Skip to main content

ORIGINAL RESEARCH article

Front. Chem.
Sec. Green and Sustainable Chemistry
Volume 12 - 2024 | doi: 10.3389/fchem.2024.1463648
This article is part of the Research Topic Biomass Conversion: from Mechanism to Energy Applications View all 7 articles

Effect of plant fibers on the physical properties of slurry-processed reconstituted tobacco

Provisionally accepted
  • Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China

The final, formatted version of the article will be published soon.

    The primary function of plant fibers in reconstituted tobacco is to enhance the physical strength, and it can quite modify their physical properties. This study demonstrated the effect of various plant fibers and their beating degrees on the physical properties of reconstituted tobacco. Tensile index, burst index, uniformity, tensile stiffness orientation, and thermal conductivity coefficient were examined. The result revealed that the mechanical properties of reconstituted tobacco varied according to the type and beating degree of the fibers. The mechanical properties of softwood, cotton, and bast fibers showed an initial increase followed by a decrease with increasing beating degree, while bamboo fiber showed a continuous improvement in mechanical properties proportional to the beating degree. Conversely, hardwood fiber displayed an inverse relationship with its beating degree. Under identical beating conditions, reconstituted tobacco containing softwood fibers showed the greatest improvement in tensile properties, achieving the highest tensile strength, thermal conductivity, and specific heat capacity. In particular, when softwood fibers were beaten to 50 °SR, the physical properties of the reconstituted tobacco peaked, with longitudinal and transverse tensile indices improving by 42.48% and 12.11%, respectively. Additionally, the bursting resistance index increased by 61.93%, and the thermal conductivity coefficient increased by 5.94%.

    Keywords: Reconstituted tobacco 1, Plant fibers 2, Beating degree 3, mechanical properties 4, thermal conductivity 5

    Received: 12 Jul 2024; Accepted: 08 Aug 2024.

    Copyright: © 2024 Tong. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence: Liu Tong, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.