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The development of various nanomaterials production technologies has led to
the possibility of producing nanoparticles (NPs) and nanostructures, which can
find a wide range of applications, from the fabrication of microelectronic devices
to the improvement of material properties and the treatment of cancer. The
unique characteristics of nanoparticles are primarily due to their small size, which
makes size control important in their preparation. Modification of nanoparticles
by laser irradiation and obtaining desired nanoparticle properties is a promising
approach because of its ease of implementation. The purpose of this review is to
analyze the works devoted to the study of laser-induced heating and melting of
nanoparticles, to collect information and evaluate the results of using thismethod
for functionalization and modification of metallic nanoparticles, and to discuss
promising directions for the use of this technique.
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1 Introduction

Nowadays, nanoparticles play a key role in science and are widely used in various fields
of industry (Alsaba et al., 2020), agro-technology (Kaningini et al., 2022; Gudkov et al.,
2024), biochemistry (Rico et al., 2015), biophysics (Moore and Chow, 2021) and catalysis
(Tack et al., 2024). Synthesis and modification of nanoparticles by laser irradiation is a well-
known method for fabrication of nanoparticles with high purity surface in liquids using
laser pulses, which has proven to be an environmentally friendly, simple and convenient
method for obtaining nanoscale objects (AlMalki et al., 2022; Jiang et al., 2022; Bhardwaj
et al., 2020).

Due to their unique optical properties, nanoparticles are well suited for heating by laser
radiation (Qin and Bischof, 2012). In this context, colloidal particles are of particular
interest, since conventional heating methods limit the maximum achievable temperature to
the boiling point of the solvent. Colloidal particle solutions modified by laser heating and
melting can potentially be used in various fields of nanotechnology, ranging from biological
imaging (Saha et al., 2012), drug delivery (Wilczewska et al., 2012), water purification
(Kefeni et al., 2017) to the generation of high-frequency mechanical vibrations (Pelton
et al., 2009).

The heating of metallic nanoparticles is based on the absorption of light by the
nanoparticles and it occurs in the following way: free electrons absorb photon energy
within a time scale of 100 femtoseconds (Heilweil and Hochstrasser, 1985; Ekici et al., 2008).
After that, the equilibrium state is reached through electron-electron relaxation within
10–100 femtoseconds (Heilweil and Hochstrasser, 1985; Hodak et al., 1998). Due to the
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electron-phonon interaction that occurs between 100 femtoseconds
and picoseconds, the temperature of the particle increases (Letfullin
et al., 2008). Finally, the increase in temperature in the surrounding
environment occurs due to energy transfer between the particles and
the surrounding medium through phonon-phonon interactions that
take place over a range from picoseconds to nanoseconds (Ekici
et al., 2008). It has been shown that certain parameters, such as laser
fluence (Pustovalov et al., 2008; Nedyalkov et al., 2011), pulse
duration (Pustovalov, 2006), wavelength (Astafyeva et al., 2017),
repetition rates (Sobhan et al., 2010), as well as nanoparticle size
(Duan et al., 2018) and material (Pyatenko et al., 2013) affect the
threshold values for the onset of melting of nanoparticles and their
heating rates.

Melting is a well-known and well-studied phenomenon that
continues to reveal new aspects when it occurs under laser
irradiation of nano-objects (Nanda, 2009). Recent experimental
data on the anomalously slow nanosecond melting process of
thin gold films under the influence of femtosecond laser pulses
have prompted studies aimed at understanding the mechanisms
underlying this phenomenon (Arefev et al., 2022).

The key parameter when considering the processes of particle
heating under laser irradiation is the amount of heat loss from
nanoparticles to the surrounding solvent due to conduction,
convection, and radiation heat transfer (Wang et al., 2012). It has
recently been shown that heat transfer to the surrounding particle
environment is not solely determined by the thermal conductivity of
the surrounding fluid. Particle cooling occurs by heat transfer
through the vapor/liquid interface (Plech et al., 2004). In this
case, the characteristic length of thermodiffusion can play a
crucial role in the formation of nanoparticles and bulk materials
using laser pulses (Llamosa et al., 2013).

When a nanoparticle is exposed to excessively intense laser
irradiation, the energy of which exceeds the melting and ionization
energies, it passes into the state of nanoplasma, which is located in a
shell of liquid vaporized during heating, which is accompanied by a
number of nonequilibrium dynamical processes (Niozu et al., 2021).
It is worth noting that ionization mechanisms, as studies show,
depend on the pulse duration - multiphoton photoionization is
characteristic of femtosecond pulses, and avalanche ionization is
characteristic of pico- and nanosecond pulses (Noack and Vogel,
1999; Linz et al., 2016; Yang et al., 2023). The formation of a
thermally induced vapor-gas shell around the particle plays one
of the key roles in the processes of changing the morphology and size
of the particle (Metwally et al., 2015; Lombard et al., 2014).

At present, the mechanisms of heat transfer between
nanoparticles and liquids in the context of nanoparticle wetting
phenomena are poorly understood (Tascini et al., 2017). Unwanted
thermal effects are another problem (Hashemi et al., 2019). In order
to prevent unwanted heating, it is necessary to investigate the
localized heating effect of particles. The peculiarity of the study
of this problem lies in the difficulty of determining temperatures,
since the accurate determination of temperature in the nanoscale
region has a number of peculiarities (Liu and Liu, 2019).

A promising area of research in nanomedicine involves the use
of nanoparticles that can accumulate in disease foci for drug delivery
or thermal destruction of cells. Nanoparticles entering diseased
tissues are activated by laser radiation, which initiates heat
transfer by the particle and changes the temperatures of the

medium (Riley and Day, 2017; Day et al., 2009). It is assumed
that heat can be controlled and focused at the nanoscale, which
allows precise control of the processes that occur (Terentyuk et al.,
2009; Sokolovskaya et al., 2021).

The processes of particle heating by laser radiation are also
involved in such technologies as selective laser melting (SLM) (Liu
et al., 2011), laser sintering, creation of hybrid materials and alloys
(Xiao et al., 2020). Laser-induced heating is widely used to modify
and form nanostructures on metal surfaces (Kucherik et al., 2021;
Zhu et al., 2016; Yadavali et al., 2016; Sdvizhenskii and Lednev,
2022). All the techniques related to the heating and melting of
nanoparticles under the influence of laser radiation, which will be
discussed in this review, are presented in Figure 1A.

One of the most popular nanoparticle materials used in
nanotechnology is gold. Gold nanoparticles possessing surface
plasmon resonance are currently used as promising heating
centers in various chemical and medical applications (Qin and
Bischof, 2012; Gorin et al., 2008; Yang et al., 2019). However, the
suitable wavelength for heating nanoparticles, i.e., the surface
plasmon resonance wavelength, is only in the visible spectrum,
and the maximum achievable temperature is limited by their
relatively low melting point. The use of other materials as
potential heating centers for nanoparticles will circumvent
these problems.

This review discusses the current state of knowledge on the
technology of laser-induced melting of metal nanoparticles. The
advantages and potential problems of this technology, current
applications, and promising directions for further development
are discussed.

2 Control of the sizes and morphology
of nanoparticles during the
heating process

Controlling the shape of nanoparticles is an important aspect to
adjust the parameters of nanoparticle technologies. For example, the
shape of the particles can influence the signal of nanoparticle-
enhanced laser breakdown spectroscopy (NELIBS). Experimental
results show that silver nanowires and nanocubes enhance LIBS
signals compared to spherical particles (Abdelhamid et al., 2020).
The irradiation of colloids by laser irradiation can reduce the size of
nanoparticles and decrease the width of the size distribution. The
final particle size and distribution width can be controlled by varying
the irradiation intensity (Mafuné et al., 2001). The application of
laser pulse fragmentation in liquid (LFL) method can produce stable
colloidal gold nanoparticles in water (Ashikkalieva et al., 2022). The
final size of fragmented nanoparticles is mainly determined by the
exposure time and radiation intensity (Vasa et al., 2014). Coating
plasmonic nanoparticles with temperature-sensitive polymers
allows tracking the temperature increase during laser heating by
monitoring the shift of the plasmon resonance peak and absorption
spectrum, which are affected by the temperature-dependent
refractive index of the medium (Honda et al., 2011; Mikami
et al., 2021).

The technology of laser-induced heating also makes it possible
to change the morphology of nanoparticles. It was found that
irradiation of ellipsoidal gold nanoparticles results in their
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transition to spherical shape at temperatures much lower than their
melting temperature. The effect of particle shape change may be due
to partial surface melting (Inasawa et al., 2005). A method of

producing spherical porous gold nanoparticles on glass substrates
using ultraviolet laser followed by chemical selective etching is
reported. This method allows the creation of branched

FIGURE 1
(A) Schematic representation of the application of laser heating of nanoparticles; (B) Dependence of size of Au nanoparticles upon laser-induced
irradiation of colloids during laser fragmentation in aqueous solutions depending on laser fluence, pulse duration, irradiation time and wavelength; (C) A
schematic representation of the synthesis process for nanocomposite materials through laser irradiation of nanoparticle colloids in a liquid medium; (D)
Scheme of the basic process using laser sintering of nanoparticles; (E) Diagram of possible applications for the nanoparticle-enhanced materials.
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nanometer-scale structures inside spherical particles (Schmidl
et al., 2022).

The choice of the required laser intensity and wavelength allows
selectively obtaining particles of the desired shape - spheres,
nanorods, nanoprisms, one-dimensional structures, nanochains,
etc. By adjusting the wavelength of radiation, it is possible to
choose the spatial extent of the ensembles of heated
nanoparticles, which allows controlling the morphology of
nanostructures formed during melting (Tarasenko et al., 2005;
Catone et al., 2018; Ashikkalieva et al., 2023). Laser size
reduction and formation of nanostructures from gold
nanoparticles is a promising method for producing nanoscale
devices containing nanoparticles and nanowires of desired sizes
(Mafuné et al., 2003; Simakin et al., 2021; Kirichenko et al., 2012;
Serkov et al., 2015a; Serkov et al., 2015b).

An important factor in particle heating is the duration of the
radiation pulse. The use of nanosecond pulses leads to either
fragmentation or complete melting of the material and the
formation of spherical-shaped particles, while energetically the
melting threshold was higher by two orders of magnitude
compared to femtosecond pulses (Link et al., 2000a). Irradiation
of gold nanoparticles with picosecond pulses of gold nanoparticles at
a wavelength of 532 nm shows lower heating efficiency compared to
other wavelengths (Plech et al., 2022). It is suggested that the
decrease in heating efficiency can be attributed to the effects of
scattering enhancement, thermoelectronic emission, plasma
formation, plasmon interaction with the surroundings and the
effects of partial lattice melting and deformation. It was found
that femtosecond laser pulses are more suitable for the
photothermal formation of gold nanorods, since the energy
transfer to the crystal lattice occurs faster than the characteristic
electron-phonon relaxation time (Link et al., 2000a).

Plasmonic nanoparticles can be effectively heated when exposed
to femtosecond laser pulses with very low energy densities (Huang
et al., 2015). It is shown that the efficiency of particle heating under
these conditions depends on the local geometry of each nanoparticle
and the polarization of the incident laser radiation.

In some cases, laser-induced heating of particles allows the
material of nanoparticles to be transferred to other phase states.
For example, when colloidal dispersions of copper oxide
nanoparticles were irradiated with nanosecond radiation with a
wavelength of 532 nm, phase transitions from copper (II) oxide to
crystalline copper were observed in nanoparticles. The phase
transition was limited to the minimum particle size (23–29 nm),
due to more efficient heating process, less cooling effect (Kranz et al.,
2022). X-ray diffraction study of MnO nanoparticle samples showed
that laser heating led to changes in the existing phases of the sample,
including the destruction of the MnO phase and the formation of
new phases such as MnO2, Mn3O4, and MnOOH, as well as the
deposition of Mn2+ ions on the sample surface (Hadžić et al., 2018).
Laser heating and fragmentation of selenium nanoparticles leads to
the formation of crystalline selenium in new phases (Varlamova
et al., 2023; Baimler et al., 2024; Singh et al., 2010; Poborchii et al.,
1999; Sakaguchi and Tamura, 2021).

The potential of submicron spherical boron carbide-based B4C
boron carbide particles as nanoscale heating agents is currently
being investigated because B4C has a broader optical absorption
spectrum and a higher melting point than gold (Pavlov et al., 2022;

Aiyyzhy et al., 2022a; Mayelifartash et al., 2021; Stone et al., 2024).
The experiment demonstrated that B4C particles exhibit a significant
response in the wavelength range of 300–1,100 nm and are capable
of acting as a nanoscale heater at temperatures exceeding 2000 K,
which can be utilized in the design of volume-selective heating
agents (Kojima et al., 2020).

During heating and melting of nanoparticles, the formation of
larger particles formed by the fusion of several molten particles is
sometimes observed. A key role in the formation of large submicron
particles is played by the vapor-gas shell surrounding the particles
during heating and boiling of the surrounding liquid (Tabayashi
et al., 2021). It was found that the use of high pressures in laser
irradiation of colloids leads to a decrease in the size of nanoparticles,
which is associated with the processes of gas bubble formation and
changes in the dynamics of heat loss in heated particles (Werner and
Hashimoto, 2013; Wei and Saitow, 2012). Wettability affects the
thermal conductivity of the nanoparticle-water interface. Greater
wettability enhances the interaction of low-frequency phonon
modes at the solid-liquid interface, thereby increasing the
efficiency of thermal energy transfer, as has been shown for Fe
particles (Ma et al., 2024a). The thermal effect was found to be the
main reason for the transformation of the atomic structure of single-
crystal gold nanoparticles. Nanoparticles with defects in the crystal
structure show increased surface activity due to low coordination
number (Zhu et al., 2021).

The process of laser heating of nanoparticles is studied using
analytical methods and modeling. A significant part of the recently
published review (Pustovalov, 2024) is devoted to modeling of the
processes of heating by laser radiation of individual particles and
their aggregates.

The study of diffraction profiles of nanoparticles and their
atomistic modeling during their laser fragmentation by
picosecond laser radiation allowed to identify the main stages of
the process of nanoparticle heating and fragmentation. At low laser
intensity, a short-term overheating of crystalline nanoparticles
above the melting temperature, melting, subsequent cooling and
solidification are observed. When the radiation energy density is
three times the melting threshold, fragmentation begins with the
evaporation of gold atoms and their subsequent condensation into
small nanoparticles.When the energy density increases tomore than
five times the melting threshold, there is a transition to rapid
(explosive) phase destruction of superheated nanoparticles into
small liquid droplets and vaporized atoms (Plech et al., 2023).
Atomistic modeling also shows that the combination of lattice
superheating and laser-induced stress relaxation ensures the
predominance of the homogeneous melting process at all energy
levels below the melting threshold, keeping the melting duration at
approximately 100 picoseconds or less (Arefev et al., 2022).

The cluster-based molecular dynamics of the two-temperature
model becomes an effective method to study the microscopic
dynamics of nanoparticles. The two-temperature model,
integrated with the molecular dynamics model and the localized
melting model, effectively simulates the energy transfer and
relaxation processes that underlie the final size and morphology
of nanoparticles (Chen et al., 2014; Cui et al., 2013; Alavi and
Thompson, 2006; Shibuta and Suzuki, 2007).

The results of laser-induced irradiation of nanoparticle colloids
in water are given in Table 1.
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TABLE 1 List of experimental works on synthesis, structuring and modification of nanoparticles using laser-induced irradiation.

NPs material Experimental setup Wavelength Pulse duration Fluence Frequency Irradiation time NP size NP form References

nm s J/cm2 Hz min nm

Se LAL 510 1 × 10−8 65.07861 15,000 100 60 Spherical Kuzmin et al. (2012)

B LAL 1,060 2 × 10−7 141.4752 20,000 200 32 Spherical Aiyyzhy et al. (2022b)

TiO2 LAL 532 1 × 10−11 0.565,901 50,000 60 80 Spherical Serkov et al. (2015c)

TiO2 LAL 532 1 × 10−8 0.565,901 50,000 60 20 Elongated

Si LAL 510 2 × 10−8 1.273,277 15,000 30 84 Spherical Dolgaev et al. (2002)

Si LAL 510 2 × 10−8 1.273,277 15,000 30 80 Spherical

Si LAL 510 2 × 10−8 1.273,277 15,000 30 74 Spherical

Si LAL 510 2 × 10−8 0.763,966 15,000 30 74 Spherical

Si LAL 510 2 × 10−8 0.763,966 15,000 30 60 Spherical

TiO2 LAL 510 2 × 10−8 4.074487 15,000 30 35 Spherical

Ag LAL 510 2 × 10−8 1.273,277 15,000 30 60 Nanodiscs

Ag LAL 1,030 2 × 10−8 1.909,916 50,000 20 26 Spherical Saraeva et al. (2019)

Ag LAL 1,030 4.1 × 10−12 1.909,916 50,000 20 26 Spherical

Ag LAL 1,030 8.6 × 10−12 1.909,916 50,000 20 25 Spherical

Si LAL 1,030 3 × 10−13 1.909,916 50,000 20 51 Spherical

Si LAL 1,030 4.1 × 10−12 1.909,916 50,000 20 45 Spherical

Si LAL 1,030 8.6 × 10−12 1.909,916 50,000 20 45 Spherical

Ag LAL 1,064 1 × 10−11 1.325,778 50,000 - 20 Spherical Barcikowski et al. (2007)

Ag LAL 800 1.2 × 10−13 1.325,778 5,000 - 45 Spherical

Ag LAL 800 1.2 × 10−13 2.784,134 5,000 - 35 Spherical

Ni LAL 800 1.2 × 10−13 90.54415 1,000 60 8 Spherical Muñeton Arboleda et al. (2015)

C LAL 532 6 × 10−9 12.73277 10 60 30 Spherical De Giacomo et al. (2011)

C LAL 532 6 × 10−9 12.73277 10 60 30 Elongated

C LAL 532 6 × 10−9 12.73277 10 60 25 Elongated

ZnO LAL 532 1 × 10−8 4.053339 10 5 19 Spherical Guillén et al. (2015)

ZnO LAL 532 1 × 10−8 4.053339 10 5 25 Spherical
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TABLE 1 (Continued) List of experimental works on synthesis, structuring and modification of nanoparticles using laser-induced irradiation.

NPs material Experimental setup Wavelength Pulse duration Fluence Frequency Irradiation time NP size NP form References

nm s J/cm2 Hz min nm

ZnO LAL 532 1 × 10−8 4,053,339 10 5 28 Spherical

ZnO LAL 532 1 × 10−8 4.053339 10 5 100 Nanoflakes

ZnO LAL 532 1 × 10−8 5.976,607 10 5 100 Nanoflakes

ZnO LAL 532 1 × 10−8 8.705,521 10 5 33 Spherical

ZnO LAL 532 1 × 10−8 5.976,607 10 5 35 Spherical

ZnO LAL 532 1 × 10−8 8.705,521 10 5 25 Spherical

ZnO LAL 532 1 × 10−8 5.976,607 10 5 30 Spherical

ZnO LAL 532 1 × 10−8 8.705,521 10 5 29 Spherical

ZnO LAL 532 1 × 10−8 5.976,607 10 5 21 Spherical

ZnO LAL 532 1 × 10−8 8.705,521 10 5 21 Spherical

Au LAL 510 2 × 10−8 1.273,277 15,000 30 80 Elongated Dolgaev et al. (2002)

Au LAL 1,030 3 × 10−13 1.909,916 50,000 20 7 Spherical Saraeva et al. (2019)

Au LAL 1,030 4.1 × 10−12 1.909,916 50,000 20 8 Spherical

Au LAL 1,030 8.6 × 10−12 1.909,916 50,000 20 10 Spherical

Au LAL 1,030 3 × 10−13 1.909,916 50,000 20 7 Spherical

Au LAL 1,030 4.1 × 10−12 1.909,916 50,000 20 7 Spherical

Au LAL 1,030 8.6 × 10−12 1.909,916 50,000 20 6 Spherical

Au LAL 800 1.2 × 10−13 0.085735 5,000 1 80 Spherical Menéndez-Manjón et al. (2010)

Au LAL 800 1.2 × 10−13 0.085735 5,000 1 87 Spherical

Au LAL 800 1.2 × 10−13 0.085735 5,000 1 100 Spherical

Au LFL 1,064 9 × 10−7 91.67595 20,000 15 15 Spherical Simakin et al. (2019)

Au LAL 1,064 1 × 10−8 101.8622 10,000 30 12 Spherical Simakin et al. (2021)

Au LFL 1,064 1 × 10−8 162.6965 10,000 60 25 Elongated

Au LAL 532 1 × 10−11 1.273,277 50,000 30 10 Spherical Barmina et al. (2014)

Au LFL 1,025 4.5 × 10−13 0.018335 1,000 45 9 Spherical Maximova et al. (2015)

Au LFL 1,025 4.5 × 10−13 0.112,048 1,000 45 7 Spherical

Au LFL 1,025 4.5 × 10−13 0.173,166 1,000 45 45 Spherical
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TABLE 1 (Continued) List of experimental works on synthesis, structuring and modification of nanoparticles using laser-induced irradiation.

NPs material Experimental setup Wavelength Pulse duration Fluence Frequency Irradiation time NP size NP form References

nm s J/cm2 Hz min nm

Au LFL 1,025 4.5 × 10−13 0.224,097 1,000 45 25 Spherical

Au LFL 515 2 × 10−13 0.050931 10,000 - 3 Spherical Bongiovanni et al. (2021)

Au LFL 532 9 × 10−9 1.65526 100 - 3 Spherical Ziefuß et al. (2018)

Au LFL 532 7 × 10−9 2.164,571 2000 - 3 Spherical

Au LFL 532 1 × 10−11 0.031832 80,000 - 3 Spherical

Au LAL 1,064 1 × 10−11 0.031832 100,000 10 54 Spherical

Au LAL 1,064 1 × 10−8 35.65176 10 15 18 Spherical Tsuji et al. (2013)

Au LFL 532 8 × 10−9 0.061117 10 30 234 Spherical

Au LFL 532 8 × 10−9 0.040745 10 30 181 Spherical

Au LFL 532 8 × 10−9 0.08149 10 30 255 Spherical

Au LFL 532 8 × 10−9 0.101,862 10 30 309 Spherical

Au LFL 800 1 × 10−13 10.15049 1,000 30 7.5 Spherical Link et al. (2000b)

Au LFL 800 1 × 10−13 0.509,311 1,000 30 16 Spherical

Au LFL 800 1 × 10−13 0.002037 1,000 30 18 Spherical

Au LFL 800 1 × 10−13 0.001019 1,000 30 20 Spherical

Au LFL 800 1 × 10−13 0.000204 1,000 30 40 Spherical

Au LFL 800 7 × 10−9 16.82226 1,000 30 7.5 Spherical

Au LFL 800 7 × 10−9 4.15764 1,000 30 4 Spherical

Au LFL 800 7 × 10−9 0.814,897 1,000 30 17.5 Spherical

Au LFL 800 7 × 10−9 0.649,631 1,000 30 20 Spherical

Au LAL 532 5 × 10−9 1.591,596 10 20 22.5 Spherical Fazio et al. (2020)

Au LFL 532 5 × 10−9 1.273,277 10 120 5 Spherical

Au LFL 800 4 × 10−14 - 1,000 30 5 Spherical Okamoto et al. (2019)

Ag LAL 800 1.2 × 10−13 1.38 1,000 - 50 Spherical Barcikowski et al. (2007)

Ag LAL 800 1.2 × 10−13 2.86 1,000 - 20 Spherical

Ag LAL 1,064 1 × 10−11 1.39 50,000 - 35 Spherical

Au LFL 800 1.3 × 10−13 - 100 130 15 Spherical Akman et al. (2013)
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Analysis of the results of experimental work on laser irradiation
and laser fragmentation of gold colloids in water shows that the
main parameters determining the particle size are fluence, pulse
duration, pulse repetition rate and irradiation duration (Figure 1B).
Changes in fluence can lead to changes in the shape of gold particles
(0.001–0.01 J/cm2), their melting and aggregation into larger
particles (0.1 J/cm2), and fragmentation and formation of smaller
particles (1–100 J/cm2). The use of femtosecond pulses demonstrates
the possibility of obtaining particles in a wider range of sizes
compared to pico- and nanosecond pulses. Increasing the
irradiation time and radiation frequency increases the number of
interactions of laser pulses with particles, which leads to a decrease
in size. Irradiation of colloids at a wavelength coinciding with the Au
plasmon resonance wavelength leads to more efficient melting and
formation of large aggregates.

3 The formation of nanostructured
alloys and hybrid materials through
laser melting of nanoparticles

Significant interest is emerging in the development of alloy
metallic nanoparticles, due to their synergistic effect and because
of their unique hybrid characteristics. Alloy nanoparticles are
known to have higher catalytic activity than their monometallic
counterparts (Xing et al., 2023; Khan et al., 2020; Jiang et al., 2023).
Current research is focused on the creation of metal oxide
nanostructures based on CuO, ZnO, TiO₂ and Fe₂O₃ (Pembere
et al., 2022; Mintcheva et al., 2020; Nag et al., 2023; Omelchenko
et al., 2015). Irradiation of a mixture of nanoparticle colloids of
different materials allows the preparation of new nanocomposite
materials (Golubovskaya et al., 2024; Fakhrutdinova et al., 2024).
For example, irradiation of a mixture of colloids of two different
nanoparticle plasmonic materials of gold and silver with
femtosecond pulses allows to obtain Au-Ag nanocomposites,
the formation of which involved the mechanism of laser
melting and doping (Hidayah and Herbani, 2020). The
formation of Au/MxOy (M = Fe, Co, Ni) composite
nanoparticles with different morphology and sizes was observed
by laser irradiation of particle colloids during their mixing
(Swiatkowska-Warkocka et al., 2017). A schematic
representation of the process of creating hybrid/alloy
nanomaterials is shown in Figure 1C. It is possible to form
alloy nanoparticles and hybrid materials by laser-induced
irradiation of double thin films of metals using laser radiation.
For example (Dzienny et al., 2022), describes a method for
producing Au-Sn particles by laser-induced dewetting. In
Kovalev et al. (2023) the technology of hyperdoping of silicon
films with gold by irradiation of Au and Si double films with nano-
and picosecond radiation is reported. In Hodges et al. (2017), a
technique for synthesizing three-component Ag-Pt-Fe3O4 and Au-
Pt-Fe3O4 heterotrimers is described. In Amendola et al. (2017) it is
reported about obtaining Au-Fe alloy composite nanoparticles by
laser ablation of multilayer gold and iron films of different
thickness in ethanol and water. In some cases, the formation of
alloy particles occurred at room temperature by simple mixing of
colloids, as shown in Křenek et al. (2022), where TiSi2
nanoparticles were obtained.

4 Laser sintering of metal nanoparticles

Laser sintering has been a well-established method for several years
and is widely used with continuous and pulsed lasers of various
durations. This technology is widely used in the production of
electronics devices. The characteristics of devices fabricated by this
method depend to a large extent on the sintering conditions, melt state,
laser radiation parameters, particle structure and substrate condition
(Chen et al., 2023). A schematic representation of the basic laser
sintering process is shown in Figure 1D. Using the low-temperature
sintering method, stable Cu@Ag nanoparticles in the form of
nanoribbons were synthesized, which may have practical
applications in flexible printed electronics (Zhang et al., 2022). Laser
sintering has been reported to produce ruby particles by irradiating
Al2O3 and Cr2O3 powders in quasi-continuous mode (Aiyyzhy et al.,
2023). The ruby particles obtained by the authors were then used in the
manufacture of photoconversion coatings for greenhouses (Paskhin
et al., 2023).

Laser-induced forward transfer (LIFT) and selective laser sintering
(SLS) are two promising technologies based on the process of laser
heating of materials that can be used to create a conductive layer of
metallic nanoparticle ink on various substrates (Lim et al., 2020).

Selective laser melting (SLM) is a laser additive manufacturing
technique based on the principle of layer-by-layer material
deposition. SLM is used to fabricate various materials including
alloys of different metals (Lu and Zhuo, 2023; Lu et al., 2023; Ma
et al., 2024b; Sajjadi et al., 2024) and composite materials (Xi et al.,
2021; Erutin et al., 2023).

Despite the extensive literature on conventional laser sintering
methods, the use of ultra-short femtosecond pulses in this
technology remains a relatively unexplored area (Sharif et al., 2022).

5 Nanoparticle enhanced thermal
properties of materials

Incorporation of nanoparticles into various materials demonstrates
significant changes in the thermal properties of the starting material. A
new class of substances, nanofluids, have recently become the object of
close attention due to a number of unique properties. Nanofluids are a
mixture of nanoparticles and a solvent (Das et al., 2006). Nanofluids
have been shown to significantly improve the thermal properties of
basic solvents (Kumar et al., 2018). The improvement in the heat
transfer properties of nanofluids has led to interest in their study and
use in various engineering applications. These include nuclear
technology (Buongiorno et al., 2008), desalination (Iqbal et al.,
2021), machining (Ramesh and Prabhu, 2011), and cooling (Rafati
et al., 2012). They are also used in solar energy (Izadi and Assad, 2024)
and electron cooling (Moita et al., 2021).

Another promising class of materials, phase-change materials
(PCM), can be used for heat storage and transfer (Chen et al., 2020).
The addition of nanoparticles to these materials (NPCM) has been
demonstrated to increase the thermal conductivity of the material
(Khodadadi et al., 2013; Colla et al., 2017; Krishna et al., 2017) and
change the phase transition temperatures (Lin and Al-Kayiem, 2016;
Munyalo and Zhang, 2018). Laser heating and the addition of
nanoparticles to PCMs will allow for a faster transition of the
material into the crystalline phase (Kozyukhin et al., 2019). A
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diagram illustrating possible applications of the materials described
is presented in Figure 1E.

In perspective, nanoparticles could be used to alter the
properties of a wider range of materials. It has been shown that
the volume of the melt region and the size of the heat affected zone
during the melting and solidification processes of materials can be
controlled by adding aluminum and silicon carbide nanoparticles to
the material (Ma et al., 2017).

6 Conclusion

This mini-review provides a brief overview of recent advances in
research and technology based on the heating and melting of
nanoscale particles under the action of laser radiation.
Nanoparticles themselves are of great interest for study and use in
various fields ranging from medicine, agricultural engineering,
catalysis to the creation of electronic devices. Moreover, with the
help of laser radiation it is quite easy to change the key characteristics
of nanoparticles (shape and size), to create new materials based on
particles, to change the thermal characteristics of materials thereby
expanding the possibilities of nanomaterials application. Overall,
promising areas for research in this field will include the study of
the interactions between nanoparticles and femtosecond laser pulses.
Additionally, there is an interest in using these pulses to create novel
hybrid materials such as nanocomposites and nanoparticles-based
alloys through the use of the effect of localized surface melting of
nanoparticles. Furthermore, the development of new classes of
nanoparticle-enhanced materials, such as nanofluids and NPCM,
has increased interest in understanding the impact of nanoparticles
on macroscopic properties of the materials.
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