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In this study, a trisodium citrate (TSC)-assisted hydrothermal method is utilized to
prepare three-dimensional hydroxyapatite (3D HA). Understanding the role of
TSC in the preparation of 3D HA crystals may provide valuable methods to design
advanced biomaterials. As one of the indexes of solution supersaturation, the
initial pH (ipH) value can not only directly affect the nucleation rate, but also affect
the growth of HA crystals. In this work, the effect of the ipH on themicrostructure,
particle size distribution, and specific surface area of the 3D HA is explored.
Results showed that the morphology of 3D HA transformed from a bundle to a
dumbbell ball and then a dumbbell with an increase in the ipH. A corresponding
mechanism of such a structural evolution was proposed, providing inspiration for
the fabrication of innovative 3D HA structures with enhanced biological
functionality and performance.
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1 Introduction

Naturally occurring biominerals and biomolecules within biological organisms typically
possess innovative three-dimensional (3D) structures and distinctive biological functions,
such as the specific 3D structure of dental enamel (apatite) (Wang et al., 2011; Grandfield
et al., 2022; Yu and Zhu, 2024). As an important calcium phosphate biomineral frequently
found in mammalian hard tissues, hydroxyapatite (HA) has become a focal point of
research due to its excellent biocompatibility, favorable bioactivity, and chemical
composition similar to human bone tissue (Zhou and Lee, 2011; Shi et al., 2018; Xu
et al., 2023). HA with 3D structures have wide potential applications in the field of drug
delivery systems and ion/heavy metal absorption agents due to the rough surface and highly
specialized surface area (Yang et al., 2013a; Zeng et al., 2019; Liu et al., 2020; Wang et al.,
2024). Therefore, the facile synthesis of 3D HA is crucial, and great efforts have been made
to prepare such structures (Mocioiu et al., 2019; Xu et al., 2022).

Among the many routes for synthesizing 3D HA, the hydrothermal method is favored
for its ability to produce high-purity, well-crystallized HA at relatively low temperatures and
pressures (Hao et al., 2014; Lei et al., 2020; Jiang et al., 2021). In recent years, researchers
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have been able to further control the microstructure and
morphology of HA by introducing trisodium citrate (TSC) as an
auxiliary agent during the hydrothermal process (Yang et al., 2012;
Qi et al., 2023). The employment of a TSC-assisted hydrothermal
method for the synthesis of 3D HA has opened new avenues for the
development of advanced biomaterials. Recognizing the pivotal role
of TSC in the crystallization process of HA is essential, as it can
significantly influence the resulting material’s properties and
potential applications in the biomedical field.

The initial pH (ipH) value, a key indicator of solution
supersaturation, plays a dual role in the synthesis process by
influencing both the nucleation rate and the subsequent growth
behavior of HA crystals (Wang et al., 2021). Adjustments to the
ipH can alter the ion concentration and reaction kinetics in the
solution, thereby affecting the size, shape, and crystallinity of HA
crystals (Kalpana and Nagalakshmi, 2023; áM Gan et al., 1999).
Overly low ipH values may lead to impurities, while overly high
ipH values may cause the formation of lath-like HA crystals (Zhou
and Lee, 2011; Sadat-Shojai et al., 2012). Therefore, an in-depth
study of the impact of the ipH on the synthesis of 3D HA via TSC-
assisted hydrothermal methods is of great significance for
optimizing the synthesis process and achieving ideal material
properties. Although the synthesis of HA has been extensively
studied, discovering a novel approach to synthesize 3D HA at
low ipH values presents a significant challenge (Dorozhkin, 2011;
Šupová, 2015; Szcześ et al., 2017; Haider et al., 2017; Mohd
et al., 2020).

In the current work, 3DHA through TSC-assisted hydrothermal
methods under low ipH conditions is synthesized. The influence of
the ipH on various aspects of the synthesized HA, including its
morphology, structure, particle size distribution, and specific surface
area, is thoroughly investigated. By comparing HA samples
synthesized under different ipH values, the control mechanism of
the ipH on the morphology of HA synthesis is revealed, providing a
theoretical foundation and experimental guidance for the design and
preparation of HA-based biomaterials with specific
application functions.

2 Materials and methods

2.1 Materials

The anhydrous calcium chloride (CaCl2, AR), diammonium
hydrogen phosphate ((NH4)2HPO4, AR), TSC (AR), nitric acid
(HNO3, AR) and urea (CO(NH2)2, AR) for experimental use
were purchased from the Sinopharm Chemical Reagent Company
Limited of China (Shanghai, China). All of the chemical reagents
were used directly without further purification.

2.2 Preparation

A typical product was synthesized as follows: 0.06 mol/L
(NH4)2HPO4, 0.01 mol/L CaCl2 and 1 mol/L urea aqueous
solutions were mixed thoroughly. The ipH of the mixture was
adjusted to 2.5, 3.0, and 3.5 using a dilute HNO3 solution under
magnetic stirring. After this, the TSC was added, and the TSC/Ca

molar ratio was maintained at 1.0. The mixture was then
hydrothermally treated in a Teflon-lined autoclave at 180°C for
10 h. Finally, the obtained resultants were washed with deionized
water and ethanol, centrifuged, and dried.

2.3 Characterization

An X-ray diffraction (XRD, Bruker D8 Advance, CuKα
radiation, λ = 1.5418 Å) and Fourier transform infrared
spectroscopy (FTIR, Nicolet IS50) were utilized to identify the
phase composition and functional groups of the products. A field
scanning electron microscope (FE-SEM, JSM-7610F, 5 kV) and a
transmission electron microscope (TEM, JEM2100Plus, 200 kV)
were used to observe the morphology and microstructure of the
samples. The powder was sputter-coated with gold before the FE-
SEM tests due to their nonconductivity. A laser particle size analyzer
(Mastersizer 2000) was used to evaluate the particle size distribution
(PSD). Prior to the TEM and PSD tests, the powder was dispersed
ultrasonically in anhydrous ethanol for 10 min. The Brunauer-
Emmett-Teller (BET) surface area were measured using a
Micromeritics ASAP 2460 instrument.

3 Results and discussion

3.1 Phase and functional analysis

The phase composition of the synthesized products under
various ipHs were characterized using XRD tests, and the results
are shown in Figure 1. A comparison with the standard HA profile
(JCPDS 09-0432), depicted as the purple bar chart in Figure 1,
confirmed that all of the synthesized products corresponded to the
pure HA phase. The difference was in the intensity of the diffraction
peaks, reflecting the different crystallinity of the HA products
(Guerra-López et al., 2024). With an increase in the ipH from
2.5 to 3.0, the supersaturation of Ca2+ and PO4

3- in the reaction
system increases, and it is easier to generate the crystalline phase HA
(Wang et al., 2021). Therefore, the intensity of the crystal plane

FIGURE 1
XRD patterns of the products prepared under the different ipHs.
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diffraction peak tended to increase. However, when the solution
reached saturation, the crystallinity degree of the HA sample
decreased (ipH = 3.5).

The FTIR tests of the synthesized products under various ipHs
were consistent with the XRD patterns, since all the spectra were
similar (Figure 2). Each absorption peak in the FTIR spectrum
reflected the vibration mode of each molecular group in the HA
crystals. The absorption peaks at 3420 and 3570 cm-1 corresponded
to water molecules adsorbed on the sample surface and the
stretching vibration absorption mode of the OH− groups,
respectively (Sun et al., 2016). The peaks at 1030 and 964 cm-1

and 605 and 564 cm-1 were attributed to the asymmetric stretching
vibration and bending vibration of the PO4

3- group (Yin-Chuan
et al., 2022; Ferrairo et al., 2023), respectively. The peaks observed in
the range at 2920 and 2850 cm-1 are assigned to the C-H vibrations
(Dutta, 2017). The double bands at 1450 and 1410, as well as 874 cm-1,
indicated the B-type substitution of the PO4

3- group in HA by CO3
2-

that was produced by the hydrolysis of urea above 80°C (Xu et al.,

FIGURE 2
FTIR spectra of the products prepared under the different ipHs.

FIGURE 3
FE-SEM images of the HA products prepared under the different ipHs. (A,B) ipH = 2.5, (C,D) ipH = 3.0, and (E,F) ipH = 3.5.
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2022). Such results further indicated that the HA products were
carbonated HA, similar to the primary inorganic component of bone
mineral (Kumar et al., 2019).

3.2 Microstructural characterization

The morphological evolutions of the HA products prepared
under the different ipHs as characterized by FE-SEM are displayed
in Figure 3. Initially, bundle-like HA crystals with lengths of
approximately 1 μm (Figure 3A) were obtained when the
ipH was 2.5. As the ipH increased to 3.0, the HA products
consisted of dumbbell balls (Figure 3C). However, with a further
increase in the ipH to 3.5, the morphology of the HA transformed
into dumbbells (Figure 3E). High magnification observations
suggest that the constituent units of the HA crystals exhibit a
sheet-like structure (Figures 3B, D, F). This morphological
progression was indicative of the possible intricate interplay
between the ipH and the crystallization kinetics during the
hydrothermal synthesis process (Zhang and Darvell, 2011).

The microstructural evolutions of the HA products prepared
under the different ipHs as characterized by TEM are displayed in
Figure 4. The morphology undergoes a process from bundle-like
(Figures 4A, B), to dumbbell balls (Figures 4C, D) and then
dumbbells (Figures 4E, F). Figure 4 illustrates the microstructural

evolution of HA products prepared under varying initial
pH conditions, as characterized by TEM. The morphology
transitions from a bundle-like form (Figures 4A, B), through

FIGURE 4
TEM images of the HA products prepared under the different ipHs. (A,B) ipH = 2.5, (C,D) ipH = 3.0, and (E,F) ipH = 3.5.

FIGURE 5
Particle size distributions of the three-dimensional HA prepared
under the different ipHs.
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dumbbell-shaped structures (Figures 4C, D), and finally to
dumbbell-like configurations (Figures 4E, F).

The final morphology of the synthesized HA depended on the
relative growth rate of each crystal surface of the HA. HA is a weak
alkaline calcium phosphate salt, and the entire reaction and ion
adsorption were slower at a lower pH value. Under the control of the
TSC, the HA grew in a divergent manner, and the dumbbell ball-
shaped HA formed.

3.3 Particle size distribution and specific
surface area

The particle size distribution (PSD) and specific surface area are
crucial parameters that significantly affect the characteristics of 3D
HA (Qi et al., 2016). As depicted in the PSD curve (Figure 5), it is
apparent that the peak of the HA sample synthesized at an ipH of
2.5 exhibited a shift to the left compared to the other two.
Additionally, the sample prepared at an ipH of 3.0 aligned
optimally with a normal distribution. The majority of the 3D HA
crystals fell within a size range of 0.1–10 µm.

Furthermore, particle sizes and BET specific surface area of the
synthesized three-dimensional HA under different ipHs are counted
(Table 1). The mean particle size of the HA products underwent a
dual trend of increase and subsequent decrease as the ipH values

rose, and the HA dumbbell-shaped particles prepared at an ipH of
3.0 had the largest dimensions (2.45 µm). The BET specific surface
area of the HA products mirrored this biphasic trend, increasing and
then decreasing as the ipH values increased, as depicted in Table 1. A
comparison of all the samples showed that the HA dumbbell-shaped
particles prepared at an ipH of 3.0 had the highest specific surface
areas, at 45.35 m2/g. These exceptional properties render it an ideal
candidate for applications as drug-delivery carriers, offering
promising potential in the field of controlled drug release and
targeted therapy.

3.4 Formation mechanism of 3D HA under
the different hydrothermal ipHs by TSC

IpH serves as a crucial indicator of supersaturation and
indirectly influences the rate of crystal nuclei formation that in
turn affects the growth of HA crystals (Akhtar and Pervez, 2021). To
demonstrate the 3D HA prepared under the different ipHs via a
TSC-assisted hydrothermal route, a possible mechanism was
proposed (Figure 6). During the initial stages of the synthesis
process, citrate interacted with Ca2+ ions in the reactive system to
form soluble calcium citrate complexes This chelation reaction can
occur through the three carboxylate groups (pKa1 = 3.14, pKa2 =
4.77, pKa3 = 6.39) for citrate and inhibites the direct precipitation of

TABLE 1 Particle sizes and specific surface areas of the synthesized three-dimensional HA under different ipHs.

ipHs d0.1 (μm) d0.5 (μm) d0.9 (μm) Mean size (μm) BET surface area (m2/g)

2.5 0.24 0.63 4.67 1.82 41.93

3.0 0.65 1.99 4.78 2.45 45.35

3.5 0.76 2.26 3.97 2.29 42.95

Note: d0.1, d0.5 and d0.9 means 10%, 50% and 90% of total particle size less than some value, respectively.

FIGURE 6
Formation mechanism of the three-dimensional HA prepared under the different ipHs via a the TSC-assisted hydrothermal route.
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HA (Chu et al., 2011). Moreover, the presence of citrate can
modulate the surface charge of the emerging crystals, thereby
influencing the anisotropic growth patterns on the HA crystal
surfaces, as indicated by previous research (Yang et al., 2013b).
As the ipH gradually increased, the decomposition rate of the Ca-
TSC complex accelerated, leading to the release of Ca2+ ions that
could participate in the crystallization process. Concurrently, the
hydrolysis of urea generated hydroxide ions (OH−) and,
subsequently, carbonate ions (CO3

2-) when the hydrothermal
temperature reached 80°C. Under these conditions, plate-like
carbonated HA crystal nuclei begin to form, and as the ipH was
2.5 which is right below the pKa1 for citrate, they aggregated to
evolve into bundle-like crystallites. The drive to minimize the overall
surface energy prompted the bundle-like crystallites to grow in size
and self-assemble, eventually forming dumbbell-shaped clusters
when the ipH rose to 3.0, nearly at the pKa1 for citrate. This
morphological transformation was attributed to the increased
crystallinity and the specific arrangement of the crystallites to
reduce the surface energy and achieve a more stable
configuration, just as the formation of dumbbell fluorapatite
aggregates earlier reported by Busch et al. (Busch et al., 1999).
However, when the ipH reached 3.5 which is just above the pKa1 for
citrate, the solution became highly supersaturated, leading to an
abundance of bundle-like HA crystallites that did not readily
coalesce into dumbbell clusters. As the ipH increases, the final
pH values after the reaction are 9.08, 8.91, and 8.89, respectively,
indicating a negligible change. These values align with the calcium-
to-phosphorus (Ca/P) molar ratios detailed in the Preparation
section. Based on the comprehensive analysis presented,
maintaining the ipH at 3.0 was deemed favorable for the
formation of the HA dumbbell structures.

This proposed mechanism offers valuable insights into the
intricate interplay between ipH, TSC, and the crystallization
kinetics of HA. By understanding and controlling these factors, it
becomes possible to tailor the synthesis of 3D HA, which is essential
for the development of advanced biomaterials with specific
properties.

4 Conclusion

In summary, three-dimensional HA with an average diameter of
2.45 μm and a BET surface area of 42.95 m2/g were successfully
prepared via a TSC-assisted hydrothermal route. The influence of
the ipH on the morphologies of the hydrothermally synthesized HA
crystals was also investigated. As the ipH value increased, the
resulting HA morphologies underwent a systematic evolution,
transitioning from bundled structures to a dumbbell-shaped
forms and eventually settling into dumbbell morphologies. The
optimum ipH for the development of 3D HA with a desirable
mean particle size and BET specific surface area was 3.0. To

elucidate the formation of 3D HA particles under varying
ipH conditions through the TSC-assisted hydrothermal route, a
plausible mechanism was proposed. This work not only sheds light
on the underlying processes that governs the synthesis of 3D HA,
but also provides valuable insights for the design and optimization of
advanced HA materials with tailored properties for biomedical
applications.
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