Check for updates

OPEN ACCESS

APPROVED BY Frontiers Editorial Office, Frontiers Media SA, Switzerland

*CORRESPONDENCE Frontiers Production Office, production.office@frontiersin.org

RECEIVED 12 June 2024 ACCEPTED 12 June 2024 PUBLISHED 02 July 2024

CITATION

Frontiers Production Office (2024), Erratum: Recent advances in ternary Z-scheme photocatalysis on graphitic carbon nitride based photocatalysts. *Front. Chem.* 12:1447771. doi: 10.3389/fchem.2024.1447771

COPYRIGHT

© 2024 Frontiers Production Office. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Erratum: Recent advances in ternary Z-scheme photocatalysis on graphitic carbon nitride based photocatalysts

Frontiers Production Office*

Frontiers Media SA, Lausanne, Switzerland

KEYWORDS

 $G\text{-}C_3N_4,$ ternary composite photocatalysts, all-solid-state ternary Z-scheme, direct ternary Z-scheme, application

An Erratum on

Recent advances in ternary Z-scheme photocatalysis on graphitic carbon nitride based photocatalysts

by Zhou D, Li D and Chen Z (2024). Front. Chem. 12:1359895. doi: 10.3389/fchem.2024.1359895

Due to a production error, in Table 1, column 1, the PS I (N) value was given as $g-C_{34}$ instead of $g-C_3N_4$. The corrected table appears below.

The publisher apologizes for this mistake. The original version of this article has been updated.

TABLE 1 Recent progress in $g-C_3N_4$ -based ASS ternary Z-scheme photocatalysis with different electron mediators.

PS I (N)	PS II	Electron shuttle	Light source	Application	Activity	Ref
g-C ₃ N ₄	MoS ₂	Ag	300 W Xe lamp	degradation of RhB	DE = 100% (60 min)	Lu et al. (2017)
			$(\lambda > 420 \text{ nm})$	H ₂ production	$104 \ \mu mol \ h^{-1} \ g^{-1}$	
g-C ₃ N ₄	BiVO ₄	Ag	300 W Xe lamp (λ > 350 nm)	Degradation of TC	DE = 90.76% (60 min)	Chen et al. (2017a)
			300 W Xe lamp (λ > 420 nm)		DE = 82.75% (60 min)	
g-C ₃ N ₄	NaTaO ₃	Ag	300 W Xe lamp (λ < 420 nm)	Degradation of TC	DE = 95.47% (60 min)	Tang et al. (2018)
			300 W Xe lamp (λ > 420 nm)		DE = 91.48% (60 min)	
g-C ₃ N ₄	Bi ₃ TaO ₇	Ag	300 W Xe lamp	Degradation of SMZ	DE = 98% (25 min)	Ren et al. (2019)
g-C ₃ N ₄	Ag ₃ PO ₄	Ag	300 W Xe lamp (λ > 420 nm)	Removing of NO	74% (90 min)	Li et al. (2021a)
g-C ₃ N ₄	BiVO ₄	Ag	300 W Xe lamp (λ > 420 nm)	Degradation of CIP	DE = 92.6% (120 min)	Deng et al. (2018)
g-C ₃ N ₄	LaFeO3	Ag	300 W Xe lamp	Degradation of MB	DE = 98.97% (90 min) DE =	Zhang et al. (2021a)
			(λ > 420 nm)	Degradation of TC	92.93% (120 min)	
g-C ₃ N ₄	AgVO ₃	Ag	300 W Xe lamp	Degradation of RhB	DE = 100% (12 min)	Liu et al. (2019)
			$(\lambda > 400 \text{ nm})$	E. coli inactivation	3.05 log (100 min)	
g-C ₃ N ₄	AgCl	Ag	300 W Xe lamp	Degradation of Rh B	DE = 100% (60 min)	Bao and Chen (2016)
			(X > 420 mm)	Degradation of MO	DE = 99% (90 min)	
g-C ₃ N ₄	Ag ₂ CrO ₄	Ag	500 W Xe lamp	Degradation of MO	DE = 78% (30 min)	Yu et al. (2021)
g-C ₃ N ₄	TiO ₂	Ag	500 W Xe lamp	Reduction of U (VI)	99% (30 min)	Liu et al. (2022)
g-C ₃ N ₄	Zn0.5Cd0.5S	Au	300 W Xe lamp (λ > 420 nm)	Reduction of CO_2 for CH_3OH evolution	$1.31 \ \mu mol \ h^{-1} \ g^{-1}$	Madhusudan et al. (2021)
g-C ₃ N ₄	CdS	Au	300 W Xe lamp (λ > 455 nm)	$\rm H_2$ production reduction of $\rm CO_2$	277 $\mu mol~h^{-1}$ (4 h)	Zheng et al. (2015b)
			300 W Xe lamp (λ > 420 nm)		85%	
g-C ₃ N ₄	ZnIn ₂ S ₄	Au	300 W Xe lamp	Removal of NO	59.7%	Zhang et al. (2020a)
				CO production	242.3 μ mol h ⁻¹ g ⁻¹	
g-C ₃ N ₄	AgCl	Au	200 W Xe lamp (λ > 420 nm)	Degradation of Rh B	DE = 93.1% (25 min)	Zhang et al. (2021b)
g-C ₃ N ₄	TiO ₂ (P25)	Au	150 W Hg Lamp	H ₂ production	419 μ mol h ⁻¹ g ⁻¹	Jiménez-Calvo et al. (2020)
g-C ₃ N ₄	Cu ₂ ZnSnS ₄	Pt	400 W Xe lamp (λ > 420 nm)	Reduction of CO ₂ for CO/CH ₄ evolution	17.351/7.961 µmol h^{-1} g^{-1}	Raza et al. (2020)
g-C ₃ N ₄	AgVO ₃	Pt	300 W Xe lamp (λ > 420 nm)	H_2 production	10,444 μ mol h ⁻¹ g ⁻¹	Qureshi et al. (2023)
g-C ₃ N ₄	BiVO ₄	Pt	300 W Xe lamp	Degradation of MB	DE = 100% (70 min)	Si et al. (2020)
			$(\Lambda > 420 \text{ nm})$	Degradation of BPA	DE = 92.7% (130 min)	
				H ₂ production	72 μ mol h ⁻¹ g ⁻¹	
g-C ₃ N ₄	WO ₃	С	500 W Xe lamp (λ > 420 nm)	Degradation of TC	DE = 75% (60 min)	Zhao et al. (2021)

DE, degradation efficiency; E, efficiency; Rh B, Rhodamine B; TC, tetracycline; SMZ, sulfamethoxazole; NO, nitric oxides; CIP, ciprofloxacin; MB, methylene blue; MO, methyl orange; BPA, Bisphenol A; 2,4-DCP, 2,4-dichlorophenol; TC-HCl, Tetracycline Hydrochloride; CR, congo red; GO, graphene oxide; RGO, reduced graphene oxide; AFB₁, Aflatoxins B₁.