical industry is
the selective partial hydrogenation of alkynes to alkenes; this
transformation is usually enabled by the Lindlar Catalyst (Lindlar
and Dubuis, 2003). The use of calcium carbonate in the Lindlar
Catalyst dates back to the 1980s when authors such as Schlägl, R.
et al. released publications detailing its structure and activity
(Table 1). This catalyst is based on palladium supported on
calcium carbonate and passivated with lead acetate and
quinoline. This catalytic system has a broad application in
natural product synthesis (Ballesteros-Soberanas et al., 2022) or
in the upgrading of vegetable oils (Laverdura et al., 2020). This
catalyst allows the reaction to be performed at high temperatures
(200°C), increasing conversion rates while simultaneously increasing
the cost required to run such a system (Suppes et al., 2001). The
versatility and inertness of calcium carbonate as support, allows the
fine tuning of the surfaces. Accordingly, an efficient and selective
catalytic system using hydroxypropylated cyclodextrins and
palladium on calcium carbonate has been presented by Senra
et al. (2008) for a ligand-free aqueous Heck reactions. In this
case, the catalyst was not only active and selective but also
immobilized. Most recently, calcium carbonate has been used as
a support for the immobilization of asymmetric catalysts using
biomineralization concepts and click chemistry. A calcium

FIGURE 3
The geological composition of the Earth (A). The various segments from the core to the surface of the planet (B). The diverse composition of the
Earth’s mantle (C). The majority of carbon (in the form of carbonates and CO2) stored in the diverse surface layers of Earth (image courtesy of NASA).
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carbonate-supported α,α-diarylprolinol silyl ether prepared in this
manner catalyzed Michael addition of aldehydes to trans-β-
nitrostyrenes with very high diastereo- and enantioselectivity. By
utilizing calcium carbonate as a heterogenous support,
organocatalysis can be immobilized which reduces the cost and
energy requirement of downstream separations (Lizandara-Pueyo
et al., 2021). Additionally, this method allows for the used
organocatalysis to be recycled and reused (Benaglia, 2009)
(Figure 2). The catalyst can be recovered for reuse by simple
decantation or used in a continuous flow reactor, increasing
productivity five-fold as compared to batch processes (Lizandara-
Pueyo et al., 2021).

Recycling catalysts is a sustainable process, but sometimes a
certain portion of the catalyst cannot be recovered. A small amount
of the catalyst can dissolve into the reaction mixture, and potentially
escape into the environment. Calcium is extremely common in the
environment as compared to other catalytic chemicals. The
miniscule amounts of calcium carbonate which escape into the
environment would generally cause no effect because calcium is
already present (Suppes et al., 2001).

Remarkably, calcium carbonate is highly recyclable and
utilization of recycled calcium carbonate enables a boost in the
recycled content found in compounds and final polymer
applications, thereby aiding customers in achieving their circular
economy objectives. Utilization of pre-consumer and post-
consumer recycled calcium carbonate is on rise thus adding
another benefit of calcium carbonate as a part of a product
(Cunningham et al., 2021).

CaCO3 in agricultural applications

With an increasing global population (Gu et al., 2021), food
security is of the utmost importance (Molotoks et al., 2021). Between

2010 and 2050, there is an anticipated increase in global food
demand ranging from 35% to 56%. Simultaneously, the
population at risk of hunger is projected to undergo a change
ranging from a reduction of 91% to an increase of 8% during the
same period (Van Dijk et al., 2021). The looming threat of food
scarcity heightens humanity’s need to protect and ensure a bountiful
supply of healthy crops in the coming years (Anderson et al., 2020;
Devaux et al., 2021; Fukase and Martin, 2020; Hasegawa et al., 2021;
Zhao et al., 2021). Calcium carbonate offers various solutions to
some issues farmers are facing (Liu et al., 2023; Patanè et al., 2018;
Santos et al., 2020). By utilizing the unique chemical, physical and
material properties of CaCO3, humanity can nourish the agricultural
industry in a sustainable way, while potentially avoiding the
projected food insecurities.

Soils play a vital role in meeting the food and feed requirements
of an expanding global population. The addition of calcium
carbonate to soil can have a beneficial effect on plant health.
Traditionally, it is commonly used as a liming agent to reduce
soil acidity, meaning that calcium carbonate acts as a neutralizing
agent for acidic soils by increasing the soil’s pH level, making it more
suitable for plant growth. Furthermore, it helps to enhance soil
aggregation, water retention, and nutrient availability, making the
soil more conducive to plant growth. Interestingly, doping soil with
calcium carbonate has alleviated poisoning caused by heavy metal
pollution in Hunan, China (Zeng et al., 2015). A field study
conducted in Tehsil Lahore City, Punjab, Pakistan further
confirmed that concentrations of heavy metals were negatively
correlated with calcium carbonate concentrations (Bashir
et al., 2019).

Calcium carbonate is often used as a filler in fertilizers to
improve their physical properties. It helps to prevent caking and
improve the flowability of granular fertilizers, making them easier to
handle and apply (Abhiram et al., 2023). Calcium is an essential
nutrient for plant growth and development. Calcium carbonate is

FIGURE 4
Global average surface temperature increase from 1901 to 2000 average based on data from the National Centers for Environmental Information
(triangles) (NOAA National Centers for Environmental information, 2024).
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used as a source of calcium to supplement the soil and provide plants
with this vital nutrient. It helps in strengthening the cell walls of
plants, improving their overall structure and resilience (Gao
et al., 2023).

Plant diseases have a substantial effect on crop yields and
quality, leading to considerable economic losses and requiring
significant management inputs each year for crops, landscapes,
and forests in the United States, amounting to billions of dollars
(Fones et al., 2020; Ristaino et al., 2021). Plant sporopollenin has
recently emerged as an environmentally friendly drug carrier
(Mundargi et al., 2016). The sporopollenin capsule modified
with calcium carbonate can be loaded with drugs or pesticides
and used for controlled release of pesticide (Xiang et al., 2023). The
engineered sporopollenin can then be mixed with soil used to grow
plants. This process allows for the slow release of drugs, pesticides
and calcium carbonate while remaining environmentally friendly
and increasing crop yield.

Microcapsule based controlled release formulations are
promising alternatives to conventional pesticide. By preparing
double shelled calcium carbonate capsules, many adverse effects
caused by traditional pesticide can be avoided. Approximately 90%
of the liquid-based pesticide is lost to run-off and evaporation (Zhao
et al., 2018). The controlled release of pesticides through
microcapsules is a promising method to solve such issues (Zhou
et al., 2022). Though environmentally favorable, the preparation of
pesticide loaded calcium carbonate microcapsules is expensive, due
to the large amount or organic substances required (Zhou et al.,
2022). Therefore, developing a cheap and efficient production
process is needed.

Starch doped porous calcium carbonate can also be used as a
pesticide delivery mechanism. Calcium carbonate microspheres
fabricated through coprecipitation regulated by soluble starch can
be used as drug carriers for plants (Xiang et al., 2018). Porous
calcium carbonate microspheres with intercalated soluble starch
molecules were used as carriers for Prometryn, a typical herbicide
(Xiang et al., 2018). Due to electrostatic attractions and hydrogen
bonding, the herbicide is slowly released, controlling migration of
the chemical while increasing its utility (Xiang et al., 2018). This
method can potentially be expanded to include the use of other
chemical herbicides as well.

For agricultural applications, the approval and regulations
regarding calcium carbonate microcapsules depend on the
specific application and the country in which it is being used. In
general, calcium carbonate itself is commonly used and considered
safe for various agricultural applications. However, if calcium
carbonate is used as a carrier or encapsulating agent for other
substances, such as pesticides or fertilizers, the regulations may
vary. Nevertheless, this application will be more explored and it will
gain more interest in the future in comparison to more traditional
calcium carbonate applications (Table 1).

Regulatory bodies, such as the Environmental Protection
Agency (EPA) in the United States or the European Chemicals
Agency (ECHA) in the European Union, assess and approve the use
of carriers and encapsulating technologies based on their specific
applications and potential risks. These bodies evaluate factors such
as the effectiveness, safety, and environmental impact of the carried
or encapsulated substances. Calcium carbonate is a naturally
occurring mineral that is not derived from plastic and does not

pose the same environmental concerns as microplastics. Calcium
carbonate is biologically and chemically distinct from plastics and is
not classified as a microplastic.

Naturally, calcium carbonate exists in the form of limestone, a
rock that contains a minimum of 50% calcium carbonate. Limestone
deposits can be found worldwide and are extracted through
quarrying or mining processes. The United States stands as a
prominent producer of calcium carbonate, with minimal risk of
supply disruption. Presently, the cost of lime for agricultural
applications, like non-irrigated corn farming in South Georgia,
stands at $55 per ton, amounting to $13.73 per acre or $0.16 per
bushel. Although this may appear relatively high, investing in lime
can yield returns within two to 3 years (University of Georgia, 2024).
However, one should be careful in applying lime in the field as the
pH of the soil is an important factor that can be regarded as a crucial
variable because of its impact on various other soil properties and
processes that ultimately affect the growth of plants. The activity of
microorganisms, as well as the solubility and availability of
nutrients, are among the vital processes that rely on soil pH. For
example, pH has a significant influence on various plant
characteristics or traits, including height, lateral spread, biomass,
flower size and quantity, pollen production, and more (Gentili et al.,
2018; Jiang et al., 2017).

Conclusion

CaCO3 is a mineral with a diversity of utilization throughout
the built environment. With increasing atmospheric CO2 to ocean
and soil acidification, methods to mitigate pollution are ever more
required for a sustainable environment. Specifically, these
activities include CO2 sequestration, chemical catalysis and
utilization, precise agricultural applications and essential soil
amendments, as well as formation of light weight aggregates in
cement replacement applications; all of which will provide
noticeable improvements for a more sustainable future. We
show an evolution of diverse applications that have been and
are using CaCO3 however, with time these applications with
CaCO3 will also multiply and its utility will be invaluable in
the near future.
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