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In this work, the terahertz time-domain spectroscopymethod analyzed solutions
of bovine serum albumin (BSA) in two high concentrations (50 and 334mg/mL) at
three pH values (2.5, 6.5, 8.5) and the same solvents without protein, at 25°C. The
spectra of dry BSA were also recorded. For the first time, a method for
determining the complex dielectric permittivity of protein molecules in
aqueous solutions, without the dielectric contribution of the aqueous phase,
is proposed. It is shown that the dielectric permittivity of dissolved and dry BSA
(lyophilized, in the native conformation) differ significantly in the terahertz
frequency range. These differences are small near 70 cm−1, but they increase
greatly with decreasing frequency. It was found that the dielectric losses of
protein molecules in solution are close to the dielectric losses of the aqueous
environment, which in this frequency range are determined by intermolecular
relaxation processes of water. Since dielectric losses are directly related to
molecular dynamics, this fact shows that the intramolecular dynamics of the
protein completely adjusts to the intermolecular dynamics of the aqueous
environment. It also indicates that the native conformation does not
determine all the fundamental characteristics of a protein molecule, in
particular, it does not determine the dynamics of the protein, which
significantly depends on the water environment.
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1 Introduction

Biomolecules are the molecular basis of life. But they achieve functional states only in an
aqueous environment. The most extensive class of biomolecules is proteins, the native
conformation of which is formed in water with the participation of hydrophobic effects
(Privalov and Gill, 1988). But not only does water affect the structure of protein, protein also
affects the structure of water, forming a hydrate shell (Penkov, 2023). In other words,
hydrated protein is a single mutually consistent system. For a long time it was believed that
the hydrate shell consists of a small number of strongly bound water molecules in one or two
hydrate layers. However, in the 2000s, terahertz (THz) spectroscopy showed that the
hydrate shells of proteins are much more extended—up to several nanometers (Ebbinghaus
et al., 2007; Born et al., 2009; Heyden et al., 2012; Bye et al., 2014; Novelli et al., 2017; Wang
et al., 2019). The more general term “dynamic hydrate shells” has emerged (Ebbinghaus
et al., 2007; Born et al., 2009; Heyden et al., 2010; Conti Nibali and Havenith, 2014), which
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include not only the nearest strongly bound water molecules, but
also more distant hydration regions with altered intermolecular
dynamics. In a series of our works, the dynamic hydrate shells of
various biomolecules were studied based on the analysis of the
complex dielectric permittivity of their solutions in the THz range
(Penkov et al., 2018; Penkov, 2021; Penkov et al., 2021; Penkova
et al., 2021; Penkov et al., 2022; Penkov, 2024). An important stage of
these studies was the subtraction of the dielectric contribution of
biomolecules from the permittivity of solutions. For this purpose,
effective medium models were used, including the model we
developed theoretically (Penkov N. and Penkova N. A., 2021).
Based on THz spectra using molecular dynamics simulations, it
was shown that the dynamics of the hydrate shell of a protein can
correlate with the intrinsic dynamics of the protein (Born et al.,
2009; Heyden et al., 2010; Conti Nibali and Havenith, 2014; Pezzotti
et al., 2023). Thus, THz spectroscopy has demonstrated unsurpassed
sensitivity in the analysis of molecular dynamics in aqueous
solutions of biomolecules, mainly proteins.

In this paper, the following question is raised: are all the
properties of a protein molecule determined by its conformation?
Or, besides structural characteristics, are there dynamic
characteristics that are activated by the aqueous environment?
The study of protein dynamics has been paid attention in many
studies using various experimental techniques (Krupianskii et al.,
1987; Johansson and Lindorff-Larsen, 2018; Schirò and Weik, 2019;
Campitelli et al., 2020; Hodge et al., 2020; Bondar, 2022; Stingaciu,
2022). However, these studies completely ignored the possibilities of
dielectric spectroscopy.

Molecular dynamics can be analyzed using complex dielectric
spectra. Each intramolecular or intermolecular degree of freedom is
reflected in the dielectric permittivity at characteristic frequencies.
The intramolecular dynamics of macromolecules, such as proteins,
is well manifested in the THz frequency range (Markelz, 2008; Wei
et al., 2018). Thus, it is possible to try to answer the above question
by comparing the THz dielectric spectra of the protein in dry and
hydrated form. When obtaining dry protein, it is important to avoid
significant changes in its structure, for example, denaturation. For
small model proteins such as bovine serum albumin (BSA), this
structure can be preserved by lyophilization. And measuring the
spectrum of dry protein is not difficult. The analysis of hydrated
protein is much more complicated. Since the dynamic hydrate shell
of a protein molecule can exceed its own volume (Leitner et al., 2008;
Heyden et al., 2012; Wallace et al., 2015; Wang et al., 2019), a protein
can be considered fully hydrated only in an aqueous solution.
Therefore, it is necessary to find a way to isolate the dielectric
spectrum of a protein from the spectra of its solutions. In this paper,
this problem is solved using an effective medium model that
interconnects THz dielectric spectra of protein solutions of two
concentrations, pure solvent and dissolved protein.

2 Methods

2.1 Preparation of samples

Solutions of BSA (>99%, Dia-M, Russia) were prepared in two
concentrations: 334 and 50 mg/mL. Aqueous solutions of 150 mm
NaCl at three pH values: 2.5, 6.5, 8.5 were used as solvents for

protein. In total, six types of BSA solutions and three types of pure
solvents were analyzed. The solvents were prepared from water
MilliQ (Millipore, Germany) and NaCl (Sigma-Aldrich,
United States), and the pH was set using HCl (Sigma-Aldrich,
United States) and NaOH (Sigma-Aldrich, United States)
additives. The protein was dissolved at room temperature with
shaking on Bio Vortex V1 (Biosan, Latvia) for 15 min. During
this time, the protein clots visible to the eye completely disappeared
in a solution with a concentration of 334 mg/mL. After that, the
solutions were degassed in a degassing station (TA Instruments,
New Castle, United States) for 15 min to eliminate air bubbles that
may interfere with spectral measurements (Section 2.2).

Also, dry protein samples were prepared for spectral
measurements by mixing 15 mg of BSA with 150 mg of
polyethylene powder (Sigma-Aldrich, United States). The mixture
was evenly distributed by shaking in a test tube. No additional
grinding was carried out. Since the protein is quite sticky, during the
grinding process it would stick to the walls of a mortar or ball mill.
This would lead to an uncontrolled loss of protein mass in the
sample. A mixture of protein and polyethylene was pressed into
pellets with a diameter of 13 mm at a pressure of 0.75 kbar.

Preparation of pellets is usually carried out under greater
pressure to reduce the looseness of the pellets and minimize the
radiation scattering in the air cavities. However, at greater pressures
there is a risk of a baric change in the structure of the protein
(Ceolın, 2000). During spectral measurements (Section 2.2), the
possible looseness of the pellets with BSA was compensated by the
similar looseness of the background pellets, which were prepared
from 150 mg of pure polyethylene compressed under the same
pressure. In addition, it was verified that the difference in the
thickness of pellets compressed at a pressure of 0.75 and 4 kbar
(typical pressure used for spectral studies of dry organic matter) does
not exceed 0.25%. That is, under a pressure of 0.75 kbar, we received
almost extremely dense pellets due to the softness of its components.

2.2 Obtaining complex dielectric spectra in
the THz range

The terahertz time-domain spectroscopy (THz-TDS) method
was used. The spectra were measured on a TPS Spectra
3000 spectrometer (Teraview, United Kingdom) in the range
of 10–110 cm−1 with a spectral resolution of 4 cm−1. This method
implements a procedure for coherent generation and detection of
picosecond electromagnetic pulses. Picosecond pulses are
characterized by a spectrum with a width of several THz,
measured from the zero frequency, which allows spectral
measurements to be carried out in the THz region. Without
going into the details of the THz-TDS method, which can be
found in the literature (Lee, 2009), it allows simultaneous
measurement of the absorption spectrum α(]) and the
spectrum of the refractive index n(]) of a studied sample.
From these spectra, the real ε′(]) and the imaginary ε″(])
parts of the dielectric permittivity spectrum are calculated
using standard ratios:

ε′ ]( ) � n2 ]( ) − α ]( )
4π]

[ ]
2

, ε″ ]( ) � n ]( )α ]( )
2π]

(1)
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where ] is the wavenumber measured in cm−1. The absorption
spectrum is related to the transmission spectrum Tr(]) through
the ratio α(]) � − ln(Tr(]))/d, where d is the thickness of
the sample.

To obtain the spectra of dry protein, the spectra of a pellet with
BSA and the background spectra of pure polyethylene pellet with a
mass equal to the mass of polyethylene in pellet with BSA were
recorded. To obtain the spectra of α(]), n(]) and then calculate the
dielectric spectra, it is necessary to set the thickness d of the protein
layer in the pellet, which was calculated based on the protein massm,
the pellet area S and the density of BSA ρ using Eq. 2:

d � m

ρ S
(2)

The protein weight was 15 mg, the pellet area with a diameter of
1.3 cm was 1.33 cm2, and the BSA density was about 1.41 g/cm3

(Fischer et al., 2009). As a result, the effective thickness of the protein
in the pellet was 80 µm.

Two cuvettes with windows made of Z-cut quartz were used
to record the spectra of solutions. Teflon spacers with thicknesses
of 50 and 100 μm were installed between the windows of these
cuvettes. Since the distance between the cuvette windows may
differ slightly from the thickness of the spacer, the exact distances
were measured interferometrically on empty assembled cuvettes.
For this purpose, a Fourier-transform infrared spectrometer
Nicolet 6,700 (Thermo, United States) was used in the near
infrared range, where Z-cut quartz is transparent. The
technique of measuring the thickness of transparent layers
using etalon effect is well known and has been used by us
before (Penkov et al., 2018). The exact distances between the
windows in the two cuvettes were 100.56 and 50.12 μm.

The spectrum of each solution was recorded in two specified
cuvettes. The spectrum of the solution in the cuvette with larger
thickness was considered the “spectrum of the sample,” and the
spectrum of the same solution in the cuvette with smaller
thickness was considered the “background spectrum.” Thus,
the final spectra of absorption and refractive index were
determined for a solution layer with a difference thickness of
50.48 μm with a complete subtraction of the contribution of the
cuvette windows. This approach allows us to obtain much more
accurate spectra than with the standard recording of the
spectrum of an empty cell as a background. This eliminates
distortions of the spectra associated with the etalon effect, as
well as with the difference in the reflection coefficient of radiation
from an empty and filled cuvette (Penkov et al., 2015). From the
obtained solutions spectra of α(]) and n(]), the dielectric spectra
were calculated using Eq. 1.

All spectral measurements of the solutions were carried out in
cuvettes placed in a thermostatic holder at a temperature of
25 C ± 0.2 C. The optical part of the spectrometer was purged
with dried air with a steadily reduced water vapor content by
more than 20 times relative to laboratory air. After installing the
sample cuvette in the cuvette compartment, a pause of 5 min was
maintained to stabilize the sample temperature and purge the
spectrometer.

The spectra of each sample were measured at least 30 times for
the possibility of averaging and statistical analysis.

2.3 Calculation of the complex dielectric
permittivity spectra of a protein

Obtaining dielectric spectra of dry protein can be easily
performed according to the procedure described in Section 2.2.
However, determining the dielectric spectra of protein in solution is
much more difficult, which is the main task of this study. From the
point of view of the electrodynamics of continuous media (Landau
et al., 1984), a protein solution can be considered a two-phase system
consisting of a continuous aqueous medium with inclusions of
protein molecules. In some cases, it is desirable to highlight the
third phase of hydrate shells.

Taking into account the molecular weight of BSA of 66.5 kDa
and the protein density of 1.41 g/mL, in the approximation of the
sphericity of a protein globule, its diameter is 5.3 nm. On the totality
of available scientific evidence we can conclude that the dynamic
hydration shell of the protein has a thickness of about 1.5–2 nm
(Ebbinghaus et al., 2007; Born et al., 2009; Heyden et al., 2012; Bye
et al., 2014; Wang et al., 2019). Based on this, the volume of hydrated
water exceeds the volume of protein by about 3–4 times. The volume
fraction of BSA in a solution with a concentration of 334 mg/mL is
fp � 0.237, therefore, almost all the water in this solution belongs to
dynamic hydrate shells. These hydrate shells are, of course,
heterogeneous, and their characteristics depend on the distance
to the surface of the protein molecule. However, it is essential
that in a solution with a BSA concentration of 334 mg/mL,
almost all the water is in the area of significant influence of the
protein and can be considered hydrated. Such a solution as a two-
phase system can be described using a well-known and simple
effective medium model of Bruggeman (Bruggeman, 1935):

fp

εpp − εpcs
εpp + 2εpcs

+ 1 − fp( ) εpsh − εpcs
εpsh + 2εpcs

� 0 (3)

where εpcs, ε
p
p are the dielectric permittivity of the concentrated

solution (334 mg/mL) and protein molecules, respectively, and
εpsh is the average dielectric permittivity of the aqueous phase of
this solution, which entirely belongs to dynamic hydrate shells.

Note that there are various effective medium models, except for
the Bruggeman model. However, this model has proven itself well in
the analysis of two-phase systems not only with spherical inclusions,
but also with randomly arranged inclusions of arbitrary shape
(Choy, 1999). At the same time, the Bruggeman model does not
require setting additional unknown parameters of the inclusions
shape. To describe the dielectric response of heterogeneous systems
in alternating fields, the Bruggeman model is applicable under the
following two conditions: small inclusions compared to the
wavelength of radiation and weak absorption of radiation by
individual inclusions (Sihvola, 1999). Obviously, both of these
conditions are fulfilled when analyzing solutions of globular
proteins in the terahertz range.

From Eq. 3, εpsh can be expressed as follows:

εpsh �
1 − 3fp( )εppεpcs + 2εp

2

cs

εpp + 2 − 3fp( )εpcs (4)

A less concentrated BSA solution (50 mg/mL) can be considered
as a three-phase dielectric system consisting of protein inclusions,
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hydrate shells and the rest of the aqueous phase of the solution,
identical to the pure solvent. For a three-phase system, the
Bruggeman model is written as follows:

f
εpp − εps
εpp + 2εps

+ fsh
εpsh − εps
εpsh + 2εps

+ 1 − f − fsh( ) εpw − εps
εpw + 2εps

� 0 (5)

where f and fsh are the volume fractions of the protein and its hydrate
shells in a BSA solution with a concentration of 50 mg/mL, εps is the
dielectric permittivity of this solution, and εpw is the dielectric permittivity
of the aqueous phase of the solution located outside the hydrate shells.

It is obvious that the dynamic hydrate shell does not have a clear
outer boundary. In fact, the effect of protein on the structural and
dynamic characteristics of water decreases with increasing distance
from the protein surface. Therefore, the transition from hydrated to
non-hydrated water is somewhat conditional. However, since we
analyze the system using THz spectroscopy, which is sensitive to
changes in water under the influence of protein at distances up to
1.5–2 nm, at longer distances this method will already detect
undisturbed water identical to water in a pure solvent.

According to the above estimates, the dynamic hydrate shells of the
protein approximately correspond to the total volume of water in a BSA
solution with a concentration of 334 mg/mL. Then the volume fraction
of hydrate shells fsh in a solution with a BSA concentration of 50 mg/
mL can be calculated from the volume fraction of the aqueous phase in a
solution of 334mg/mLmultiplied by the ratio of protein concentrations
in these two solutions: fsh � (1 − 0.237)p50/334 � 0.114. The volume
fraction of the protein in this case is f � 0.0355.

After substituting the expression (Eq. 4) for εpsh into Eq. 5, we
have the following equation:

f
εpp − εps
εpp + 2εps

+ fsh

1 − 3fp( )εppεpcs + 2εp
2
cs

εpp+ 2 − 3fp( )εpcs − εps

1 − 3fp( )εppεpcs + 2εp
2
cs

εpp + 2 − 3fp( )εpcs + 2εps

+ 1 − f − fsh( ) εpw − εps
εpw + 2εps

� 0

(6)
The coefficients f, fsh and fp are known, the spectra εpw, ε

p
s and

εpcs are obtained experimentally, therefore Eq. 6 contains one
unknown complex variable εpp. The solution of Eq. 6 allows us to
find εpp at any frequency for which the permittivities εpw, ε

p
s and ε

p
cs are

given. Thus, this makes it possible to calculate the complex dielectric
spectrum of the protein εpp in the solution, from which the dielectric
contribution of the aqueous phase is completely excluded.

3 Results and discussion

The analytical solution of Eq. 6 gives an extremely cumbersome
expression, which is not given here. Due to the large number of
coefficients in large degrees, the solution of this equation turns out to
be very sensitive to the parameters included in it. To obtain stable
values of εpp, it is necessary to set the parameters εps , ε

p
cs and ε

p
w with an

accuracy higher than 0.001. Deviations of these parameters by the
values of the real spread of experimental data (about 0.01) lead to a
change in the calculated εpp several times, which cannot be
considered acceptable. Therefore, it was necessary to look for
ways to approximate, but more sustainable solution.

The analysis of Eq. 6 shows that the first term is small compared to
the other two terms due to the small coefficient f. If this term is

neglected, the degree of the equation decreases, and the solution
becomes much more stable, so that the experimental variation of
the parameters included in Eq. 6 does not significantly affect the
determined values of εpp. Eq. 6 was solved in the specified
approximation by setting the experimental values of εps , ε

p
cs and εpw

at different frequencies. At the same time, after finding εpp for each
frequency, it was checked that the second and third terms of Eq. 6
significantly (by about an order ofmagnitude) exceed the first term, that
is, the correctness of neglecting it is respected. This condition is fulfilled
for spectra in the range from10 to 70 cm−1, which are shown in Figure 1.

Figure 1 shows that the dielectric spectra of protein in solution
are strikingly different from those of dry protein. The differences
between the real and imaginary parts of the dielectric permittivity
are small near 70 cm−1, but increase sharply with decreasing
frequency. Despite the approximate nature of the spectra found,
the opposite frequency dependence of the dielectric losses (ε″) of dry

FIGURE 1
Averaged dielectric spectra, their real (ε′) and imaginary (ε″) parts,
of dry BSA and BSA in solutions with pH = 2.5, 6.5, 8.5.

FIGURE 2
Dielectric losses of BSA in solutions with pH = 2.5, 6.5, 8.5 and
solvent at pH 6.5 (solvent spectra at pH = 2.5 and 8.5 are practically
indistinguishable from the case of pH = 6.5, therefore they are
not given).
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and dissolved protein attracts special attention. An increase in
dielectric losses with a decrease in frequency indicates that the
protein in an aqueous environment exhibits pronounced
intramolecular dynamics at frequencies less than 2 THz, which
strongly attenuates in dehydrated protein.

Figure 2 compares the dielectric losses of a dissolved protein
with a solvent. Surprisingly, they are close to each other in the entire
frequency range.

According to the dielectric characteristics, the solvents used are
almost identical to water. The dielectric spectra of water in the frequency
range under consideration are determined by two relaxation bands
(Figure 3) due to intermolecular dynamics of bound (vonHippel, 1988a;
von Hippel, 1988b; Barthel et al., 1990; Lyashchenko and Lileev, 2010)
and free (Barthel et al., 1990; Yada et al., 2008; Penkov et al., 2013;
Shiraga et al., 2017) watermolecules. This type ofmolecular organization
of liquid water has no common features with the protein globule.
However, their dielectric response is almost the same. It is generally
believed that a biomolecule, by binding water on its surface, completely
determines the structure of its hydrate shell. The obtained result gives
grounds to assert the opposite, but for molecular dynamics: in solution,
the intramolecular dynamics of a protein molecule is slaved to the
intermolecular dynamics of the aqueous environment.

In this work, three pH values of the solutions were selected, at which
BSA takes on different conformations (Rosenoer, 1977; Cao et al., 2013):
at pH 2.5, the protein has an extended form, which is formed as a result
of the destruction of the inner helical part of domain I; at pH 6.5, protein
is in native form; at pH 8.5, the protein passes into the basic form, in
which there is also a change in the domain I. It is important that with all
these conformations, the protein retains colloidal stability, does not
denature and does not aggregate (Penkov et al., 2018; Penkov, 2024).
Previously, we showed that the structural and dynamic characteristics of
hydrate shells depend on the conformation of biomolecules (Penkov,
2021; Penkov et al., 2021; Penkova et al., 2021; Penkov et al., 2022),
including proteins (Penkov et al., 2018). Based on this, it can be
expected that the dynamics of the protein itself depends on its
conformation. Unfortunately, the data presented in Figure 1, taking
into account the proximity of the curves and the approximation of the

equation solution indicated above, do not allow us to establish reliable
differences in the dielectric characteristics of the protein in different
conformations.

Nevertheless, the study of the conformational specificity of protein
dynamics is of deep scientific interest. As it has been shown in various
examples (Born et al., 2009; Ebbinghaus et al., 2012; Meister et al., 2013;
Adams et al., 2021), mutations leading to changes in the rigidness of a
proteinmolecule affect the ability of proteins to perform their biological
functions. Conformational changes also lead to a change in the rigidness
of the protein molecule and clearly affect the functional abilities of the
protein. Any mechanical changes must be accompanied by a change in
dynamic characteristics. The determination of the dependence of the
protein dynamics in solution on its conformation may be of great
importance for understanding the fundamental foundations of
biochemistry and molecular biology, in particular the principles of
enzyme functioning (Palmer and Bonner, 2007). However, to study this,
it is necessary either to learn how to obtain much more accurate
dielectric spectra using the THz-TDSmethod, or to look for other ways
to determine the dynamic characteristics of proteins in solutions.

Nevertheless, in this work, in terms of dielectric permittivity,
significant differences in the dynamics of BSA in dissolved and dry
form are clearly shown, including for BSA of the same native
conformation. Using the example of a model protein (BSA) this
shows that the native conformation itself does not determine all the
fundamental characteristics of protein molecules, in particular, it
does not determine their dynamics. But the aqueous environment
has a key influence on protein dynamics. This fact, when examined
in more detail, can have far-reaching consequences for physical
chemistry, biochemistry and molecular biophysics.
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