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Tetrodotoxin (TTX) is a highly potent and widely distributed ion-channel marine
neurotoxin; it has no specific antidote and poses a great risk to human health.
Therefore, detecting and quantifying TTX to effectively implement prevention
strategies is important for food safety. The development of novel and highly
sensitive, highly specific, rapid, and simple techniques for trace TTX detection has
attractedwidespread attention. This review summarizes the latest advances in the
detection and quantitative analysis of TTX, covering detection methods based on
biological and cellular sensors, immunoassays and immunosensors, aptamers,
and liquid chromatography-mass spectrometry. It further discusses the
advantages and applications of various detection technologies developed for
TTX and focuses on the frontier areas and development directions of TTX
detection, providing relevant information for further investigations.
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1 Introduction

Tetrodotoxin (TTX)–a low-molecular-weight, crystalline, nonprotein organic
compound with weakly basic properties and a colorless appearance–ranks among the
most potent marine toxins studied to date (Katikou et al., 2022). It is a
perhydroquinozolineamine molecule (aminoperhydroquinazolone), and its structure has
been elucidated (Tsuda et al., 1964). Named after the family Tetraodontidae (including
puffer fish), TTX was originally isolated from the puffer fish and has since been detected in
other marine and terrestrial species (Lago et al., 2015). However, the biosynthetic process or
biological origin of TTX remains unclear. Some studies have suggested that TTX mainly
originates from bacteria belonging to the phylum Proteobacteria living in marine animals,
including Pseudomonas, Pseudoalteromonas, and Vibrio, while others have found that at
least 150 bacterial strains isolated from various organisms can produce TTX (Magarlamov
et al., 2017). However, due to the limitations of analytical techniques, the number of
bacterial species that produce TTX is still unclear. In addition, the origin of TTX is still
under debate, and current mainstream research indicates that it may either be produced by
symbiotic bacteria (endogenous pathway) or arise via exogenous accumulation through the
diet (Biessy et al., 2019).

Voltage-gated sodium ion channels are pivotal in regulating neuronal excitability and
maintaining the resting potential. They are indispensable for both the initiation and
transmission of action potentials within neurons (Wang et al., 2017). The toxic
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mechanism of TTX involves binding to these channels and
selectively blocking their action potential along nerves, skeletal
muscle, and the myocardium, thereby reducing the membrane
excitability of vital tissues, cardiomyocytes, skeletal muscle, and
the central and peripheral nervous systems (Sorokin, 1973). The
severity of symptoms caused by TTX depends on the dose, with
patients typically experiencing toxic effects within 30min to 6 h after
ingestion. These symptoms range from headaches, sweating, and
numbness to dysphagia, nausea, vomiting, abdominal pain, general
discomfort, weakness, and a lack of coordination. In severe cases,
individuals may also present with low blood pressure, arrhythmia,
muscle paralysis, cranial nerve dysfunction, and potentially fatal
respiratory and/or heart failure. TTX is highly toxic to all
mammalian species, with the estimated minimum lethal dose in
humans at approximately 10,000 MU, or ~2 mg (Noguchi and
Ebesu, 2001). Currently, no clinically proven antidote is available for
the effective treatment of TTX poisoning (Narahashi, 2001). The
clinical management of TTX poisoning in humans primarily
involves symptomatic care, including supportive measures such
as inducing vomiting, gastric lavage, providing respiratory
support, and ensuring adequate hydration until TTX is
eliminated from the body through urine (Sims and Ostman,
1986). In addition, antiserum and monoclonal antibodies
targeting TTX have been developed and tested; however, further
research is required to fully understand their clinical efficacy (Xu
et al., 2005). Notably, due to the mechanism of action and
pharmacological activity of TTX in the human body, clinical
applications of TTX as an analgesic, anesthetic, and antitumor
drug have been developed.

Most cases related to puffer fish poisoning mainly occur in Asian
countries, such as Japan and China. However, as puffer fish and other
TTX-carrying organisms continue to spread globally, facilitated by the
expansion of international aquaculture trade, TTX poisoning is
transcending its historical confinement to Asian countries and
emerging in broader geographical regions, including the Pacific and
theMediterranean. Consequently, the incidence of TTXpoisoning cases
is anticipated to escalate further (Noguchi and Arakawa, 2008), the
challenges of which include a high mortality rate and the absence of a
specific antidote. Mitigating the risks associated with TTX poisoning
requires taking essential precautions as the primary means of
prevention (Saoudi et al., 2011). TTX has become one of the routine
test indices significant in public health and import and export
inspections and quarantines. Therefore, the development of effective
analytical methods and rapid detection technology for TTX
determinations will not only aid in conducting more in-depth
research on the detoxification and application of TTX and its
analogues but also ensure the safety of seafood and effectively
prevent the occurrence of TTX poisoning. This review summarizes a
variety of methods for detecting and quantifying TTX, including bio-
and immunoassays; cell, electrochemical, and aptamer sensor assays;
and instrumental assays.

2 Detection based on biological and
cellular sensors

The mouse bioassay (MBA) serves as the official method for
detecting TTX. While it boasts simplicity and instrument-free

operation, its applicability for the routine monitoring of marine
toxins is hindered by, for example, low sensitivity, inconsistent
reproducibility, a lack of specificity, and ethical concerns (Reverte
et al., 2015). Nevertheless, because this method can directly provide
toxicological information, some current research efforts continue its
use. Its implementation involves intraperitoneally injecting the
extracted TTX diluent into male ddY mice weighing 18–20 g.
The fatality rate is expressed in MU, where 1 MU is defined as
the amount of toxin that kills mice in 30 min (Asakawa et al., 2019).
A study assessed the tissue distribution following oral TTX in mice,
revealing that the elimination cycle of a single oral TTX dose
(75 μg/kg) was approximately 168 h. Continuous oral TTX
administration demonstrated dose-dependent toxic effects on the
liver and kidneys, offering valuable information for the management
of TTX toxicity following low-dose ingestion (Zhong et al., 2023).

Cell-based biosensors, utilizing living cells as sensing elements
alongside sensors or transducers, offer advantages such as
miniaturization, noninvasiveness, rapid response times, excellent
selectivity, and high sensitivity (Reverte et al., 2015). Utilizing the
mechanism by which TTX can block action potentials in
electroactive cells, such as cardiomyocytes, myocellular
microelectrode array biosensors can be employed as powerful
tools for studying the toxic effects of conventional cellular
external field potential signals generated by TTX and for the
quantitative analysis of TTX toxicity (Jahnke et al., 2013). A
portable high-throughput potential biosensor based on
cardiomyocytes, a 16-well microelectrode sensor, and a 32-
channel recording system has been established to efficiently and
quantitatively detect the toxic effects of TTX, and can rapidly detect
0.30 ng/mL TTX within 10 min (Sun et al., 2023). In addition,
neuroblastoma cell lines can be used to detect marine-derived toxins
and include the mouse Neuro-2a cell line, which has been used for
TTX testing (Alkassar et al., 2023). In studies where Neuro-2a cells
were immobilized on electrodes made of various materials and cell
viability was assessed using cyclic voltammetry, it was found that
carbon and carbon/polyaniline electrodes demonstrated superior
results in terms of oxidation potential and current strength, enabling
effective detection of TTX (Alkassar et al., 2022). Considering the
mechanism of action of TTX and its analogues, an automated patch
clamp (APC) system that reflects the activity of ion channels in the
cell membrane can be used for TTX detection (Randall et al., 2006).
Notably, an in vitro toxicological method involving an APC system
with Neuro-2a cells has been used for the determination of TTX in
puffer fish samples and the detection limits (LOD) of this method
was 0.05 mg TTX equivalent/kg (Campas et al., 2024).

3 Detection based on immunity and
immune sensors

Immunoassays and immunosensors exhibit excellent specificity
and sensitivity, coupled with affordability, user-friendliness, and
swift operation. In this regard, the enzyme-linked immunosorbent
assay (ELISA) stands out as the primary immunoassay method
(Figure 1A). Monoclonal antibodies (McAbs), renowned for their
exceptional specificity and affinity, find extensive application within
the ELISA (Tao et al., 2010). Additionally, immunoassays based on
colloidal gold nanoparticle probes are significantly faster than the
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traditional ELISA and can be completed within 10 min (Zhou et al.,
2010) (Figure 1B). TTX IgG McAb with a high titer has been
obtained using TTX-bovine serum albumin and the TTX-keyhole
limpet hemocyanin conjugate as the antibody and immunogenic
antigen, respectively. A highly sensitive and reproducible ELISA
method has been developed to detect TTX, the linear range of TTX
was 5–500 ng/mL, and the LOD was 4.44 ng/mL. Simultaneously,

researchers have developed a colloidal gold nanoparticle probe and
immunoassay for the rapid detection of TTX (Ling et al., 2015). In
addition, researchers have developed a modified enzyme-linked
immunosorbent assay (mELISA) based on the fixation of TTX
via a self-assembled dimericcarboxylate monolayer on a
maleimide plate, facilitating ordered and directed
antigen–antibody fixation and affinity interactions. Compared

FIGURE 1
Schematic diagram of the mechanism of TTX detection method. (A) The process of TTX detection by ELASA technology based on immunoassay. (B)
The process of TTX detection by colloidal gold technology based on immunoassay. (C) Schematic representation of the electrochemical immunosensor
array platform based on gold electrode array and magnetic beads (MBs) for TTX detection. (D) Schematic representation of the photoelectric chemical
(PEC) immunosensor based on gold nanoparticle-functionalized paper-based screen-printed electrode (PSPEG) for TTX detection. (E) TTX aptamer
screening process by SELEX technique. (F) Mechanism of TTX detection method based on MBs-aptamer competition system. (G) Mechanism of TTX
detection using a two-mode aptamer sensor based on metal-organic frameworks (MOFs).
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with surface plasmon resonance analysis, liquid chromatography-
tandemmass spectrometry (LC-MS/MS), and theMBA, this method
exhibits a good detection effect, and the LOD of TTX is 0.23 mg/kg
(Reverte et al., 2015). Furthermore, a separate study introduced an
mELISA by leveraging a dithiol self-assembled monolayer (SAM).
This innovation shifted the SAM-based approach from the use of a
microtitration plate to a gold electrode array, facilitating the
transition from colorimetric immunoassays to electrochemical
immunosensors. This established a targeted and reliable platform
for antigen-modified sensing, suitable for analyzing natural TTX
samples. The electrochemical immunosensor is capable of
measuring TTX at levels as low as 0.07 mg TTX equivalent/kg
(Reverte et al., 2017). Another study opted for a cysteamine-based
SAM rather than a dithiol one, reducing the assay time and costs
while maintaining sensitivity in detecting TTX levels in oyster and
mussel samples (Reverte et al., 2018).

Surface plasmon resonance (SPR) arises within conductive films
(e.g., Au) at the juncture of a medium with distinct refractive indices
(e.g., sensor chip and sample solution). The wavelength shift in SPR
reveals the interplay between the dissolved analyte and the
biomolecule affixed to the sensor surface. SPR sensors facilitate
real-time, label-free analysis devoid of hazardous solvents, risky
radiolabels, or reliance on animal systems (Homola, 2008). This
immunoassay method has also been transferred to commercial
instruments, where it has been optimized and improved for the
rapid detection of TTX (Yakes et al., 2011). One study developed an
SPR optical biosensor technology for rapid screening of TTX
(Campbell et al., 2013), while another study developed a direct
SPR immune sensor targeting TTX to achieve direct determination
of small molecular toxins TTX in seafood (Yakes et al., 2014).
Additionally, a widely used point-of-care testing method is the
lateral flow immunochromatographic strip (LFICS). The
conventional competitive LFICS employs gold nanoparticles
(AuNPs) as a signal reporter to identify small molecules, yet it
tends to exhibit modest sensitivity (Ling et al., 2020). Gold
nanoflowers (AuNFs) and latex microspheres (LMs) offer the
benefits of a high surface area-to-volume ratio and
straightforward preparation. Researchers have utilized AuNF and
LM probes for McAb labeling, leading to the development of
immunochromatographic test strips capable of in situ and rapid
TTX detection. The linear ranges of TTX test strip based on AuNFs
and LMs were 9.49–330.98 ng/mL and 5.40–443.19 ng/mL, and the
LOD were 9.49 ng/mL and 5.40 ng/mL, respectively (Huang et al.,
2023). Moreover, a LFICS combining quantum dot nanobeads and
AuNFs has been developed, which also has superior signal
brightness and low background interference signals when
detecting TTX (Shen et al., 2017).

Electrochemical biosensors boast versatility, reliability, and swift
analysis times (Figure 1C). In the development of electrochemical
immunosensors, fixing the recognition element to the electrode
surface is important, and magnetic beads (MBs) can be used as
an alternative immobilization carrier. A magnet can simply be
placed below the working electrode to fix the MB immune
complex to the electrode surface without affecting the sensitivity
of the method. An MB-based electrochemical immunosensing tool
has been developed for TTX detection, where TTX achieves stable
immobilization by forming a cysteamine SAM coupled to the MBs
(Leonardo et al., 2019). A colorimetric immunoassay based on MBs

in suspension was also developed for the detection of TTX in Pacific
oysters, razor clams and mussels. The effective LOD for TTX in
oysters and clams was 1 μg/kg, and for TTX in mussels was 3.3 μg/kg
(Campas et al., 2020). Another study applied flow-based systems and
antibody recognition for fluid force identification to detect TTX
using a micrometer-diameter MB-labeled sandwich immunoassay
form (Yakes et al., 2010). Electrochemical immunosensors can also
comprise ionic liquids (ILs) and carbon nanotubes (CNTs). ILs are
usually composed of organic cations and different anions, serving as
effective solvents for both organic and inorganic substances (Wei
and Ivaska, 2008). CNTs are extensively employed in
electrochemical analysis due to their distinctive attributes,
including a sizable active surface area, excellent mechanical
durability, and high electronic conductivity (Agui et al., 2008). A
novel carbon composite electrode, comprising the IL
n-octylpyridinum hexafluorophosphate and single-walled CNTs,
has been used as the basis of an electrochemical immunosensor.
Integrated with the ELISA and antigen-bound magnetic particles,
this immunosensor functions as a rapid and sensitive detector
capable of directly identifying TTX within 20 min, and its
detection linear range is 2–45 ng/mL, with the LOD of 5 ng/mL
(Zhang et al., 2016). Photoelectrochemical (PEC) immunosensors
offer high sensitivity, ease of operation, and miniaturization benefits
(Figure 1D). Near-infrared-responsive photosensitive materials
further enhance these advantages with their excellent
biocompatibility and minimal phototoxicity, thereby playing a
pivotal role in advancing PEC sensor applications (Hao et al.,
2021). Notably, a new PEC immunosensor utilizing gold
nanoparticle-functionalized paper-based screen-printed electrodes
(PSPEG) has been developed for the real-time detection of TTX with
a linear range of 0.001–100 and a LOD of 5 pg/mL (Zheng
et al., 2024).

4 Detection based on aptamer sensors

Aptamers are biometric molecules that can be used as a
substitute for antibodies and are commonly used in the
determination of toxins, such as TTX. An aptamer is a single-
stranded synthetic oligonucleotide that, due to its specific structural
conformation, is able to bind its targeted molecule with high affinity
and specificity (Iliuk et al., 2011). Aptamers offer several advantages
over antibodies, including the abovementioned high affinity and
specificity, repeatable chemical synthesis, stability in diverse
environmental conditions, reversible denaturation, and
straightforward site-directed modification (Zhang et al., 2020).
The in vitro screening of aptamers circumvents the ethical
concerns linked to animal experiments involving antibody
production. Additionally, it eliminates potential issues related to
immunogenicity and toxicity, thereby broadening the scope of target
selection (Famulok and Mayer, 2014). The exponential enrichment
ligand phylogenetic technique for the in vitro screening of aptamers
is often referred to as SELEX (Figure 1E). A highly sensitive mixed
antibody–aptamer sandwich method has been developed using
capture-SELEX and next-generation sequencing technology to
successfully quantify TTX in puffer fish extracts (Shkembi et al.,
2021). An improved multi-SELEX technique based on magnetically
reduced graphene oxide has also been created to effectively screen
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aptamers for TTX detection (Gu et al., 2018). Moreover, in another
study, researchers repurposed existing aptamers for novel
applications, utilizing molecular docking to screen for TTX
candidate aptamers with superior thermal stability among DNA
aptamers. Subsequently, the binding efficacy of the identified
candidate aptamers was validated through microscale
thermophoresis experiments. Based on the selected aptamers, two
variants with good thermal stability were further designed
specifically for TTX, namely, Tv-46 and AI-52 (Li et al., 2022).
Furthermore, a non-label fluorescent aptamer sensor for TTX has
been reported, involving a TTX aptamer as the recognition unit,
berberine as the signal reporter gene, and exonuclease I, and LOD up
to 11.0 p.m. was reported, showing high specificity and sensitivity
(Lan et al., 2020). The isothermal amplification technique exhibits
high amplification efficiency and detection sensitivity and has been
widely used in the detection of biological molecules, such as
aptamers. Some studies have reported the preparation of
magnetic nanoparticle (MNP) aptamers via the reaction of biotin
and streptavidin. A newly devised method, employing MNP
aptamers alongside a triple-cycle amplification technique,
presents an effective and highly sensitive approach for detecting
and analyzing TTX in food samples with a LOD as low as 0.265 pg/
mL (Zhang et al., 2020) (Figure 1F). Furthermore, an aptamer sensor
for TTX was developed on a glassy carbon electrodes (C) that was
modified with poly (4-styrenesolfonic acid)-doped polyaniline film
with a LOD value of 0.199 ng/mL (Fomo et al., 2015).

Metal–organic frameworks (MOFs) represent a category of
exceptionally porous crystalline materials, synthesized through
the ordered self-assembly of metal-based nodes and organic
linkers via coordination interactions (Kumar et al., 2015)
(Figure 1G). Due to the superior chemical and physical
properties of nanoparticles, the encapsulation of AuNPs in MOFs
has attracted wide attention. A dual-mode aptamer biosensor has
been proposed, where TTX was detected via ultra-sensitive
fluorescence spectroscopy and surface-enhanced Raman
spectroscopy (SERS) using an AuNP-embedded MOF nanohybrid
(AuNPs@MIL-101). Employing Cy3-labeled TTX-specific aptamers
as both the recognition element and signal probe enabled the
effective adsorption of Cy3-aptamers onto the surface of
AuNPs@MIL-101, leading to fluorescence quenching and SERS
enhancement. This method has demonstrated remarkable
detection sensitivity and simplicity in naturally TTX-
contaminated samples, and the detection sensitivity is 6 and
8 pg/mL, respectively, which significantly improves the reliability
and precision of the analysis (Liu et al., 2022). In addition, a
nanoprobe with a strong and stable electrochemical/SERS double
signal has been designed for dual-mode detection and analysis,
where an aptamer sensor with electrically active and SERS-active
Ag@Cu2O nanoparticles was developed to achieve accurate dual-
mode TTX detection. The LOD of electrochemical signal was
31.6 pg/mL, and that of SERS signal was 38.3 pg/mL (Yao et al.,
2023). Furthermore, TTX nanosensors with remarkable stability,
pH independence, selectivity and LOD of 3.07 nM have been
developed using zirconium-based fluorescent nanoscale MOFs
combined with aptamers labeled with fluorescent dyes (Dou
et al., 2023). In addition, researchers have created a rate-type
fluorescent aptamer sensor for the determination of TTX using a
Fe/Zr bimetallic organic skeleton (ZrFe-MOF) with high peroxidase

simulation activity. ZrFe-MOF enables the specific recognition and
adsorption of aptamers; the aptamer binds to TTX specifically,
triggering the release of a rigid complex on the surface of ZrFe-
MOF and reactivating its peroxidase simulation activity, which can
be used in food safety to monitor trace TTX amounts. With this
detection strategy, the LOD of TTX is 0.027 ng/mL, and the linear
range is 0.05–500 ng/mL (Liu et al., 2023). Besides, researchers have
introduced a novel smartphone-based portable fluorescent
biosensor that utilizes a zinc-based MOF biocomposite for
capturing targets and measuring fluorescence responses. An Ab-
immobilized cotton swab has been employed as a tool for capturing
TTX, enabling quantitative results to be obtained using a
smartphone with a LOD of 0.4 ng/mL (Liu et al., 2024).

5 Detection based on LC-MS/MS

High-performance liquid chromatography (HPLC) and LC-MS/
MS are common techniques for TTX detection (Table 1). They
exhibit a low detection limit and a good linear range and allow for
the simultaneous identification and quantification of toxins with
good sensitivity and selectivity (Chen et al., 2011). However, the
substrate of marine organism tissues is notably complex, and its
background interfering pollutants can affect the accuracy of TTX
detection via LC-MS/MS. Immunoaffinity chromatography (IAC)
purification technology serves as an effective pretreatment method
before conducting LC-MS/MS, and the imprinted antibody displays
high specificity to the target analyte (Senyuva and Gilbert, 2010).
Researchers have also developed an efficient method for the
determination of TTX in marine organisms using samples
purified by IAC combined with ultra-performance liquid
chromatography-tandem mass spectrometry, or UPLC-MS/MS
(Zhang et al., 2015). Most analytical methods for TTX detection
are intended for use with food tissue samples, and since TTX
concentrations in human biological fluid samples, such as
complex water-rich matrices, are usually extremely low, effective
methods for their determination are lacking (Leung et al., 2011).
Hydrophilic interaction chromatography (HILIC) is a liquid
chromatography (LC) technique that can be used to measure
TTX concentrations in complex water-rich substrates (Gama
et al., 2012). It exhibits excellent TTX retention, favorable spray
conditions at the liquid chromatography-mass spectrometry (LC-
MS) interface, and enhanced ionization efficiency, resulting in an
improved mass spectrometric response (Nováková et al., 2014).
Researchers have also devised a straightforward, versatile, and
automated pulse-diffusion-focusing (PDF) strategy and developed
a novel automated PDF-HILIC-MS/MS system, applicable to
detecting TTX levels in plasma and urine samples (Long et al., 2020).

TTX constitutes a mixture of up to four ingredients (Yotsu-
Yamashita, 2001). Quantitative nuclear magnetic resonance
(qNMR) can separate the signals of all TTX tautomers and can
be used to accurately quantify TTX in solution (Watanabe et al.,
2016). Scholars have quantified TTX and its analogues by qNMR
and evaluated the chemical equilibrium relative molar reaction of
TTX via HILIC-MS/MS for its accurate quantification (Watanabe
et al., 2019). Moreover, capillary electrophoresis (CE) represents
another analytical separation mode akin to LC, particularly adept at
separating charged polar analytes. A novel, highly acidic background
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electrolyte has been developed for analyzing TTX in commercial CE-
MS/MS systems, thereby optimizing the detection technique
leveraging mass spectrometry (Beach et al., 2018).

Solid-phase microextraction (SPME) technology has no solvent
requirements, is simple to operate, and exhibits rapid detection
speeds, significantly reducing sample pretreatment and detection
times. Combining SPME with ultra-high performance liquid
chromatography-tandem mass spectrometry (UHPLC-MS/MS)
leads to the relatively quick and easy in vivo detection of TTX in
puffer fish (Meng et al., 2022). A novel poly (lactic-co-glycolic acid)
SPME nanofiber was used for in vivo sampling of TTX in live puffer
fish, with LOD ranging from 0.52 to 2.30 ng/g (Tang et al., 2018).
Furthermore, an analytical method has been developed for
purification by LC-MS/MS and cation-exchange solid-phase
extraction (SPE) to analyze trace and extremely high levels of
TTX contamination in samples (Han et al., 2023). Another study
compared three HILIC-type SPE carriers with different stationary

phase functional groups to develop an LC-MS/MS method for
monitoring plasma TTX concentrations (Xin et al., 2022).
Further, the fast, simple, inexpensive, effective, robust, and safe
(QuEChERS) method is a dispersive SPE technique that can be used
for the pretreatment of biological samples (Mattarozzi et al., 2016).
LC in tandem with Q-Exactive Orbitrap high-resolution mass
spectrometry has been combined with a modified QuEChERS
procedure for the determination of TTX in human serum
samples, which can be used to analyze TTX in clinical or
forensic samples (Zheng et al., 2023).

6 Discussion

TTX, a hydrophilic low-molecular-weight neurotoxin,
selectively binds to voltage-gated sodium channel receptors on
nerve cell membranes. This action inhibits the transfer of sodium

TABLE 1 LC-MS methods for TTX.

Sample Extraction Detection
method

Column Mobile phases LOD
and LOQ

Linear
range

Average
recoveries

Reference

TTX in
Marine
biological
samples

IAC column UPLC-MS/MS ACQUITY
UPLC BEH

Amide column
(50 mm ×

2.1 mm I.D.,
1.7 mm particle

size)

Acetonitrile (A) and
5 mmol

L–1 ammonium
acetate in ultrapure

water containing 0.1%
formic acid (v/v) (B)

0.1 and
0.3 ng/g

0.3–20 ng/mL 86.5%–103.6% Zhang et al.
(2015)

TTX in
plasma and
urine samples

Not reported PDF-HILIC-
MS/MS system

TSK gel Amide-
80 column
(2.1 mm ×
50 mm,
i.d. 3 μm)

Acetonitrile (A) and
0.1% formic acid in
water (v/v) (B)

0.0086 ng/mL
and

0.029 ng/mL

0.13–12.7 ng/
mL

91%–113.3% Long et al.
(2020)

TTX in
mussel
samples

Dispersive
extraction
procedure

CE-MS/MS Bare fused-silica
capillary tubing
(50-μm inner
diameter, 363-

μm outer
diameter)

5 M HCOOH in 10%
MeCN/H2O (v/v)

LOD:
0.0052 mg/kg

Not reported Not reported Beach et al.
(2018)

TTX aqueous GO-PAN@PNE
SPME fibers

UPLC-MS/MS ACQUITY BEH
HILIC column
(2.1 × 100 mm,

1.7 μm)

Water with 0.1%
formic acid (A) and
ACN with 0.1%

formic acid as mobile
phase B

11.8 ng/mL
and

81.3 ng/mL

100–1000 ng/
mL

Not reported Meng et al.
(2022)

TTX
spiked fish

32 ng/g and
150 ng/g

150–1000 ng/
g

TTX in
gastropods
samples

Cation
exchange SPE

LC-MS/MS XBridge + TM
BEH Amide
column (3.0 ×

150 mm,
1.7 μm)

0.1% (v/v) of formic
acid in water (A) and

acetonitrile (B)

0.5 μg/kg and
1 μg/kg

0.1–100 ng/
mL

82.6%–94.4% Han et al.
(2023)

TTX in
plasma

Three HILIC-
type SPE carriers

(PSA, silica,
Siphila i HILIX)

LC-MS/MS ACQUITY
UPLC BEH

Amide column
(50 × 2.1 mm,

1.7 μm)

Deionized water (A)
and ACN (B), both
containing 10 μmol/L
ammonium formate

and 0.01% FA

LOQ:
0.1 ng/mL

0.1–20 ng/mL Not reported Xin et al.
(2022)

TTX in
human serum

QuEChERS
approach

TSK-Gel
Amide-80

column (i.d. =
2.0 mm ×

150 mm, 5 μm)

Water containing
0.1% (v/v) formic acid

and 5 mmol/L
ammonium formate

(A) and
acetonitrile (B)

0.67–2.61 ng/
mL and

2.23–8.69 ng/
mL

10–200 ng/
mL

85.3%–118.2% Zheng et al.
(2023)
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ions, resulting in nerve paralysis, respiratory failure, and potentially
fatal outcomes, even at low doses ranging from 0.5 to 3 mg. Such
toxicity levels pose a significant risk of death in humans (Ling et al.,
2015). Hence, the development of precise and highly sensitive TTX
detection methods is imperative for safeguarding food integrity and
protecting the wellbeing of humans. Techniques employed in TTX
detection include the MBA, the ELISA, electrochemical and aptamer
sensing, and LC-MS assays. These detection techniques all meet the
analytical requirements of TTX determination and exhibit their own
advantages and applicability, though they also have corresponding
inherent limitations and challenges (Supplementary Table S1).

The MBA is time-consuming, ethically limited, and inefficient,
but the development of alternative biological methods has, thus far,
not completely replaced this approach (Katikou et al., 2022). Cell-
based biosensors can also directly reflect changes in
electrophysiological functions induced by ion-channel
compounds (Jahnke et al., 2013). The development of novel
high-throughput cell potential biosensors has led to a
noninvasive and convenient way to detect TTX in real time (Sun
et al., 2023).

The conventional ELISA method, based on immune
reactions, is associated with high expenses, limited
reproducibility, susceptibility to false positives, and significant
susceptibility to variations in temperature and duration (Ling
et al., 2015). At present, significant strides have been made in
TTX detection through electrochemical methodologies. The
electrochemical method presents the advantages of short
analysis times, good portability, low costs, high sensitivity, and
signal stability (Leonardo et al., 2019). In addition, PEC sensors
based on photosensitive materials are also gradually gaining
widespread use and exhibit excellent detection performance
(Zheng et al., 2024).

Aptamers can be used as a cost-effective alternative to antibodies
and are more stable and economical than the latter. However, the
aptamer biosensing platform relies on the specific recognition of the
aptamer and requires complex biomolecular immobilization or
modification processes to yield specific and reliable binding
reactions. Most previously reported sensors are primarily based
on single-sensing modes and can be affected by different
measurement environments, devices, and operations (Lu et al.,
2019). In contrast, the dual-mode sensing strategy is currently an
option that addresses different detection conditions and that
possesses a wider range of application. Moreover, the screening
of TTX-specific aptamers, combined with the use of metal
nanomaterials or MBs, further improves the sensitivity of
aptamer sensors (Liu et al., 2022). In addition, the SERS method
exhibits fast response times, convenient operation, and high
sensitivity, and the dual-mode electrochemical aptamer sensor,
implementing the design of electrochemical/SERS double-signal
nanoprobes, also improves the accuracy and reliability of
detection (Yao et al., 2023).

The traditional HPLC method can realize the sensitive and
synchronous analysis of biotoxins, and LC-MS analysis has
attracted increasingly greater attention because of its
multifunction and sensitive detection ability (Panda et al., 2022).
However, instrumental analysis methods often necessitate
specialized technology, costly equipment, and labor-intensive
sample preparation processes, which hinder their widespread

application. Prior to analysis, the sample purification steps and
the type of chromatographic separation employed play a crucial role.
Further attempts to simplify the sample pretreatment process, or to
optimize it by MB or paper chromatography, in combination with
LC-MS detection are underway (Reverte et al., 2023). In addition,
the optimization of instrumental analysis methods for TTX
determination in different complex samples is an important
application direction, including, for example, the optimization of
HILIC detection (Leung et al., 2011). Therefore, combining different
technologies for TTX detection may be favorable for creating
systems that take advantage of their strengths and complement
their shortcomings. Facilitating the commercialization of biosensors
and optimizing high-throughput detection are also important
challenges to be addressed.

7 Conclusion

This review summarizes detection and quantitative analysis
methods developed for TTX determination. It is worth noting
that the methods present both advantages and disadvantages.
How to innovatively avoid the disadvantages of these detection
technologies and give full play to their advantages to develop
high-sensitivity, high-stability, time-saving, convenient, and
economical detection methods thus forms the research focus.
Using these novel biosensing tools to analyze samples and
comparing them with other technologies helps validate their
application potential. The bioassay tools developed thus far
exhibit high performance and can effectively detect TTX in
samples; these may, therefore, be used in TTX research
activities and routine monitoring in the future.
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