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Editorial on the Research Topic
Hot topic: excited state processes in biomolecules

This feature collection of papers for the Research Topic “Hot Topic: Excited State
Processes in Biomolecules” covers a broad range of research on recent advances in
experimental and computational studies of excited state processes in biomolecules. The
papers demonstrate a variety of state-of-the-art experimental and computational
approaches to delineate light-induced transient processes in organic/biomolecules and
are of broad interest to researchers working at the interface of photophysics and
photochemistry, photobiology, spectroscopy, bioimaging, biomimetics, and life sciences
in general.

One of the central motivations for excited-state studies is the elucidation of sunlight’s
effects on Earth. This includes both positive and negative aspects, with the latter being
potential UV-induced photodamage of biomolecules and possible alleviation pathways via
photoprotective processes such as those occurring in DNA (Martínez Fernández et al.,
2022). Meanwhile, life also depends on light-harvesting processes of photosynthetic
organisms including plants, algae, and some bacteria, wherein their apparent electronic
absorption peak separation by over 100 nm is intriguing for the underlying dominant
chromophores of chlorophyll a (Chl) versus bacteriochlorophyll a (BChl). In a highly
systematic investigation employing the absorption and fluorescence excitation anisotropy
spectroscopy on 17 core complexes and 16 peripheral complexes (from wild type to
engineered, and detergent-purified to membrane-embedded for valuable contrasts) across
sulfur and non-sulfur purple bacteria (Timpmann et al.), a robust linear correlation between
the excitation bandwidth and the lowest-energy exciton Qy absorption band maximum was
found particularly at low temperature (4.5 K). Complementary techniques from circular
dichroism (CD) to hole-burning were also used to support the band assignment. This result
reveals that the complexes with broader bandwidths and stronger coupled excitons are
prone to absorb redder light, consistent with the particle-in-a-box quantum principle. Such
a useful linear relationship could inspire future sustainable energy strategies and devices
that can better utilize sunlight for energy production and transfer at elevated temperatures.

Since intersystem crossing (ISC) represents another excited-state process with strong
implications for triplet state and thermally activated delayed fluorescence (TADF) for
materials applications (Hirata et al., 2015; Yonemoto et al., 2020), a stimulating report on
the significance of the inverted singlet-triplet gap (STG; negative here means the triplet state
lies higher than the singlet state) provides a critical evaluation of STG origin with the
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cutting-edge high-level ab initio methods such as the third-order
algebraic diagrammatic construction [ADC (3)] and coupled-cluster
with singles and doubles [ΔCCSD(T)] on heptazines with fused
aromatic rings and heteroatoms like nitrogen or boron (Dreuw and
Hoffmann). These insightful results substantiate the importance of
an accurate description/modeling of the higher-order (at least third-
order) electron correlation with a suitably extended basis set (such as
cc-pVTZ) and theory level, aided by exciton analysis for spatial
correlation/entanglement of the hole and electron within the singlet
and triplet excitons. Practical applications for the near-zero STGs
with practically degenerate S1 and T1 states include the rational
design and development of efficient organic light-emitting diodes
(OLEDs) and functional materials.

To better exploit the power of spectroscopic theoretical
methodologies (Barone et al., 2021), density functional theory
(DFT) and time-dependent (TD)-DFT-based computations were
used to predict the electronic absorption and emission spectra
including the inherent band-shape due to pertinent vibrational
effects in a perspective article (Li et al.) using novel fluorescent
dyes called viologens as a test case. The focus on the readily available
optical spectra and economical DFT calculations allows for deeper
insights into the structural factors leading to discernible spectral
patterns for a wide array of organic and inorganic dyes with broad
applications (e.g., redox reagents, imaging and/or ion sensors,
molecular electronics, solar energy conversion and storage). In
particular, the explicit inclusion of molecular vibrations in the
excited electronic states (for an accurate modeling of vibronic
transitions) can increase the simulation relevance with accuracy.
The demonstration for semi-rigid or moderately flexible systems
could be extended to more flexible ones by incorporating advanced
methods from wavepacket dynamics, effective anharmonic
treatments to a combination of static and dynamic computations
for a comprehensive simulation of the diverse excited-state
phenomena of interest.

Among all the light-sensitive biomolecules, photoconvertible
fluorescent proteins (pcFPs) belong to a group of genetically-
encodable luminous biomarkers for sophisticated bioimaging,
which can enable the visualization of cellular structures beyond
the diffraction limit due to their ability to change emission color
following light activation (Adam et al., 2008; Bourgeois and
Adam, 2012; Subach and Verkhusha, 2012; Nienhaus and
Nienhaus, 2014). The least-evolved ancestor (LEA) is a unique
pcFP engineered via ancestral gene reconstruction to represent
the evolutionary node for FPs to acquire the color-changing
ability (Kim et al., 2013; Kim et al., 2015). Dual illumination
under ambient light may have been preferentially evolved to
accelerate the LEA photoconversion and take advantage of the
sunlight spectrum (Krueger et al., 2020). In a combined steady-
state and ultrafast spectroscopy, quantum calculations, protein
engineering, and X-ray crystallography work, a set of five related
FPs with varying photoconversion and photoswitching
efficiencies were studied in electronic and vibrational domains
to reveal the fluorescence modulation mechanisms (Krueger et al.).
In particular, noncanonical amino acid (ncAA) incorporation
produced a methyl-histidine chromophore derivative of LEA that
showcases the enhanced photoswitching but a greatly reduced
photoconversion efficiency versus the parent FP. The rational
engineering of chromophores and local environment residues via

ncAA is a promising area of research to realize substantial
progress by fine-tuning the photophysical and photochemical
properties of FPs. Both transient dynamics and local
environment of the initial fluorescent state with a cis
chromophore need to be considered when evaluating
photoswitching in addition to the photoswitched off state with
a trans-like chromophore, echoing a recent report about varying
hydrogen-bonding interactions of dynamic chromophores in
related pcFPs (De Zitter et al., 2020). Importantly,
femtosecond stimulated Raman spectroscopy (FSRS) in the
excited state (Fang et al., 2009; Fang and Tang, 2020) revealed
key vibrational motions of a LEA mutant, LEA-A69T, indicating
that the photoswitching process is inhibited by a π-stacked
histidine ring near the chromophore which likely hinders the
cis-to-trans isomerization via sterics and electrostatic
interactions. Such molecular movies of biomolecules in action
are expected to power the bottom-up design and engineering of
versatile bioprobes and biosensors with targeted functions.

From this comprehensive line of inquiries deciphering intrinsically
competitive excited-state pathways of biomolecules across their
absorption, emission, internal conversion and intersystem crossing,
we can appreciate the increasingly accurate predictive power of an
effective feedback loop established between vibrant and collaborative
organic chemists/protein engineers (“makers”) and biophysical chemists/
spectroscopists/theoreticians (“analyzers”). Excited-state processes
essentially power everything on Earth starting from the origin of life
(abiogenesis), andwe hope thisHot Topic in both Front. Phys. and Front.
Chem (https://www.frontiersin.org/research-topics/50676/hot-topic-
excited-state-processes-in-biomolecules/articles) has presented in one
place some exciting advances about biomolecular excited-state
processes and will inspire future innovations and breakthroughs
across disciplines to promote a more sustainable and healthy world.
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