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Background: Dietary assessment is usually performed through imprecise tools,
leading to error-prone associations between diet and health-related outcomes.
Metabolomics has been applied in recent years to develop biomarkers of food
intake (BFIs) and to study metabolites in the diet-microbiome crosstalk.
Candidate BFIs exist to detect intake of meat and to a lesser extent dairy, but
validation and further development of BFIs are needed. Here, we aim to identify
biomarkers that differentiate between intakes of red meat and dairy, to validate
previously reported BFIs for these foods, and to explore the effect of protein-
matched meals on selected microbial metabolites.

Methods:We conducted a randomized, controlled, cross-over single-meal study
comparing ameal with highly fermented yogurt and cheese, and ameal with beef
and pork meatballs. Postprandial urine samples from 17 subjects were collected
sequentially after eachmeal up to 24 h and analyzed by untargetedmetabolomics
through ultra-high-performance-liquid chromatography (UHPLC) coupled via
electrospray (ESI) source to a qTOF mass spectrometer. Univariate (repeated
measures ANOVA) and multivariate (PLSDA, ML-PLSDA) data analyses were used
to select BFIs differentiating the two meals. 3-Indoxyl sulfate, p-cresol sulfate,
and several other microbial amino acid catabolites were additionally explored
within the urine profiles.

Results: Thirty-eight markers of meat and dairy intake were selected and are
presented along with their excretion kinetics. Carnosine, taurine, and creatine, as
well as hydroxyproline-based dipeptides are confirmed as meat BFIs. For dairy,
previously reported metabolites such as acyl-glycines are confirmed, while
proline-based dipeptides are reported as novel putative BFIs. Microbial
metabolites showed only marginal evidence of differential formation after the
two meals.

Conclusion: This study allowed us to validate the postprandial kinetics of
previously suggested biomarkers of meat and dairy intake and to identify new
potential biomarkers. The excretion kinetics are useful to ensure that the
collection of urine covers the correct time window in future dietary studies.
The BFIs add to the existing body of biomarkers and may further be used in

OPEN ACCESS

EDITED BY

Yiannis Sarigiannis,
University of Nicosia, Cyprus

REVIEWED BY

Joris Meurs,
Radboud University, Netherlands
Eduardo Sommella,
University of Salerno, Italy

*CORRESPONDENCE

Giorgia La Barbera,
glb@nexs.ku.dk

RECEIVED 08 July 2024
ACCEPTED 13 August 2024
PUBLISHED 24 September 2024

CITATION

La Barbera G, Praticò G, Dragsted LO and
Cuparencu C (2024) Metabolomics-based
biomarkers of fermented dairy and red meat
intake: a randomized controlled trial in
healthy adults.
Front. Chem. 12:1461331.
doi: 10.3389/fchem.2024.1461331

COPYRIGHT

© 2024 La Barbera, Praticò, Dragsted and
Cuparencu. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Chemistry frontiersin.org01

TYPE Original Research
PUBLISHED 24 September 2024
DOI 10.3389/fchem.2024.1461331

https://www.frontiersin.org/articles/10.3389/fchem.2024.1461331/full
https://www.frontiersin.org/articles/10.3389/fchem.2024.1461331/full
https://www.frontiersin.org/articles/10.3389/fchem.2024.1461331/full
https://www.frontiersin.org/articles/10.3389/fchem.2024.1461331/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fchem.2024.1461331&domain=pdf&date_stamp=2024-09-24
mailto:glb@nexs.ku.dk
mailto:glb@nexs.ku.dk
https://doi.org/10.3389/fchem.2024.1461331
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org/journals/chemistry#editorial-board
https://www.frontiersin.org/journals/chemistry#editorial-board
https://doi.org/10.3389/fchem.2024.1461331


combination to provide a more reliable assessment of meat and dairy intake.
Proteolytic microbial metabolites should be further investigated to assess the
effect of different protein sources on health.
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1 Introduction

Meat and dairy are important sources of high-quality protein.
Yet, planetary health considerations point to the need for a
reduction in the consumption of red meat and other sources of
animal protein, leading to major dietary transitions in many regions
across the world over the coming decades. During the green protein
transition, monitoring the intake of different protein sources is
important to understand its health effects. Dietary assessment is
currently performed through 24-h recalls, food frequency
questionnaires, and weighed food diaries (Bingham et al., 1994;
Kipnis et al., 2002), that are known to provide only moderately
reliable information (Neuhouser et al., 2008). More objective tools
for dietary assessment are needed to prove associations between diet
and health-related outcomes.

While red and processed meat consumption has been associated
with an increased risk of colorectal cancer (Bouvard et al., 2015) and,
possibly, cardiovascular diseases (Abete et al., 2014) and type
2 diabetes (Gu et al., 2023), a recent study using a biomarker-
calibrated dietary assessment found no such associations (Zheng
et al., 2022). Dairy is more generally associated with neutral or
somewhat beneficial effects on health, especially for cardiometabolic
outcomes (Dehghan et al., 2018), but the lack of good biomarkers of
intake of dairy precludes a more accurate estimation of the
magnitude of health benefits or adverse outcomes. Substituting
animal with plant-based protein is generally associated with
improved health (Neuenschwander et al., 2023), but considering
the lower digestibility of plant proteins compared to animal protein
(Ajomiwe et al., 2024) this seems like a paradox. Biomarker-based
studies are therefore highly needed to gain novel insights regarding
protein sources and their shorter and longer-term effects on health.

Metabolomics profiling of human samples by ultra-high
performance liquid chromatography coupled to high-resolution
mass spectrometry (UHPLC-HRMS), has enabled the outburst of
new tools in dietary assessment, namely, biomarkers of food intake
(BFIs) (Cuparencu et al., 2024). Several metabolites have been
previously identified after intake of dairy products (Münger et al.,
2018), including metabolites belonging to phenylalanine and
tyrosine catabolic pathways, several aliphatic acid glycine
conjugates, aromatic lactic acids, and some galactose derivatives.
A combined BFI panel has been proposed and validated in free-
living individuals (Li et al., 2021). However, its reproducibility across
different labs has not been assessed and the thorough validation of
other dairy markers is required. In contrast, biomarkers of meat
intake have been extensively studied, and while well-validated
biomarkers exist for overall meat as well as chicken intake, no
specific red meat marker has been reported to date. BFIs specifically
differentiating meat and dairy intakes, which are the major sources
of animal protein, are also lacking. BFI validity covers biological and

analytical aspects (Dragsted et al., 2018) and depends on several
study-specific factors such as the dietary comparator, food matrix,
variability of the food composition, the individual variability of
metabolism and kinetics, and the timing of food intake and sample
collection (Cuparencu et al., 2024). In most biomarker studies the
diet is highly controlled to improve chances of finding new markers.
In turn, this challenges the implementation of BFIs as part of
complex unrestricted diets.

Differentiating between protein sources is also interesting in
relation to microbial metabolism. While amino acids like
tryptophan, phenylalanine, and tyrosine are readily available for
the host, they are also readily available for the gut microbiota (Dodd
et al., 2017). As a result of proteolytic fermentation, microbial
metabolites are formed in the gut, including p-cresol conjugates
and indole derivatives that were shown to contribute to both health
and disease (Roager and Dragsted, 2019). For example, indole
produced in the gut is a uremic toxin that is known to be
elevated in kidney disease (Niwa, 2010; Schroeder et al., 2010).
On the other hand, tryptophan can be metabolized by certain
microbes into indolelactic acid, indolepropionic acid, or
indoleacetic acid, with documented effects on barrier function
and intestinal permeability, which in turn affect Ah2 receptors to
downgrade inflammation (Roager and Dragsted, 2019) and
consequently reduce cardiometabolic risk (De Mello et al., 2017;
Xue et al., 2022; Zhang et al., 2022). While other food components,
namely, dietary fibers, are known to further influence the microbiota
activity and favor the formation of indolepropionic acid (Sinha et al.,
2024), little is known about the contribution of meat and/or dairy
intake to the short-term gut production of these metabolites.

In this work, we aim to identify BFIs for meat and dairy in a
single meal cross-over study that represents more natural
conditions, i.e., volunteers were not asked to restrict intakes of
these foods preceding the test day, except for an overnight fast. A
further aim was to validate the robustness of BFIs observed
previously for meat or dairy intake, and to explore potential
differences between the two protein sources in microbial protein
catabolites during the 24 h after animal protein rich meals.

2 Materials and methods

2.1 Reagents and materials

Acetonitrile, methanol, and isopropanol (Optima grade) were
purchased from Fisher Scientific (Pittsburgh, PA, United States).
Formic acid (CAS 64-18-6), carnosine (CAS 305-84-0), taurine
(CAS 107-35-7), creatine (CAS 6020-87-7), N6,N6,N6-Trimethyl-
L-lysine (CAS 55528-53-5), 4-hydroxyphenylacetic acid (CAS:156-
38-7), phenylacetyl-glycine (CAS 500-98-1), phenyllactic acid (CAS
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828-01-3), isobutyryl-glycine (CAS 15926-18-8), isovaleryl-glycine
(CAS 16284-60-9), p-cresol sulfate (CAS 3233-58-7), p-cresol
glucuronide (CAS 17680-99-8), 3-indoxyl sulfate (CAS 2642-37-7),
3-indoxyl glucuronide (CAS 35804-66-1), indolelactic acid (CAS 832-
97-3), phenylacetyl-glutamine (CAS 28047-15-6), tyramine (CAS 51-
67-2), 4-ethylphenol (CAS 123-07-9), 3-ethylphenol (CAS 620-17-7),
cyclohexane carboxylic acid (CAS 98-89-5), phenol (CAS 108-95-2),
p-cresol (CAS: 106-44-5), propyl paraben (CAS 94-13-3), TRIS,
NaOH, adenosine 3′-phosphate 5′-phosphosulfate lithium salt
hydrate (PAPS) (CAS 109434-21-1), acetic anhydride (CAS 108-
24-7), L-glutamine (CAS 56-85-9), and pooled human liver
S9 extract were ordered from Merck (Darmstadt, Germany).
Tiglyl-glycine (CAS 35842-45-6) was ordered from Santa Cruz
Biotechnology (Heidelberg, Germany). 96-Well collection plates for
collection and subsequent sample analysis were bought from Waters
Corporation (Hedenhusene, Denmark). The chromatographic
column HSS T3 (C18, 100 × 2.1 mm2, 1.8 μm particle size) and
the VanGuard HSS T3 C18 column (2.1 × 5 mm2, 1.8 μm) were
purchased from Waters Corporation (Hedenhusene, Denmark).
Reagent water was ion-exchanged and purified further by a
Millipore (Billerica, MA, United States) unit to obtain an electrical
resistance below 18 MΩcm.

2.2 Synthesis of reference standards

Cyclohexane carboxylic acid glycine and 4-
Hydroxyphenylacetyl-glutamine were synthesized according to
the following protocol: 6 µmol of the substrate were mixed with
1 µmol of acetic anhydride and the solution was stirred at 35°C for
1 h. Glycine or glutamine (1 µmol) was added to the solution. After
mixing, 2 µmol of NaOHwere added to the solution and the solution
was stirred at 35°C for 3 h. At the end of the reaction, NaOH was
added drop by drop to get a final pH around 7. A negative control
was also carried out by substituting the substrate with water.

A biomimetic enzymatic synthesis was used for the conjugation
of sulfate to p-cresol, tyramine, 4-ethylphenol, 3-ethylphenol,
phenol, and propylparaben. One mmol of the substrate and
23 µL of PAPS (C = 1 mgmL−1) were added to TRIS C =
500 μM at pH 7.5 and stirred at 37°C for 5 min. Twelve µL of
chilled human liver S9 extract (C = 2 mg/mL) was thereafter added
and the mixture was stirred again at 37°C for 1 h. Ice-cold MeOH
was added in a 2:1 (v/v) excess to terminate the reaction. The
mixture was centrifuged at 10,000 g for 4 min at 5°C. The
supernatant was collected and evaporated to dryness. The dried
sample was redissolved in 200 μL H2O:ACN = 90:10 (v/v).
Formation of p-cresol sulfate from p-cresol was used as a
positive control to confirm the activity of the enzyme system. A
negative control was also carried out by substituting the substrate by
5 µL of C = 500 µM TRIS (pH 7.5).

Pyroglutamyl-proline was synthesized according to the protocol
provided by Stanstrup et al. (2014a).

2.3 Study design

The study was approved by the Danish National Committee on
Biomedical Research Ethics of the Capital Region of Denmark

(J. No. H-3-2012-151), registered in the US National Library of
Medicine (NCT01773304), and carried out at the Department of
Nutrition, Exercise and Sports, Faculty of Science, University of
Copenhagen, Frederiksberg (Denmark). Healthy men and women
aged 18–50 years and with a body mass index (BMI) between 25 and
40 kg/m2 (overweight) were recruited from the Capital Region,
Denmark. Participants were not included if, among others, they
performed physical activity >10 h per week, were smoking, had a
parental history of osteoporosis, used dietary supplements or
medications, had chronic diseases, or were pregnant or
breastfeeding. From the 24 initially recruited a total of
17 subjects (65% women) completed the study.

The study was designed as a randomized, cross-over
intervention with 2 study periods of 48 h each and a wash-out
period of 7 days between intervention periods as shown in Figure 1.
Each period started with a 24-h urine collection representing the
habitual diet of the day preceding the test day. On the test day, the
subjects came in after an overnight fast (8–12 h) and were
randomized to either a breakfast high in dairy or red meat
protein. The dairy meal consisted of 250 g of a typical fruit-
flavored skyr, which is a highly fermented yogurt product (flavor
of raspberry, rhubarb, and vanilla), 170 g fermented cheese, 23 g
white bread, and 330 g water. The red meat protein meal consisted of
340 g of mincedmeat balls made from 180 g beef and 160 g pork, and
330 g of a fruit drink to balance the fruit-flavored dairy meal (55 g
blackcurrant juice (Ribena); 275 g water). Both test meals were
matched in energy and contributed equal amounts of protein, fat,
and carbohydrate. Six grams of Capolac (Arla Food Ingredients,
Denmark) were added to the meat so that the calcium content
reflected the content in the cheese meal (−1500 mg). Thus, the test
meals differed only in type of protein and a minor difference in
supplemented berry flavors. Twenty-four hours before the
intervention visits, subjects were asked to restrain from hard
physical activity, alcohol, fish, and fish products (to isolate
potential effects on bone mass measurements, which was
originally planned as a study outcome but never addressed), and
to ingest the same (self-selected) dinner meals the night before each
of the two intervention visits. After ingestion of each test meal, the
subjects were asked to refrain from consuming any proteins of
animal origin up until the next morning. Four urine samples were
collected covering a total of 24 h, as follows: 1) from 24 h prior the
intervention visit until 20 min before having the test meal (T 0), 2)
from 0 until 2 h following intake of the test meal (T 0–2), 3) from
2 until 4 h after the test meal (T 2–4), and (4) during the rest of the
day, including the first void of the next morning at around 7 a.m. (T
4–24). The subjects were instructed to keep the samples below 5°C in
cooler bags or in a refrigerator during the collection days. Aliquots
were collected from each sample and stored at −80oC. In addition, a
pool of the total collections (T0-2, T2-4, and T4-24) was created and
stored as well.

2.4 Urine sample preparation for LC-MS
untargeted metabolomics

Urine samples were centrifuged (4°C, 4 min, 2,700 RCF) and
150 μL of each urine sample was added to a well in 96-well collection
plates together with 150 μL of solvent (water with 5% 30:70 (v/v)
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ACN: MeOH) containing a solution with 7 Internal Standards as
described previously (Barri et al., 2012). In addition, an external
metabolite standard mixture with 44 different compounds was used
for quality control of the analytical platform (Barri et al., 2012). A
pooled sample containing equal amounts of all urine samples
analyzed was prepared and added to separate wells on all plates
for subsequent control of instrumental drift and batch effect in the
data preprocessing and analysis. Samples from the same person were
randomized within one plate to minimize intra-individual variation
due to plate differences. After preparation the plates were sealed and
kept at 4 °C if analyzed within the next 24 h; they were otherwise kept
at −80°C and thawed and gently agitated prior to analysis.

2.5 UHPLC-HRMS analysis

The urine samples were analyzed on an ultra-high performance
liquid chromatographic system (Acquity UHPLC, Waters,
Manchester, United Kingdom) coupled through an electrospray
interface (ESI) to orthogonal acceleration quadruple time-of-
flight (Premier qTOF) mass-spectrometer (Waters, Manchester,
United Kingdom). A sample volume of 5 μL was injected into a
HSS T3 C18 column (ACQUITY HSS T3 C18 column, 2.1 ×
100 mm, 1.8 µm, Milford, United States) with a VanGuard HSS
T3 pre-column (ACQUITY VanGuard HSS T3 C18 column, 2.1 ×
5mm, 1.8 µm,Milford, United States), as described previously (Barri
T et al., 2012). The mobile phase A consisted of H2O:HCOOH =
99.9:0.1 (v/v), the mobile phase B consisted of ACN:MeOH:
HCOOH = 70:29.9:0.1 (v/v/v). A gradient of both mobile phase
solvent and flow rate was used (run time 7 min). The linear
concentration gradient was set as follows: start condition (5% B),
1 min (8% B), 2 min (15% B), 3 min (40% B), 4 min (70 %B), 4.5 min
(100% B), 6.4 min (100% B), 6.6 min (5% B), 7 min (5% B). The
linear flow gradient was set as follows: start condition
(0.5 mLmin−1), 1 min (0.5 mLmin−1), 2 min (0.6 mLmin−1),
3 min (0.7 mLmin−1), 4 min (0.8 mLmin−1), 4.5 min
(1 mLmin−1), 5 min (1.2 mLmin−1), 6.4 min 1.2 mLmin−1),
6.6 min (1 mLmin−1), 6.8 min (0.5 mLmin−1), 7 min
(0.5 mLmin−1). ESI was used in both positive and negative
acquisition modes during separate runs, with capillary probe
voltages of 3.2 kV and 2.8 kV, respectively. For both modes the

following parameters were set: ion source temperature 120°C,
desolvation gas (nitrogen) temperature 400°C, cone voltage
25 kV, and cone and desolvation gas flows 50 and 1,000 L/h,
respectively. Leucine enkephalin was infused every 10 s for 0.1 s
as a lock-mass solution for continuous mass calibration. For both
positive and negative polarity modes the selected mass range was
from 50 to 1,000m/z in full scan mode with a scan time of 0.08 s and
an inter-scan delay of 0.02 s. Blanks (water with 5% ACN:MeOH 70:
30 v/v) and external metabolomics standard mixtures were injected
after every 30 samples, throughout each analytical batch. Pooled
samples were injected after every 50 samples.

2.6 Data pre-processing

Raw data were converted to NetCDF using the DataBridge
program converter (MassLynx V4.1, Waters Corporation,
Manchester, United Kingdom). NetCDF files were imported into
MZmine 2.16 (Pluskal et al., 2010) and preprocessed separately for
positive and negative ionization modes including the following
steps: mass detection (noise level: 60), chromatogram builder (RT
tolerance: 0.01, m/z tolerance: 0.03, noise: 80), chromatogram
deconvolution (local minimum search, ratio 1.3), isotopic peaks
grouper, peak alignment (join aligner, RT tolerance: 0.05, m/z
tolerance: 0.03), duplicate peak filter, peak list row filter, and gap
filling (peak finder, RT tolerance 0.01, m/z tolerance 0.03). As a
result, a matrix where the samples were displayed as rows and the
height of aligned peaks as columns was obtained. Each detected peak
was defined as a feature, consisting of a specific retention time and a
mass to charge ratio (m/z). Processed data were imported into
Matlab® (MATLAB R2016a; MathWorks Inc., Natick, MA, 2000)
and the features obtained were further filtered, as follows. Features
were removed if: 1) they were present in blanks above noise level
(>60 of intensity, or S/N > 6), 2) they eluted early (before 0.3 min) or
late (after 6min), or 3) they had a peak height lower than 10
(considered as noise level or gap filling errors) in more than 60%
of the samples within every sample group, for each time point
(Bijlsma et al., 2006). Intensities were subsequently corrected
feature-wise, so that the mean intensity of each sample was the
same for each batch, thereby removing inter-batch variation,
ensured by the previous randomization of each subject within the

FIGURE 1
Study design and sample collection. Created with BioRender.com.
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same batch. After a separate pre-processing of the data for the two
ionization modes, the two resulting matrices were concatenated and
features within a retention time range of 0.02 were grouped and
assigned as one unique feature group if they had Pearson correlation
coefficients higher than 0.7 to ease the identification process.
Following this step, each feature group was considered as
originating from the same compound. Prior to statistical data
analysis, zero values were replaced by half the minimum
recorded value for each feature, as previously described (Castillo
et al., 2011). Data were normalized (PQN) and autoscaled before the
analysis (Li et al., 2016).

2.7 Data analysis

Univariate analysis was performed using Matlab® (MATLAB
R2016a; MathWorks Inc., Natick, MA, 2000) on the urine samples
collected before the test meal (T 0), during the first 2 (T 0-2), 4 (T 2-
4) and 24 h (T4-24) after the test meal in order to identify the
features discriminating the two meals, with a proper excretion
profile over the 24 h following the test meal, defined as a
monotonic trajectory to its peak. To evaluate the effect of the
two meals over time on the urine metabolome, repeated
measures ANOVA was employed where the effect of time and
meal and their interaction were modeled as fixed factors, and
subject-specific effects were included in the model as random
factors. Features with a p-value<0.05 for the effect of meal and
the interaction meal*time, that is features showing a significant
difference between themeals as an effect modified by time, were kept
for further analysis. For such features, adjusted p-values for multiple
comparisons were calculated with the Dunn and Sidák’s approach
(Šidák, 1967) to evaluate at which time point each feature showed a
significant difference between themeals. Only the features showing a
significant p-value < 0.05 for the comparison between the meals at
least for two consecutive time points were considered for further
biomarker investigation, e.g., T0-2 and T2-4 or T2-4 and T4-24.

Multivariate data analysis was performed on the pooled 24-h
urine sample collected postprandially after each of the meals. Two
different approaches were used to identify discriminating
markers. At first, data were analyzed by Partial Least Square-
Discriminant Analysis (PLSDA), carried out by PLS_Toolbox
(version 6.5, eigenvector Research, Inc., MA, United States). To
evaluate the discriminant features between the 2 meals in 24 h
urine samples, PLSDA model has been computed on the
combined matrix containing the features from both positive
and negative ion mode, for a total of 5119 features by
34 samples (two pooled 24 h pools from 17 subjects). The
PLSDA models have been cross-validated by employing
10 pairs of training sets for calibration (n = 30 samples) and
test-sets for validation (n = 4) that were defined by randomly
removing two subjects at a time, so that each set included data
from both meals in a balanced way. Variable selection has been
carried out on the 10 calibration sets by removing variables with
selectivity ratio and variable importance in projection (VIP)
values lower than 1 until no further increase in the cross-
validation (8-fold) classification errors could be observed
(Gürdeniz et al., 2016). The models computed with selected
variables were evaluated using test set misclassification

(Szymańska et al., 2012). The variables that were present at
least in 80% of the calculated models were kept for further
investigation.

As a second step, the same data were investigated by Multilevel
Partial Least-Squares Discriminant Analysis (ML-PLSDA) to
correct for the random effect of the subjects (Westerhuis et al.,
2010). This approach uses the structure of the cross-over design to
separate the contribution of the variance between and within the
subjects. Using the routine available online at http://www.bdagroup.
nl for ML-PLSDA, within-subject variation was extracted from
autoscaled data, and a PLSDA model was carried out on the
extracted matrix and validated as described above. Only features
that significantly discriminated between the meals in the univariate
data analysis and at least one of the two multivariate approaches
were selected for identification.

Previously reported biomarkers for intake of dairy and meat, as
well as proteolytic microbial metabolites were retrieved from the
pre-processed data in the untargeted run. For dairy, these comprised
of galactose, lactose, galactitol, galactonate (Münger et al., 2017) and
the acyl-glycines isobutyryl-glycine, isovaleryl-glutamic acid,
isovaleryl-glycine, and tiglyl-glycine (Hjerpsted et al., 2014). For
meat these included anserine and 3-methylhistidine (Cuparencu
et al., 2019a). Phenol sulfate, p-cresol sulfate and glucuronide, 3-
indoxyl sulfate and glucuronide, phenylacetic acid, phenylacetyl-
glutamine, tyramine, indolepropionic acid, indolelactic acid, and
indoleacetic acid were targeted as microbial metabolites. These were
investigated regardless of whether they were significantly different
by any statistical approach.

Lastly, correlations between newly discovered as well as targeted
BFIs and microbial metabolites were performed by Pearson
correlation and illustrated in a correlation map (MATLAB
R2021b; MathWorks Inc., Natick, MA, 2000). Correlation
coefficients (r) between 0.40 and 0.69 were considered moderate,
and >0.70 were considered strong (Schober and Schwarte, 2018).

2.8 Identification

The features resulting from the statistical analysis were
investigated for the final identification of new BFIs of dairy and
meat. Firstly, a search within an in-house database, containing
retention time information and MS spectra of 400 reference
substances, was carried out. Secondly, for unknown compounds
with a signal area higher than 300, MS/MS spectra were recorded on
the Premier qTOF to obtain structural information. The collision-
induced dissociation (CID) was set to 10, 20, and 30 eV in separate
runs, and all other parameters were kept as for the MS full scan
experiments described above. To obtain spectra with higher mass
accuracy for some of the markers, MS/MS fragmentation analyses
were performed on a H Class UHPLC coupled to a Vion IMS qTOF
mass spectrometer (Waters®). A reversed-phase column (ACQUITY
HSS T3 C18 column, 2.1 × 100 mm, 1.8 µm, Milford, United States)
coupled with a pre-column (ACQUITY VanGuard HSS
T3 C18 column, 2.1 × 5 mm, 1.8 µm, Milford, United States)
was used at a temperature of 50°C. The mobile phases consisted
of 0.1% formic acid in water (solvent A), methanol (solvent B), 0.1%
formic acid in 70:30 acetonitrile: methanol (solvent C), and
isopropanol (solvent D). The duration of the analytical run was
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10 min with the following flow rate: 0 min (0.4 mLmin−1), 0.75 min
(0.4 mLmin−1), 6 min (0.5 mLmin−1), 6.5 min (0.5 mLmin−1), 8 min
(0.6 mLmin−1), 8.1 min (0.4 mLmin−1), 9 min (0.4 mLmin−1), 10 min
(0.4 mLmin−1), and the following gradient: 0 min (100% A),
0.75 min (100% A), 6 min (100% B), 6.5 min (70% C, 30% D),
8 min (70% C, 30% D), 8.1 min (70% C, 30% D), 9 min (100% A),
10 min (100% A). Targeted MS/MS was performed on selected urine
samples at 10, 30, and 50 eV. Thereafter, parent ions and fragments
were searched in different databases, such as Human Metabolome
Database (http://www.hmdb.ca), Metlin (http://metlin.scripps.edu),
Chemspider (http://www.chemspider.com), mzCloud (http://www.
mzcloud.org), and in silico fragmentation software, i.e., SIRIUS
(https://bio.informatik.uni-jena.de/software/sirius/) (Dührkop
et al., 2019). As a last step, the identities of the metabolites were
confirmed with authentic commercial standards. If unavailable,
reference compounds were synthesized chemically or with
biomimetic synthesis (see 2.2). The biomarkers were classified
into four levels of identification confidence according to the
criteria established by Sumner et al. as a standard for
metabolomics reporting (Sumner et al., 2007). Briefly, level I was
assigned to compounds matched to standards by means of two
orthogonal criteria, i.e., RT and m/z; level II was assigned to
compounds matched to an MS/MS spectrum published in the
literature or spectral libraries; level III was assigned to
compounds identified at the level of compound class by spectral
similarity to known compounds of a specific chemical class and level
IV was assigned to unknown compounds.

3 Results

3.1 Participant characteristics

We recruited 24 subjects for the study but 7 signed out due to
lack of time or for personal reasons. The 17 participants who
completed the study had a mean (range) age of 35.5 (19–49)
years and a mean BMI (std. dev.) of 29.3 (3.6).

3.2 Data analysis

The data pre-treatment resulted in 2294 and 2825 features in
positive and negative mode, respectively. By repeated measures-
ANOVA evaluating the effect of the meal over time, 179 features
showed a significant difference between meals for at least two
consecutive time points. These were kept for further analysis.
The two multivariate statistical approaches that employed the
pooled 24-h collected after the meals, resulted in 52 features that
discriminated between the two meals by PLSDA (Supplementary
Table S1; Supplementary Figure S1) and 67 features discriminating
between meals by ML-PLSDA (Supplementary Table S1;
Supplementary Figure S2). The model characteristics are given in
Supplementary Table S1. Seventy-eight features significantly
discriminated the two meals by univariate analysis and one of
the multivariate strategies; these were selected as the main
features discriminating the two diets. The 78 features were
further reduced to 38 metabolites after grouping of fragments
and adducts.

In addition, 12metabolites previously reported as dairy intake or
microbial proteolytic biomarkers in the literature were found in the
pre-processed data and added to the final list (Cuparencu et al.,
2019b; Münger et al., 2018; Roager and Dragsted, 2019). The
resulting 50 metabolites have been reported in Tables 1–3 along
with their corresponding selection by data analyses strategies. A
correlation map of the 50 metabolites is shown in Supplementary
Figure S3 in the Supplementary Material.

3.3 Elimination kinetics

Based on the postprandial sampling, we report elimination
kinetics trajectories of metabolites over the 24 h following the
meals. We define four different kinetic trajectories, as shown
in Figure 2:

A. Metabolites with fast elimination that peak at 2 or 4 h and
return to baseline after 24 h.

B. Metabolites with fast elimination that peak at 4 h and then
decrease, but do not return to baseline at 24 h.

C. Metabolites with moderately fast elimination that peak at 4 h
and stay elevated at 24 h.

D. Metabolites that are unchanged or increase from 4 h to 24 h in
both meals, in some cases with a different magnitude. In
addition, the metabolite level is higher at 24 h than at baseline.

3.4 Identification

Out of 50 metabolites, 21 have been confirmed with reference
standards and thus identified at level I, and 29 have been tentatively
identified at different levels of confidence. Information related to the
identity of the metabolites, their confidence level, the theoretical and
measured mass, and their fragmentation is also reported in Tables
1–3. Details on the interpretation of the MS/MS spectra have been
provided in the Supplementary Material. Figure 3 reports the
structure of selected meat biomarkers, dairy biomarkers, and
microbial metabolites.

3.4.1 Meat biomarkers
Carnosine (M01), taurine (M02), creatine (M03), and

N6,N6,N6-Trimethyl-L-lysine (M04) were identified at level I. A
range of di- and tripeptides, namely, hydroxyprolyl-proline (M05),
prolyl-hydroxyproline (M06), leucyl/isoleucyl-hydroxyproline
(M07), hydroxyprolyl-leucine/isoleucine (M08), prolyl-
phenylalanyl-glycine (M09) have been tentatively identified and
correlate with each other. The two isomeric dipeptides M05 and
M06 show different kinetics trajectories and also partially correlate
with different metabolites. The chromatographic peaks for M07 and
M08 are very broad, indicating coelution of several isomers
(hydroxyprolyl-leucine, leucyl-hydroxyproline, isoleucyl-
hydroxyproline, hydroxyproline-isoleucine). A modified amino
acid tentatively identified as acetyl-leucine (M10), does not
correlate with the previously mentioned peptides but with
markers M11-M17, indicating a common metabolic pattern.
M11 was tentatively identified as a dihydroxybenzoic acid methyl
ester and M15 as a derivative of indoleacetic acid M15. All the

Frontiers in Chemistry frontiersin.org06

La Barbera et al. 10.3389/fchem.2024.1461331

http://www.hmdb.ca
http://metlin.scripps.edu
http://www.chemspider.com
http://www.mzcloud.org
http://www.mzcloud.org
https://bio.informatik.uni-jena.de/software/sirius/
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2024.1461331


TABLE 1 Markers of meat-basedmeal reported with their retention time (RT), putative identity and relative identification confidence level in apex, molecular formula, theoretical neutral mass, measured precursor ion
mass, measured fragments and adduct ion masses, significance in the applied statistical methods, and excretion kinetics.

feature RT Metabolite (Level
identification)

Molecular
formula

Theoretical
mass

Measured
ion

Suggested
ion

Fragments and adducts ANOVA ML
PLSDA

PLSDA Excretion
kinetics

M01 0.46 carnosineI C9H14N4O3 226.1066 225.0974 [M-H]− * * * A

M02 0.49 taurineI C2H7NO3S 125.0146 124.0070 [M-H]− * * B

M03 0.51 creatineI C4H9N3O2 131.0649 132.0771 [M+H]+ 170.0339 [M+K]+ * * * B

130.0604 [M-H]− 154.0603 [M+Na]+

263.1470 [2M+H]+

900.5499 [M+H-COCH2]+

880.3971 [M-H-COCH2]
−

M04 0.45 N6,N6,N6-Trimethyl-L-lysineI C9H20N2O2 188.1525 189.1606 [M+H]+ 211.1400 [M+Na]+ * * * D

130.0870 [M+H-C3H9N]
+

M05 0.54 Hydroxyprolyl-ProlineIII C10H16N2O4 228.1110 227.1035 [M-H]− 209.1040 [M-H-H2O]− * * * B

165.1020 [M-H-H2O-CO2]
−

155.0810 [C7H11N2O2]−

130.0490 [HyP–H]−

127.0860 [C6H11N2O]
−

68.0500 [C4H6N]−

M06 0.54 Prolyl-HydroxyprolineIII C10H16N2O4 228.1110 229.1190 [M+H]+ 132.0450 [HyP+H]+ * * * C

114.0460 [HyP-H2O+H]+

86.0440 [HyP-HCOOH+H]+

70.0540 [HyP-H2O-CO2+H]+

68.0400 [HyP-H2O-HCOOH+H]+

M07 0.65 Leucyl/Isoleucyl-HydroxyprolineIII C11H20N2O4 244.1423 245.1493 [M+H]+ 132.0790 [HyP+H]+ * * * C

114.0690 [HyP-H2O+H]+

86.0980 [Ile/Leu-HCOOH]+

86.0610 [HyP-HCOOH+H]+

68.0490 [HyP-HCOOH-H2O+H]+

58.0640 [C3H8N]+

(Continued on following page)
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TABLE 1 (Continued) Markers of meat-based meal reported with their retention time (RT), putative identity and relative identification confidence level in apex, molecular formula, theoretical neutral mass, measured
precursor ion mass, measured fragments and adduct ion masses, significance in the applied statistical methods, and excretion kinetics.

feature RT Metabolite (Level
identification)

Molecular
formula

Theoretical
mass

Measured
ion

Suggested
ion

Fragments and adducts ANOVA ML
PLSDA

PLSDA Excretion
kinetics

M08 1.26 Hydroxyprolyl-Leucine/IsoleucineIII C11H20N2O4 244.1423 245.1505 [M+H]+ 227.1030 [M+H-H2O]
+ * * B

209.0550

191.0450

140.0700

114.0540 [HyP-H2O+H]+

100.0750 [C5H10NO]
+

70.0630 [HyP-H2O-CO2+H]+

58.0640 [C3H8N]
+

M09 3.08 Prolyl-Phenylalanyl-GlycineIII C16H21N3O4 319.1532 320.1636 [M+H]+ 245.1280 [M-Gly+H]+ * * * B

223.1070 [M-Pro-OH+H]+

217.1340 [M-Gly-CO+H]+

120.0800 [Phe-HCOOH+H]+

70.0640 [Pro-HCOOH+H]+

M10 3.23 Acetyl-LeucineII C8H15NO3 173.1052 172.0967 [M-H]− 130.0900 [Leu-H]+ * * C

M11 3.50 dihydroxybenzoic acid methyl ester
sulfateIII

C8H8O7S 247.9991 246.9944 [M-H]− 214.9640 [M-H-CH3OH]− * * * B

186.9690 [M-H-CH3OH-CO]−

167.0340 [M-H-SO3]−

135.0080 [M-H-CH3OH-SO3]
−

107.0130 [M-H-CH3OH-SO3-CO]-

79.0180 [M-H-CH3OH-SO3-2CO]−

M12 3.66 Unknown sulfateIV C18H23NO7S 397.1195 396.1104 [M-H]− 316.1549 [M-H-SO3]− * * * B

228.0073

194.1174

16.8102 [C9H14NO2]−

150.0915 [C9H12NO]
−

147.0447 [C9H7O2]−
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TABLE 1 (Continued) Markers of meat-based meal reported with their retention time (RT), putative identity and relative identification confidence level in apex, molecular formula, theoretical neutral mass, measured
precursor ion mass, measured fragments and adduct ion masses, significance in the applied statistical methods, and excretion kinetics.

feature RT Metabolite (Level
identification)

Molecular
formula

Theoretical
mass

Measured
ion

Suggested
ion

Fragments and adducts ANOVA ML
PLSDA

PLSDA Excretion
kinetics

140.0712 [C7H10NO2]
−

112.0763 [C6H10NO]−

105.0338 [C7H5O]−

84.04521 [C4H6NO]−

79.95595 [SO3]−

M13 3.69 UnknownIV C12H19NO3 225.1365 226.1449 [M+H] + 142.0850 [C7H12NO2]
+ * * * B

135.0430 [C8H7O2]+

107.0490 [C7H7O]
+

79.0530 [C6H7]+

77.0380 [C6H5]+

68.9970 [C3HO2]+

M14 3.71 Unknown sulfateIV 398.1269 [M-H] − 318.1700 [M-H-SO3]− * * * C

300.1578 [M-H-H2O-SO3]
−

79.9560 [SO3]−

M15 3.32 2,3-Dihydro-3,5-dihydroxy-2-oxo-3-
indoleacetic acidIII

C10H9NO5 223.0481 222.0395 [M-H]− 178.0530 [M-CO2-H]− * * B

148.0470 [M-CO2-CH2O-H]−

121.0344 [M-CO2-CH2O-HCN-H]-

91.0228 [M-CO2-2CH2O-H]−

M16 3.39 unknown IV 259.0268 [M-H]− 179.0680 [M-SO3-H]− * * A

121.0280 [M-C3H5O-SO3-H]−

79.9570 [SO3]−

57.0346 [C3H5O]−

M17 3.92 unknownIV C15H22O 218.1671 219.1746 [M+H]+ * * * C

M18 0.56 unknownIV C6H8O3S 160.0194 159.0129 [M-H]− 11.5019 [M-H-CO2]− * * B

101.0040 [M-H-CO2CH2]
−

78.9590 [SO3]−
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TABLE 2Markers of dairy-based meal reported with their retention time (RT), putative identity and relative identification confidence level in apex, molecular formula, theoretical neutral mass, measured precursor ion
mass, measured fragments and adduct ion masses, significance in the applied statistical methods, and excretion kinetics.

Feature RT Metabolite (level
identification)

Molecular
formula

Theoretical
mass

Measured
ion

Suggested
ion

Fragments and adducts ANOVA ML
PLSDA

PLSDA Excretion
kinetics

D01 0.98 Valyl-ProlineIII C10H18N2O3 215.1390 215.1392 [M+H]+ 197.0050 [M+H-H2O]
+ * * A

169.0110 [M+H-HCOOH]+

128.0170

100.0750 [C5H10NO]
+

72.0810 [C4H10N]
+

D02 1.94 Isoleucyl/Leucyl-ProlineII C11H20N2O3 228.1474 229.1552 [M+H]+ 183.1120 [M+H-HCOOH]+ * * * B

116.0700 [Pro+H]+

86.0960 [Ile/Leu+H-HCOOH]+

70.0650 [Pro+H-HCOOH]+

D03 1.90 Pyroglutamyl-prolineI C10H16N3O3 226.1192 227.1029 [M+H]+ 209.0920 [M-H2O+H]+ * * D

181.0970 [M-HCOOH+H]+

116.070 [Pro+H]+

70.0650 [Pro-HCOOH+H]+

D04 2.96 4-hydroxyphenylacetic
acidI

C8H8O3 152.0473 151.0388 [M-H]− * * A

D05 2.39 Hydroxyphenylacetic acid
sulfateII

C8H8O6S 232.0042 230.9959 [M-H]− 187.0010 [M-H-CO2]
− * * * B

151.0380 [M-H-SO3]
−

107.0690 [M-H-SO3-CO2]
−

105.0330 [M-H-SO3-HCOOH]−

95.0500 [C6H7O]
−

93.0320 [C6H5O]
−

79.0500 [C6H7]
−

77.0390 [C6H5]
−

D06 3.37 Phenylacetyl-glycineI C10H11NO3 193.0739 192.0653 [M-H]- 148.0770 [M-CO2-H]− * * * A

77.0400 [C6H5]
−

74.0250 [Gly-H]−
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TABLE 2 (Continued) Markers of dairy-based meal reported with their retention time (RT), putative identity and relative identification confidence level in apex, molecular formula, theoretical neutral mass, measured
precursor ion mass, measured fragments and adduct ion masses, significance in the applied statistical methods, and excretion kinetics.

Feature RT Metabolite (level
identification)

Molecular
formula

Theoretical
mass

Measured
ion

Suggested
ion

Fragments and adducts ANOVA ML
PLSDA

PLSDA Excretion
kinetics

D07 1.93 Hydroxyphenylacetyl-
glutamineII

C13H16N2O5 280.1059 279.0974 [M-H]− 261.0880 [M-H2O-H]− * * B

235.0980 [M-CO2-H]−

218.0810 [M-CO2-H2O-H]-

145.0600 [Glutamine-H]−

133.0290 [hydroxyphenylacetic acid -OH-H]−

127.0490 [Glutamine-H-OH]−

109.0390 [Glutamine-H-2OH]−

D08 0.91 Tyramine sulfateI C8H11NO4S 217.0409 218.0504 [M+H]+ * * * B

D09 3.48 Phenyllactic acidI C9H10O3 166.0630 165.0542 [M-H]− * * * A

D10 3.73 4-ethylphenyl sulfateI C8H10O4S 202.0300 20.10215 [M-H]− 121.0640 [M-H-SO3]
− * * * C

106.0410 [M-H-SO3-CH3]
−

79.9570 [SO3]
−

D11 1.78 8-Acetamido-caprylic
acidIII

C10H19NO3 201.1365 202.1436 [M+H]+ 184.1340 [M+H-H2O]
+ * * * B

156.1380 [M+H-HCOOH]+

138.1280 [M+H-HCOOH-H2O]
+

128.1430 [M+H-HCOOH-CO]+

114.0920 [M+H-HCOOH-C3H6]
+

100.0770 [M+H-HCOOH-C4H8]
+

96.0810 [M+H-HCOOH-C3H6-H2O]
+

84.0800 [M+H-HCOOH-C4H8-H2O]
+ or

[C5H10N]
+

82.0650 [C5H8N]
+

72.0800 [M+H-HCOOH-C4H8-CO]
+ or

[C4H10N]
+

70.0650 [C4H8N]
+

55.0540 [C4H7]
+
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TABLE 2 (Continued) Markers of dairy-based meal reported with their retention time (RT), putative identity and relative identification confidence level in apex, molecular formula, theoretical neutral mass, measured
precursor ion mass, measured fragments and adduct ion masses, significance in the applied statistical methods, and excretion kinetics.

Feature RT Metabolite (level
identification)

Molecular
formula

Theoretical
mass

Measured
ion

Suggested
ion

Fragments and adducts ANOVA ML
PLSDA

PLSDA Excretion
kinetics

D12 2.65 Pyrrolidine-conjugateIII C13H17NO3 235.1208 236.1258 [M+H]+ 190.1220 [M+H-HCOOH]+ * * * B

172.1120 [M+H-HCOOH-H2O]
+

157.0892 [M+H-HCOOH-CH3-H2O]
+

119.0730 [M+H-HCOOH-pyrrolidine]+

105.0702 [C8H9]
+

103.0540 [C8H7]
+

91.0550 [C7H7]
+

79.0640 [C6H7]
+

70.0650 [pyrroline+H]+

D13 2.67 Pyrrolidine-conjugateIII C13H17NO3 235.1208 236.1268 [M+H]+ 190.1220 [M+H-HCOOH]+ * * * B

172.1120 [M+H-HCOOH-H2O]
+

157.0892 [M+H-HCOOH-CH3-H2O]
+

119.0730 [M+H-HCOOH-pyrrolidine]+

105.0702 [C8H9]
+

103.0540 [C8H7]
+

91.0550 [C7H7]
+

79.0640 [C6H7]
+

70.0650 [pyrroline+H]+

D14 3.50 Pyrrolidine-conjugateIII C18H26N2O4 334.1892 335.1975 [M+H]+ 190.1250 [C12H15NO+H]+ * * * B

172.1160 [C12H15NO+H-H2O]
+

119.0750 [C12H15NO+H-HCOOH-
pyrrolidine]+

91.0550 [C7H6+H]+

70.0650 [pyrroline+H]+

D15 3.45 Pyrrolidine-conjugateIII C18H26N2O4 334.1893 335.1969 [M+H]+ 190.1250 [C12H15NO+H]+ * * * B

172.1160 [C12H15NO+H-H2O]
+
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TABLE 2 (Continued) Markers of dairy-based meal reported with their retention time (RT), putative identity and relative identification confidence level in apex, molecular formula, theoretical neutral mass, measured
precursor ion mass, measured fragments and adduct ion masses, significance in the applied statistical methods, and excretion kinetics.

Feature RT Metabolite (level
identification)

Molecular
formula

Theoretical
mass

Measured
ion

Suggested
ion

Fragments and adducts ANOVA ML
PLSDA

PLSDA Excretion
kinetics

119.0750 [C12H15NO+H-HCOOH-
pyrrolidine]+

91.0550 [C7H6+H]+

70.0650 [pyrroline+H]+

D16 3.49 Cyclohexane carboxylic
acid glycineI

C9H15NO3 185.1052 184.0965 [M-H]− 140.1060 [M-H-CO2]
− * * A

138.0910 [M-H-HCOOH]−

74.0240 [Gly-H]−

D17 3.98 Ethyl-methylphenyl
sulfateIII

C9H12O4S 216.0456 215.0369 [M-H]− 135.0810 [M-H-SO3]
− * * * B

106.0420 [M-H-SO3-C2H5]
−

79.9570 [SO3]
−

D18 0.69 unknownIV 259.1672 [M+H]+ * * * B

D19 1.40 unknownIV C14H17N3O4S 32.3094 324.1025 [M+H]+ 307.0760 [M+H-NH3]
+ * * B

203.0880

185.0690

174.0380 [M+H-NH3
−C3H5NO2

−HCOOH]+

157.0760

130.0660

D20 2.84 unknownIV C13H19NO3 237.1365 238.1441 [M+H]+ 162.0570 [C9H8NO2]
+ * * * B

138.0960

120.0470 [C7H6NO]
+

92.0510 [C6H6N]
+

D21 1.66 Isobutyryl-glycineI C6H11NO3 145.0739 144.0655 [M-H]− 74.0245 [Glycine-H]− -

D22 2.73 Isovaleryl-glycineI C7H13NO3 159.0895 158.0809 [M-H]− 74.0245 [Glycine-H]− * A

D23 2.60 Angelyl-glycineIII C7H11NO3 157.0739 156.0653 [M-H]− 74.0245 [Glycine-H]− * A

D24 2.65 Tiglyl-glycineI C7H11NO3 157.0739 156.0656 [M-H]− 74.0245 [Glycine-H]− * A
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identified meat BFIs showed elimination kinetics categorized into
trajectories A, B, or C (Supplementary Figure S4), except for N6, N6,
N6-trimethyl-L-lysine (M04), which has been classified as kinetic
trajectory D meaning that after 4 h it increased until 24 h for both
dairy and meat, yet significantly higher after the meat intervention.
The previously identified meat BFIs anserine and 3-methylhistidine
were not retrieved in this data.

3.4.2 Dairy biomarkers
Seven markers of dairy intake have been identified at level I,

namely, pyroglutamine proline (D03), 4-hydroxyphenylacetic acid
(D04), phenylacetyl-glycine (D06), tyramine sulfate (D08),
phenyllactic acid (D09), 4-ethylphenyl sulfate (D10), and
cyclohexanecarboxylic acid glycine (D16). The rest of
14 metabolites were only tentatively identified and belong to
different classes of compounds. The first class, including markers
D01 and D02, likely represents dipeptides. Marker D01 was
tentatively identified as valyl-proline whereas marker D02 seems
like a mixture of prolyl-leucine, prolyl-isoleucine, leucyl-proline,
and isoleucyl-proline which fits both with the observed
chromatographic peak broadening and the fragmentation patterns.

Next, we tentatively identified a series of pyrrolidine-based
structures, i.e., D12, D13, D14, and D15. The suggested
structures for D12 and D13 include pyrrolidine-ethyl-hydroxy
benzoic acid. D14 and D15 are likely conjugates of D12 and
D13, with a mass difference associated with piperidone.

Other markers have been tentatively identified as
hydroxyphenylacetic acid sulfate (D05), hydroxyphenylacetyl-
glutamine (D07), 8-acetamidocaprylic acid (D11), and ethyl-
methylphenyl sulfate (D17). The rest of the markers in Table 2
are referred to as unknown because no hypothesis on their identity
could be formulated.

Metabolites D01, D02, D08-D15, and D17-D20 strongly correlate
with each other with a coefficient higher than 0.7 indicating a
common metabolic pattern. All the newly identified dairy BFIs
showed elimination kinetics categorized into trajectories A, B, or
C, besides pyroglutamyl-proline (D03) which is assigned to level D
because it increases also in meat at 24 h (Supplementary Figure S5).

The previously identified dairy BFIs galactose, lactose, galacticol,
galactonate, and isovalerylglutamic acid were not retrieved from our
data. The acyl-glycines isobutyryl-glycine (D21), isovaleryl-glycine
(D22), and tiglyl-glycine (D24) were found and identified at level I,
together with an isomer of tiglyl-glycine, namely, angelyl-glycine
(D23), identified at level II. All these BFIs except for isobutyryl-
glycine were selected by ANOVA and they all showed kinetics
trajectory A (Supplementary Figure S5). The acyl-glycines
correlate with each other but not with the rest of the markers.

3.4.3 Microbial metabolites
Phenol sulfate (MB1), p-cresol sulfate (MB2) and glucuronide

(MB3), 3-indoxyl sulfate (MB5) and glucuronide (MB6),
indolelactic acid (MB7) and phenylacetyl-glutamine (MB8) were
extracted from the raw dataset based on the RT and m/z of
corresponding standards (level I). An isomer of 3-indoxyl sulfate
(MB4) was identified at level II. All the microbial metabolites except
for 3-indoxyl sulfate, phenylacetyl-glutamine and indolelactic acid
were categorized as kinetics trajectory D (Supplementary Figure S6).
These metabolites had an acute increase at 0–2 h, followed by aT
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decrease at 2–4 h, but in the 4–24 h sample their levels were higher
than the baseline levels, and there was no difference between the
meat and dairy meals. Phenylacetyl-glutamine and 3-indoxyl sulfate
showed this same trend for the meat intervention group but not for
the dairy, and cannot be then classified as trajectory D. However,
while phenylacetyl-glutamine showed no significant difference
between dairy and meat at any time point, 3-indoxyl sulfate
showed higher levels in meat compared to dairy at 2 h. The
elimination kinetic profile of indolelactic acid shows that this
microbial metabolite behaves like a postprandial BFI for dairy
even though it was not selected by univariate data analysis,
because significantly different between the two meals only at
1 time point. In addition, it does not correlate with the other
microbial metabolites. p-cresol glucuronide (MB3) shows an
inverse correlation with all the other microbial metabolites and
with the dairy markers. Finally, among the dairy markers, 4-
ethylphenyl sulfate (D10) and the acyl-glycines D21-D24 partially
correlate with most of the microbial metabolites (r = 0.5).
Phenylacetic acid, phenol glucuronide, tyramine, indolepropionic
acid, and indoleacetic acid could not be retrieved in the raw data.

4 Discussion

The primary aim of this work was to highlight BFIs that
differentiate between a meal with meat or dairy consumed
without prior dietary restrictions, and to validate previously
reported BFIs of the two foods. By inspecting the elimination
kinetics of the different biomarkers, we provided a set of BFIs for
meat and dairy intake with fast (<24-h) or relatively fast (>24-h)
time windows of excretion. As a secondary aim, we explored
whether previously reported proteolytic microbial metabolites
differ after intake of meat or dairy.

4.1 Meat intake biomarkers

Carnosine (M01), taurine (M02) and creatine (M03), previously
reported meat biomarkers (Cuparencu et al., 2019a), were confirmed
here without a dietary restriction of meat intake during the previous
day. Taurine is usually considered unspecific due to its similar
contents in dairy products (Cuparencu et al., 2019b), but here we

FIGURE 2
Selected metabolites categorized in the four different elimination kinetics trajectories (A–D). The data points represent the mean and the bars
represent the standard error of the mean; red diamond-meat, blue circle-dairy.
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observe a higher elimination rate after meat, suggesting that its
inclusion in combined biomarkers panels to differentiate between
the two sources may prove valuable.

Six hydroxyproline (Hyp) containing dipeptides, i.e., Pro-Hyp,
Hyp-Pro, Ile/Leu-Hyp, Hyp-Ile/Leu, originating from the collagen
helix were also reconfirmed (Cuparencu et al., 2019a). However,
these dipeptides were not reported among the best predictors of
meat intake in a previous study (Cuparencu et al., 2019b) pointing at
their lack of robustness as meat BFIs.

Anserine and 3-methylhistidine were found as very low
intensity and noisy peaks in the data, possibly due to the
elution of the peaks in the dead volume of the column, causing
high ion suppression. In addition, anserine is mainly found in
chicken and therefore studies of red meat provide a limited
exposure to this metabolite. Anserine is a precursor of 3-
methylhistidine, and while we see a peak matching the mass
and RTs of the methyl-histidines, i.e.,1-methyl histidine (1-MH

or Nτ-MH) and 3-methyl histidine (3-MH or Nπ-MH), our
chromatographic method could not distinguish between 1-MH
and 3-MH in this study. Based on the kinetic profile of the feature
(data not shown), it is most probable that it corresponds to 1-MH,
a marker that is not robust for meat intake due to its endogenous
production and high individual variability (Cuparencu et al.,
2019a). A similar challenge is usually seen for carnitine that is
often reported as a meat BFI in experimental and observational
studies, even though levels vary between individuals due to its
endogenous function in amino acid and lipid catabolism. Here, the
carnitine precursor, N6,N6,N6-trimethyl-L-lysine (M04), was
observed as a BFI peaking >4 h after the meat meal and
therefore with a longer time window. Previously reported after
intake of fish and meat (Cuparencu et al., 2019b), we speculate that
its presence in meat histones delays liberation, causing the late
appearance. The kinetics observed here indicate large intestinal
liberation, i.e., following microbial protein degradation. A few

FIGURE 3
Structures of selected biomarkers of meat and dairy intake, and of proteolytic microbial metabolites. Abbreviations: Lysine (Lys), Hydroxyproline
(Hyp), Proline (Pro), Phenylalanine (Phe), Valine (Val), Leucine (Leu), Isoleucine (Ile), Glycine (Gly), Glutamine (Gln). Created with BioRender.com.
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other markers observed after red meat intake cannot be identified
with confidence. A derivative of indoleacetic acid (M15) might
derive from microbial proteolytic metabolism.

4.2 Dairy intake biomarkers

We identified a range of proline-dipeptides as dairy BFIs.
Isoleucyl-proline was previously reported as an intake biomarker
of caseinoglyco-macropeptide (Stanstrup et al., 2014b), while
pyroglutamyl-proline has also been found as biomarker of whey
hydrolysate intake (Stanstrup et al., 2014a). Proline dipeptide levels
depend on prolidase for degradation and liberation of proline, and
this same enzyme is also needed to degrade the hydroxyproline-
dipeptides observed after meat intake (Eni-Aganga et al., 2021). The
observation of these dipeptides in urine suggests an insufficient
activity of prolidase. It is conceivable that the fast liberation of the
dipeptides after dairy or meat intake overwhelms the prolinase
capacity in the intestine, increasing their absorption and
excretion into urine. Among the proline dipeptides pyroglutamyl-
proline is the only one that increases after meat intake at 24 h. This
might be due to the presence of such compound also in other types
of foods such as wheat gluten (Schlichtherle-Cerny and
Amadò, 2002).

4-hydroxyphenyl acetic acid along with its sulfate and glutamine
conjugates, as well as tyramine sulfate, phenyllactic acid, and 4-
ethylphenyl sulfate are likely deriving from microbial fermentation
in the cheese. In a previous work, both tyramine and 4-
hydroxyphenylacetic acid were found as cheese urinary
biomarkers. These metabolites were supposed to be formed by
microbial metabolism during cheese ripening (Hjerpsted et al.,
2014) and further conjugated into their sulfate and glutamine
conjugates by the host secondary metabolism. Phenyllactic acid
and 4-ethylphenyl sulfate are two commonly reported gut
microbial metabolites (Zheng et al., 2021). However, while 4-
ethylphenyl sulfate has only been shown to derive from
proteolytic fermentation in the human gut, phenyllactic acid can
also derive from cheese fermentation (Valerio et al., 2004).
Phenyllactic acid, as well as tyramine sulfate, 4-
hydroxyphenylacetic acid and its derivatives, show a fast
elimination kinetics, suggesting that the metabolites are already
present in the cheese product. In contrast, the slower excretion of
4-ethylphenyl sulfate, together with a positive correlation with the
gut microbial metabolites, might suggest that this metabolite is a
product of the gut microbiota after intake of specific dairy-derived
proteins. Nevertheless, since 4-ethylphenyl sulfate derives from
phenylalanine, which is in both dairy and meat, the higher levels
after dairy intake might be explained by the presence in the dairy of
4-ethylphenol, which is further sulfated by the host metabolism in
the following 24 h.

Cyclohexane carboxylic acid glycine has been previously
reported after berry intake (Cuparencu et al., 2016) and its
presence as a dairy biomarker in this study points at the flavour
of the yogurt provided in the dairy meal. The origin of the other
urinary metabolites observed following intake of the dairy meal,
namely, acetylated 8-aminocaprylic acid, ethyl-methylphenyl
sulfate, and four pyrrolidine conjugates are uncertain. Since
proline peptides increase after dairy intake, it would be

conceivable that the pyrrolidine containing compounds observed
here may derive from decarboxylated proline peptides.

Finally, several acylglycines have been identified as dairy intake
biomarkers in previous studies investigating biomarkers of cheese
intake (Badenhorst et al., 2013; Hjerpsted et al., 2014) and were thus
confirmed here. These were not originally selected in the list of dairy
biomarkers due to our strict criteria for BFIs selection and because
they slightly increase also after meat intake, but all except isobutyryl-
glycine were selected in the repeated measures ANOVA analysis.
Isobutyryl-glycine also differs from the other acyl-glycines with
respect to its kinetic profile, which is type A for dairy, but
similar to the microbial metabolites type D for meat. In addition,
the acyl-glycines slightly correlate with the gut microbial
metabolites. Acyl-glycines might be higher in dairy, but increased
after both meat and dairy, because they derive from degradation of
branched-chain amino acids, which are more abundant in dairy
products (Hjerpsted et al., 2014). However, they might also derive
from glycine conjugation to branched-chain fatty acids, which can
be present in cheese or can also originate from the proteolytic
fermentation by the gut bacteria (Blachier et al., 2019).

4.3 Proteolytic microbial metabolites and
health implications

Several microbial metabolites deriving from proteolytic
fermentation are important in both health and disease (De Mello
et al., 2017; Dodd et al., 2017; Roager and Dragsted, 2019). Since
protein-rich products are responsible for their formation, we have
targeted these metabolites to explore potential differences between
red meat and dairy intake. This exploration is, however, complicated
by the protein microbial fermentation occurring during dairy
processing (Melkonian et al., 2023). Some of the putative BFIs
observed may therefore have dual origins as processing products
as well as gut fermentation products, as observed for 4-ethylphenyl
sulfate. We hypothesize that microbial metabolites showing a
kinetics excretion of type A, B or C are already present in the
dairy product because they are excreted before the food has reached
the large intestine at 3–6 h, and they are significantly different
betweenmeat and dairy, while metabolites with kinetics excretion D,
which are not significantly different between dairy and meat, are
produced by the human gut microbiota. All microbial metabolites
except for 3-indoxyl sulfate, phenylacetyl-glutamine, and
indolelactic acid belong to class D. 3-Indoxyl sulfate was shown
to increase after both meals, but the signal was stronger after meat
intake compared to dairy. Indoxyl sulfate is a metabolite of
tryptophan. Depending on the gut environment, the presence of
dietary fiber, as well as the microbiota composition, microbes can
form indolepropionic acid, a health promotingmetabolite (DeMello
et al., 2017; Roager and Licht, 2018; Xue et al., 2022), or indoxyl
sulfate, an uremic toxin reported in kidney disease (Sinha et al.,
2024). The higher level following the meat meal might reflect the
slightly higher level of tryptophan in red meats. However, the
different trend in the excretion after dairy intake, which is more
similar to the other dairy BFIs than to the microbial metabolites
suggests that indole or even 3-indoxyl sulfate might be already
present in the dairy product. In similarity, phenylacetyl-glutamine
shows a different elimination trend following dairy and meat,
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although there is no significant difference in excretion between the
two diets. The levels of 3-indoxyl sulfate and phenylacetyl-glutamine
might therefore derive from a combination of fermentation in the
dairy and in the gut. Further studies should clarify the source of
these metabolites in urine after intake of fermented and
unfermented protein-derived meals, to better understand their
different roles in human health.

Lastly, indolelactic acid shows type A excretion kinetics, thereby
behaving as postprandial BFI for the dairy meal in this study. This is
not surprising considering that lactic acid bacteria are used as starter
cultures in the fermentation of dairy products. Indolelactic acid has
been previously reported as a dairy BFI (Bütikofer et al., 2022; Li
et al., 2021; Pimentel et al., 2020). Although in our study indolelactic
acid showed a significant time*meal interaction in repeated
measures ANOVA, it was only significant at one time point,
therefore it was not selected as dairy BFI by our strict criteria.
However, additional time points at 6–8 h would have probably
enabled the selection of this additional dairy BFI. Indole and
phenyllactic acids are generally associated with anti-inflammatory
and immunomodulating effects in the infant gut but health effects in
adults have not been consistently observed (Laursen et al., 2021).
Interestingly, p-cresol glucuronide was inversely correlated with the
meat markers and with all other microbial metabolites. These results
suggest a different pathway of elimination of p-cresol sulfate and
p-cresol glucuronide and should be further investigated since the
two conjugates may potentially have different effects on glucose
metabolism and insulin resistance (Koppe et al., 2017).

4.4 Combined markers to improve the
dietary assessment of meat and dairy intakes

Combined markers have been shown to outperform single
markers in classifying intake of dairy (Li et al., 2021), meat
(Cuparencu et al., 2019a), and other foods (Gürdeniz et al., 2016;
Vázquez-Manjarrez et al., 2019; Xi et al., 2021), and are thus a useful
strategy to overcome the lack of specificity of single BFIs. For rich-
protein sources like meat and dairy, a pattern of distinct amino acid-
derived metabolites could in theory serve as BFIs. However, as
already demonstrated for meat, Hyp-Pro peptides are not good
predictors of intake by themselves (Cuparencu et al., 2019b) and
prediction studies targeting dairy intake through proline-dipeptides
are lacking. To differentiate between intakes of meat and dairy
through protein-derived metabolites, we suggest a ratio between
proline- and hydroxyproline-peptides. These should be combined
with taurine, also shown to differentiate the two protein foods in this
study, and with additional biomarkers for meat and dairy, to test
their prediction performance in individuals consuming their
habitual diet and document parsimonious models.

Combinations of BFIs with different excretion kinetics might
prove useful to determine the time since intake, as recently proposed
(Cuparencu et al., 2024). For example, measuring phenyllactic acid
and 4-ethylphenyl sulfate in the same urine sample would indicate
that dairy has been consumed in the past 2–3 days, whereas the
presence of phenyllactic acid only would indicate intake in the last
6–10 h, or possibly last 24 h if a pooled 24-h urine sample is
available. We recently suggested the concept of time windows for
sampling to describe the period after intake where a particular BFI

can be measured to reliably detect the consumption of its
corresponding food (Cuparencu et al., 2024). This approach,
coupled with multisampling in observational studies (Cuparencu
et al., 2024), could facilitate a better understanding of frequency of
food intake through biomarkers, to complement the less reliable
dietary information obtained from food frequency questionnaires.

4.5 Strengths and limitations

For biomarker discovery, we employed a combination of
univariate (repeated measures ANOVA on time-series samples)
and multivariate data analysis approaches (PLSDA and ML-
PLSDA on pooled 24 h samples). This allowed us to 1) reduce
false discoveries, since biomarkers were only put forward if they
were selected by both univariate and at least one of the two
multivariate analyses; 2) leverage the paired data structure of the
cross-over design, by correcting participant-related random effects
(ML-PLSDA), and 3) investigate the between-subject variation
separately from the within-subject variation to better understand
the effect of the correction for the random effect of the subjects (ML-
PLSDA vs. PLSDA) (Westerhuis et al., 2010). ML-PLSDA enabled
the selection of nine additional metabolites, that were otherwise not
picked up by PLSDA, such as hydroxyprolyl-leucine/isoleucine for
meat, and valyl-proline for dairy. However, some of the selected
biomarkers are also produced endogenously (Cuparencu et al.,
2019a) and show variability between subjects; their use as BFIs
may therefore depend on additional samples from the same
individual to correct for individuality and therefore require
further validation in independent studies.

The postprandial sampling allowed us to describe kinetics
profiles that consequently document the time window for
sampling for a range of new biomarkers, i.e., sampling
time <24 h after intake for metabolites with kinetics type A and
B, and >24 h for type C and D.

In the current study we target very common foods, dairy and red
meat, without restrictions on prior intake. This describes an additional
aspect of their robustness, showing that the marker intensity after a
single meal is sufficient. Usually, biomarker development occurs in
highly controlled studies with 2–3 days run-in periods during which
the intended test foods are avoided. Here we show that, even in a
population that consumes meat frequently (data not shown), BFIs
reflecting recent intake are still useful. None of the BFIs saturates with
repeated intake (Dragsted et al., 2018), even though many, e.g., M06,
M10,M12,M17, D03, D10, and D17 among others, show a carry-over
effect from the intake of the preceding day.

The current work is limited by the lack of an independent
dataset to validate our biomarker discovery findings and to test the
performance of the combined BFIs suggested. Future work should
address this in subjects having their habitual diets and test
biomarker combinations that differentiate between meat and
dairy. Another limiting factor is that we investigated the
abundance of known metabolites in an untargeted run; running
the same investigation using targeted analysis would likely allow
measurement of the less abundant BFIs, such as anserine and 3-MH,
providing a more comprehensive picture of the differences between
protein-matched meals with meat or dairy. Lastly, some of the better
validated single and combined dairy BFIs, for example, galactose
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derivatives, were not confirmed in this study likely due to the
chromatography used. Previously, these metabolites have been
measured by GC-MS (Li et al., 2021), whereas we employed a
LC-MS platform here.

5 Conclusion

In this study we aimed to validate known BFIs and to find
additional ones able to discriminate between dairy or meat protein
meals. This was done against a background of habitual intakes to
document robust BFIs. The BFIs were selected by a combination of
multivariate pattern analyses and FDR-corrected univariate methods.
Several well-known meat intake biomarkers were re-confirmed,
including carnosine, taurine, and creatine, as well as several
hydroxyproline-containing di-peptides. Dairy intake was mainly
reflected by catabolites of aromatic- and branched-chain amino
acids. Some of these BFIs reflect only recent intake and may only
be useful as compliance markers, while others have time windows
higher than 24 h, making them potentially more useful for assessing
average dietary intake from pooled urine samples. Our results indicate
the presence of microbial metabolites such as phenyllactic acid,
tyramine sulfate, 4-ethylphenyl sulfate, and indolelactic acid
already in dairy products, with potential utility as BFIs of dairy.
Other microbial proteolysis products showed only limited differences
between the protein sources. However, the pattern of some
metabolites, such as 3-indoxyl sulfate and phenylacetyl-glutamine,
suggested a dual origin frommicrobial metabolism in the dairy and in
the gut, emphasizing the need to consider them as part of combined
BFI panels. Further studies will be needed to elucidate the source of
these metabolites in urine after protein-derived meals.
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