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The long-lived room-temperature phosphorescence (RTP) originating from
thiophene boronate polyvinyl alcohol (PVA) has enabled the creation of
metal-ion-responsive RTP films doped with spirolactam ring-containing
rhodamine 6G (1). In this study, RTP-active PVA films, namely, TDB@PVA and
ATB@PVA, were prepared through boronate esterification of thiophene-2,5-
diboronic acid (TDB) and 5-acetylthiophene-2-boronic acid (ATB) with the
diol units of PVA. The delayed emission properties were evaluated, revealing
an emission band at 477 nm with a turquoise afterglow for TDB@PVA and at
510 nmwith a green afterglow for ATB@PVA after UV light irradiation ceased. The
photophysical properties were assessed using TD-DFT and DFT calculations at
the B3LYP/cc-pVDZ level. N-(rhodamine-6G)lactam dye with a salicylimine unit
(1) was doped into the RTP-based PVA films, producing a multicolored afterglow
upon the addition of metal ions. This phenomenon is explained by a triplet-to-
singlet Förster-type resonance energy transfer process from the cross-linked
thiophene boronate in PVA to the metal-ion-activated colored form of 1. This
photophysical feature finds applicability in encryption techniques. Notably, the
reversible metal-ligand coordination of 1 in the PVA system enabled a write/erase
information process.
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1 Introduction

Stimulus-responsive luminescent materials have garnered significant attention as smart
materials, with their emission properties tunable by various external stimuli, including
chemical species, temperature, water, pH, and mechanical force. (Gu and Ma, 2022; Lei
et al., 2023). This responsiveness is closely linked to their sensing function, which has been
widely investigated for fluorescence-based chemosensors used to efficiently detect
chemically or biologically important analytes. (Wu et al., 2017; Deng et al., 2021; Sasaki
et al., 2021; Krämer et al., 2022; Kumar et al., 2023). Recently, the demand for organic
materials applicable to various state-of-the-art technologies has driven research into
alternative emission modes for luminescent materials. (Zhang et al., 2018). Organic
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luminogens with room-temperature phosphorescence (RTP) offer
the significant advantage of avoiding short-lived autofluorescence
and scattering light caused by irradiation, facilitating practical
applications (Li J. et al., 2022) such as time-gated bioimaging,
(Zhao et al., 2015), information security, (Gmelch et al., 2019; Su
et al., 2020), optoelectronics, (Kabe et al., 2016), among others.
(Zhao et al., 2020; Shi et al., 2022). Unlike traditional fluorescence,
triplet exciton-based emissive relaxation allows for long-lived delay
emission, often visually detectable as an “afterglow” that persists
after the excitation source is removed. (Yang et al., 2023). Such
fascinating optical phenomena provide valid monitoring
parameters. However, developing RTP materials with dynamic
photophysical properties remains challenging. In principle,
efficient RTP materials require both an increase in the triplet
exciton population by facilitating intersystem crossing (ISC)
between singlet and triplet states, as well as the suppression of
nonradiative relaxation channels, including oxygen quenching. (Xu
et al., 2023). Several approaches have been employed to create a rigid
environment, including host-guest interactions, (Li et al., 2018; Yu
et al., 2019; Wang et al., 2020), crystal forms, (Forni et al., 2018; Jia
et al., 2020), H-aggregation, (An et al., 2015), intermolecular
hydrogen bonding interactions, (Ma H. et al., 2019), and polymer
matrices. (Gan et al., 2018). Although stimulus-triggered tuning in
the afterglow has been investigated to date, including visual gas
sensing, (DeRosa et al., 2017; Liu et al., 2022) temperature sensing,
(Jin et al., 2020; Kawaguchi et al., 2024), metal ions detection, (Wei
et al., 2020; Guo et al., 2022; Wu et al., 2022; Dai et al., 2023) volatile
organic compounds detection, (Mei et al., 2022; Zhang et al., 2022),
and NH3 and HCl detection, (Cheng et al., 2018) the environmental
sensitivity of phosphorescence properties often hinders the dynamic
manipulation of RTP materials.

Our interest in developing RTP-active materials motivated us to
focus on boronic acid derivatives as phosphors. The empty
p-orbitals of some boronic acids promote ISC and suppress the
phosphorescence rate constant (kP), which results in outstanding
long-lived RTP behaviors in rigid environments such as solid-state,
(Chai et al., 2017; Kuno et al., 2017; Shoji et al., 2017; Yuasa and
Kuno, 2018) doped films (Li D. et al., 2022) and doped crystals
(Zhang et al., 2021; Zhou et al., 2021). Notably, the facile binding of
boronic acids with the diol units of polyvinyl alcohol (PVA) is
particularly advantageous for preparing RTP-active films. PVA is
well-known for its mechanical flexibility and large-area production,
making it suitable for a wide range of applications, such as food
packaging, (Oun et al., 2022) biodegradable plastics, (Belay, 2023)
and biocompatible materials in the medical and pharmaceutical field
(Teodorescu et al., 2019). From the standpoint of RTP materials,
PVA serves not only as a rigid matrix to protect triplet exciton but
also contributes to accelerating intersystem crossing, (Liang et al.,
2023) enabling the easy fabrication of RTP-based afterglow
materials by suppressing vibrational dissipation and oxygen
quenching of the excited triplet state (Al-Attar and Monkman,
2012; Kwon et al., 2014; Ma X. et al., 2019). Zhao et al. achieved
ultralong single-molecule phosphorescence in a PVA polymer
matrix and investigated the influence of aggregation,
conformation, temperature, and moisture on monomer
phosphorescence (Wu et al., 2020). Despite the superior
properties of PVA matrices, the development of chemically
stimulus-controllable RTP systems in PVA remains at the

forefront. Previously, we prepared RTP-active thiophene boronate
ester-cross-linked PVA (TDB-PVA) (refer to Figure 1), where the
rigid environment of the PVA-based matrix stabilized the triplet
state of the thiophene linker (Kanakubo et al., 2021). We thus
hypothesized that dopingN-(rhodamine-6G)lactam dye 1 (Lee et al.,
2016) (Figure 1) into PVA would yield metal ion-responsive
afterglow films (1-TDB@PVA). The metal ion-induced ring-
opening reaction of 1 could induce the appearance of an
absorption band with strong emission in the visible region, which
would serve as an acceptor for a triplet-singlet Förster-type
resonance energy transfer (TS-FRET) process (Sk et al., 2023)
from the thiophene boronate in PVA, thus causing metal ion-
manipulated multicolored afterglow. Furthermore, the reversible
ring-opening/closing reaction of the spirolactam unit motivated
us to investigate afterglow manipulation in our systems. With
this in mind, pyrophosphate (PPi), which has a high binding
affinity for metal ions, can dissociate the metal-ligand
coordination. We postulated the dynamic manipulation of the
RTP-based afterglow properties through reversible metal-ligand
coordination using PPi, which has intriguing applications in the
write/erase information process.

2 Experimental section

2.1 General

Nuclear magnetic resonance (NMR) spectra were measured
on a JEOL JNM-ESC400 (1H: 400 MHz, 11B: 128 MHz). In 1H and
11B NMR measurements, chemical shifts (δ) are reported
downfield from the internal standard Me4Si and external
standard BF3•OEt2, respectively. Mass spectrometry data were
taken using a Bruker micrOTOF II-SDT1 spectrometer with
atmospheric pressure chemical ionization (APCI) method. The
absorption and emission were measured using Shimadzu UV-
3600 UV/Vis/NIR spectroscopy and a JASCO FP-8500
spectrofluorometer, respectively. ATR-FTIR spectra were
recorded on a JASCO FT/IR-4100 spectrometer with NaCl salt
plate. The absolute photoluminescence quantum yields (Φ) for
emission up to 650 nm were determined by JASCO FP-8500
spectrofluorometer equipped integral sphere (ϕ = 60 mm).
Photographic images were taken with a digital camera (Canon,
EOS Kiss X8i).

2.2 Materials

Unless otherwise indicated, reagents used for the synthesis were
commercially available and were used as supplied. Thiophene-2,5-
diboronic acid TDB and 5-acetylthiophene-2-boronic acid ATB
were recrystallized with water. RTP-active PVA matrices TDB@
PVA (Kanakubo et al., 2021) and 3′,6′-bis(ethylamino)-2-(2-(2-
hydroxy-5-benzylideneamino)ethyl)-2′,7′-dimethylspiro
[isoindolin-1,9′-xanthen]-3-one 1 (Lee et al., 2016) were prepared
according to the method previously reported. The NMR data of
TDB@PVA are as follows; 1H NMR (400 MHz, DMSO-d6, ppm) δ
1.23 – 1.52 (-CH(OH)-CH2-, and -CH(boronate ester)-CH2-),
3.82 – 3.88 (-CH(boronate ester), CH(OCOCH3) and -CH(OH)-),
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4.24 – 4.25 (-OH), 4.49 (-OH), 4.89 (1H, -OH), 7.45 (thiophene-
H); 11B NMR (128 MHz, DMSO-d6, ppm) δ 21.1.

2.3 Preparation of PVA film by doping 5-
acetylthiophene-2-boronic acid (ATB@PVA)

An aqueous EtOH solution of PVA (0.25 unitM) and 5-
acetylthiophene-2-boronic acid (0.1–2.0 mol%) was drop-casted
on a silicon rubber plate and dried at room temperature
overnight, and then dried in vacuo. The assignment was
conducted by ATP-FTIR and 1H and 11B NMR measurements.
ATR-FTIR spectra; 659 cm‒1 (boronate ester bond), ~1270 cm‒1

(B‒O stretching), 1654 cm‒1 (C=O group). 1H NMR (400 MHz,
DMSO-d6, ppm) δ 1.27 – 1.52 (-CH(OH)-CH2-, and -CH(boronate
ester)-CH2-), 3.82–3.88 (-CH(boronate ester), CH(OCOCH3) and
-CH(OH)-), 4.21 – 4.23 (-OH), 4.47 (-OH), 4.668 (-OH), 7.46
(thiophene-H), 7.89 (thiophene-H); 11B NMR (128 MHz, DMSO-
d6, ppm) δ 15.6.

2.4 Fabrication of 1-TDB@PVA

A DMSO solution (500 μL) of PVA (number average molecular
weight (Mn) of 89,000–98,000; saponification number: ≥99%,
0.4 unitM. The concentration was based on the monomer unit.),
thiophene-2,5-diboronic acid (2.0 mM), and 1 (48 μM) was drop-
casted on micro slide glass with silicone rubber plate, heated at 60°C
for 12 h, and dried in vacuo.

2.5 Evaluation of phosphorescence
quantum yield

The delayed emission of RTP-active PVA films was measured by
a JASCO FP-8500 spectrofluorometer equipped with an integral
sphere (ϕ = 60 mm). The obtained spectra showed separated
fluorescence and phosphorescence peaks. Then the integral
emission intensities ranging from 400 nm to 650 nm were
evaluated as phosphorescence quantum yield.

2.6 DFT/TD-DFT calculations.

Ground state and excited state geometries of thiophene-2,5-
di(boronic acid)propane-1,3-diol diester (TDB ester) and 2-(4-
acetylphenyl)-1,3,2-dioxaborinane (ATB ester) were optimized by
density functional theory (DFT) atωB97X-D3/def2-TZVP level with
Orca 5.0 software, where spin-orbit coupling matrix elements
(SOCMEs) and energy gaps (ΔEST) between each singlet and
triplet pair were computed. Natural transition orbital (NTO)
calculation was conducted using B3LYP/cc-pVDZ level in the
Gaussian 16 software. (Frisch et al., 2016). All geometries of the
compounds at the ground state were fully optimized. Results of TD-
DFT calculation are described in Supplementary Tables S1–S6.
Optimized structures of ground state and excited states of TDB
and ATB esters are indicated in Supplementary Tables S7–S12 as
Cartesian coordinates.

3 Results and discussion

3.1 Preparation of RTP-active PVA films
using thiophene boronic acids

Aqueous EtOH solutions of thiopheneboronic acids (TDB
and ATB) and PVA (number average molecular weight (Mn) of
89,000–98,000; saponification number: ≥99%, 0.4 unitM for TDB
and 0.25 unitM for ATB. The concentration was based on the
monomer unit.) were drop-casted and dried to produce TDB@
PVA and ATB@PVA, respectively. Characterization was
conducted using ATP-FTIR, revealing characteristic broad
peaks ascribed to the boronate ester bond and B‒O stretching
at approximately 650 – 660 cm‒1 and ~1300 cm‒1, respectively.
Additionally, a typical stretching band arising from the C=O
group was observed at 1655 cm‒1 for ATB-PVA. Further
information came from 11B NMR spectroscopy, where a broad
signal at 15.6 ppm suggested that trigonal planar sp2 boron was
adopted under the conditions. The average degrees of thiophene-
based labeling are deduced to be 4.3 and 5.2 for TDB@PVA and
ATB@PVA, respectively, based on the 1H NMR data
(Supplementary Figure S1).

FIGURE 1
Chemical structures of TDB@PVA, ATB@PVA, and 1.
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The delayed emission of the PVA films was recorded upon
irradiation at 254 nm (Figure 2). TDB@PVA showed a significant
RTP emission band at 477 nm when 0.2 mol% TDB was doped into
PVA, and a turquoise afterglow was observed after ceasing the
irradiation light. Based on our previous evaluation, the
phosphorescence quantum yield (ΦP) is 6.3% with a
phosphorescent lifetime (τP) of 256 ms. (Kanakubo et al., 2021).
On the other hand, the delayed emission of ATB@PVA was
observed at 510 nm with ΦP and τP values of 6.8% and 97.1 ms,
respectively, upon excitation at 254 nm, when 0.5 mol% of ATB was
grafted into PVA, as optimized conditions for RTP behavior
(Supplementary Figure S2). Consequently, the color of the
afterglow was green, and the emission band was red-shifted by
33 nm compared to that of TDB@PVA. Time dependency on the

RTP properties was measured (Supplementary Figure S3). The
intensity decreased as time passed; the decline ratios in the
emission intensity were 7.7% and 16.6% for TDB@PVA and
ATB@PVA, respectively, after 10 min passed. On the other
hand, deaeration treatment for the films over 60 min enabled it
to detect the emission recovery. Those results indicated that the RTP
properties of the films are oxygen-sensitive. However, the
thiophene-bridged PVA film is relatively stable, enabling it to
acquire the photophysical data in this study.

The impact of the acetyl substituent in ATB@PVA on the
delayed emission was evaluated using TD-DFT and DFT
calculations at the B3LYP/cc-pVDZ level. Given the limitations
of our PC specifications, the current calculations for thiophene
boronate PVA systems are based on an optimized

FIGURE 2
Delayed emission spectra of TDB@PVA (turqoise solid line) and ATB@PVA (green solid line). [TDB] = 0.2 mol%, [ATB] = 0.5 mol%. The afterglow
images are also shown.

FIGURE 3
Jablonski diagrams and the related frontier molecular orbitals of TDB ester (A) and ATB ester (B). The transition energies of S1

FC and S1
GM were

evaluated based on the ground-state optimization and the S1 optimized structure, respectively. Transition energies of triplet states were assessed based
on T1 optimized structure.
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single-molecule structure, where the effect of the polymer matrices is
not considered. Thus, we calculated TDB ester and ATB ester as
model compounds (Figure 3). The global minimized singlet energy
level (S1

GM) of TDB ester is calculated to be 3.77 eV, which is close to
the T2 energy level. A small S1 ‒ T2 energy gap (0.47 eV) suggests a
plausible ISC transition from S1 to T2. According to Kasha’s rule, the
RTP property is postulated to be governed by the T1→ S0 transition,
calculated at 468 nm (λcalcd), which is close to the experimental
value. On the other hand, the S0 → S1 transition of ATB ester is a
forbidden transition (HOMO‒1→ LUMO), being characterized by
(n, π*) configuration, as inferred fromNTO analysis. (Martin, 2003).
Therefore, light excitation would prompt ATB ester to increase the
population of the S2 state, followed by energy dissipation of S2 to S1
through internal conversion. An efficient ISC process to T1 would be
possible based on El-Sayed’s rule, (El-Sayed, 1968), since T1 → S0
transition is characterized by (π, π*). This suggests that the carbonyl
unit of the acetyl substituent contributes to an increase in the
intersystem crossing rate. Although acetyl group of ATB@PVA
could participate hydrogen bonding network to assist the rigidity of
the system, the smaller lifetime of ATB@PVA (τP = 97.1 ms) allows
us to consider that (n, π*) configuration of the acetyl group may
govern the photophysical properties.

Given that RTP materials inherently exhibit a large Stokes shift
in their photophysical properties, we note that TDB@PVA has an
afterglow emission of less than 500 nm. (Zheng et al., 2023). In
addition, given that a multicolor afterglow can be easily obtained by
combining TDB@PVA with complementary emissive materials, we
investigated the photophysical properties of metal ion-responsive
RTP films using TDB@PVA doped with N-(rhodamine-6G)
lactam dye 1.

3.2 Metal ion-responsive rhodamine 6G-
doped afterglow films

We screened suitable rhodamine dyes to serve as metal ion-
responsive TS-FRET acceptors in PVA. We note that N-
(rhodamine-6G)lactam dye with salicylimine unit 1;
Supplementary Figure S4 shows the absorption and fluorescence
spectra of 1 in MeOH/H2O (9:1 v/v), which showed a selective
response toward metal ions (Supplementary Figure S5). As a
preliminary assessment, the detection of Fe3+ was more
responsive than Al3+ and Hg2+. Taking the absorption property of
Fe3+ in the visible region into account (Supplementary Figure S6),
our attention was focused on the Al3+-induced response to the
photophysical properties. Adding Al3+ as a putative trivalent
metal ion to the solution of 1 led to the appearance of an
absorption band ranging from ca. 470–560 nm, whereas a
fluorescence band was observed at 555 nm when excited at
530 nm. The association constant was determined by a non-
linear curve fitting plot, giving 4.3 ×103 M–1 (Supplementary
Figure S7). However, it was found that Al3+-induced emission
enhancement was almost inactive when 1 was doped in PVA,
possibly due to an aggregation of 1 with the ring-opened
structure in PVA (Supplementary Figure S8). Therefore, we
tuned the internal microenvironment of PVA by modifying
fabrication conditions. Subsequently, the corresponding RTP-
active films prepared from a DMSO solution of TDB and PVA,

instead of an EtOH/H2O solution, showed a much higher response
as a factor of 4.2 than that of the film prepared using EtOH/H2O
solution when 0.4 mM of Al3+ was added to each film
(Supplementary Figure S8). To our delight, chemical stimuli-
induced afterglow manipulation in PVA was conducted using
TDB@PVA prepared from a DMSO solution of TDB and PVA
(see the Experimental Section). The resultant film TDB@PVA has
an RTP band at ca. 500 nm, which shows a negligible decrease in the
emission intensity (≤21%) upon adding up to 0.6 mM of Al3+

(Supplementary Figure S9). It means that afterglow manipulation
could be driven from reversible metal-ligand coordination on 1. The
photophysical interaction between the thiophene boronate linker
and 1 in the PVAwas also evaluated (Figure 4). The absorption band
from the Al3+-triggered colored dye 1 overlapped with the delayed
emission band of thiophene boronate. The photophysical properties
could cause TS-FRET between them, possibly endowing the system
with the dynamic function of a metal-ion-triggered change in
the afterglow.

With the above in consideration, 1-TDB@PVAwas prepared by
doping 1 (0.012 mol%) and TDB (0.5 mol%) with PVA. The
stepwise addition of Al3+ to the film led to a change in the
afterglow from turquoise to yellowish-green after ceasing UV
irradiation at 254 nm. To understand this behavior, the delayed
emission spectra of 1-TDB@PVA were measured (Figure 5A). The
emission intensity at 477 nm declined stepwise, whereas the
intensity of the band at 565 nm significantly increased,
accompanied by an isosbestic point at around 544 nm upon
adding Al3+. The spirolactam ring-opening reaction of 1 was
induced by Al3+, leading to an increase in the longer-wavelength
emission at 565 nm through TS-FRET from the thiophene-linker
unit of PVA to spirolactum ring-opened 1. The presence of the
FRET process was supported by a change in the phosphorescence
lifetime of the system.When 0.6 mMof Al3+ was added into the PVA
film, energy transfer efficiency was estimated to be 10.6% based on
E = 1 ‒ τFRET/τD, (Hoshi et al., 2020), where τFRET and τD are the
lifetimes of the donor–acceptor conjugate (1-TDB@PVA with Al3+)
and donor (1-TDB@PVA), respectively (Supplementary Figure
S10). The lifetime (τ) of compound 1 in 1-TDB@PVA with
0.6 mM of Al3+ was measured to be 157.5 ms when irradiated at

FIGURE 4
Phosphorescence spectra of TDB@PVA (turquoise solid line), and
UV/Vis absorption (red dotted line) and emission spectra (red solid line)
of Al3+-triggered colored 1 in PVA. The delay time is 50 ms.
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254 nm. Although the value is slightly lower than that (τ = 179.5 ms)
at 477 nm, the lifetime of the longer-wavelength region may be
governed by that of the FRET donor. Utilizing the metal ion-
dependent ring-opening reaction of 1 doped in the PVA system,
delayed multicolored emission was achieved; the addition of Hg2+

and Fe3+ to the films changed the afterglow to yellowish green. In this
context, a lower-intensity phosphorescence band was observed upon
the addition of Fe3+, which was responsible for extreme quenching
by Fe3+. This is presumably because Fe3+ absorbs the emission from
thiophene boronate (Supplementary Figure S6). The relatively low
response for Hg2+ (Figure 5C) can be interpreted by a low affinity of
1 with Hg2+, the association constant being 6.0 × 102 cm–1 M–1 in
MeOH/H2O (9:1 v/v) (Supplementary Figure S7). In this way,
different color afterglow emissions were fairly observed by adding
metal ions (0.6 mM) after ceasing the UV light; green for Al3+,
orange for Fe3+, and yellowish green for Hg2+ (Figure 5).

Next, a reversible change in the afterglow was attempted through
the dynamic metal-ligand coordination properties of 1. Goswami
et al. developed a naked-eye detection method for PPi by dynamic
metal-ligand coordination with a rhodamine dye chelated with Al3+.
(Goswami et al., 2013). In our case, an Al3+-induced yellowish-green
afterglow film was drop-casted by PPi aqueous solution. After
drying, the emission spectrum was superimposed on that of 1-
TDB@PVA (Figure 6A). And then the addition of Al3+ to the
resultant film in the second run led to the appearance of an
emission band at 565 nm. This reversible phenomenon is
supported by a model experiment using NMR spectroscopy
(Figure 6B). The proton resonance of benzylidene amino unit
“C” was shifted significantly downfield by 0.172 ppm by adding
Al(ClO4)3 in CDCl3, accompanying a slight shift (0.031 ppm) of one
set of doublet (7.94 ppm, J = 4.8 and 2.2 Hz) due to rhodamine unit
“Δ.” Furthermore, the proton resonance of the ethylene linker unit

“#” in the range of 3.31–3.48 ppm was somewhat broadened. Taken
together, these results strongly support the Al3+-triggered ring-
opening reaction and coordination of 1. In contrast, adding PPi
to a solution of 1 plus Al3+ led to an almost complete recovery of
these chemical shifts. The strong binding affinity between Al3+ and
PPi can release metal ions from 1 to causing a ring-closure reaction.
This indicates that PPi, as a chemical stimulus, controls the
reversible metal-ligand coordination on 1.

A plausible working mechanism is illustrated in Figure 7. A
metal ion-triggered spirolactam ring-opening reaction on 1 in
PVA caused a TS-FRET process from the crosslinked thiophene
boronate to the emission state of 1, causing a change in the
afterglow of the film. Reversible metal ion coordination on 1
enabled the manipulation of the afterglow properties through the
dissociation of the metal ions by anions with a high affinity for 1.
This mechanism is highly applicable in encryption systems
(Vide Infra).

3.3 Applications

We prepared encrypted papers using 1-TDB@PVA to
investigate if 1-TDB@PVA would serve as economical safety ink.
As shown in Figure 8, the logotype was placed on a filter paper
coated with DMSO ink composed of 1-TDB@PVA using a silk
screen printing technique. Although this information was not
noticeable under ambient light, it was observed under UV
irradiation at 254 nm (UV on), and after removal of the
excitation (UV off).

The dynamic metal-ligand coordination of 1 in PVA motivated
us to apply 1-TDB@PVA to an information encryption system.
Initially, 1-TDB@PVA was coated on the filter paper, and the letters

FIGURE 5
Delayed emission spectra of 1-TDB@PVA upon adding Al3+ (A), Fe3+ (B), and Hg2+ (C). [TDB] = 0.5 mol%, [Mn+] = 0–0.6 mM. The images of the
corresponding afterglow.
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“TMU” were written on the paper with a DMSO solution of
Al(ClO4)3 and then dried (Figure 9). Upon ceasing the UV light,
the letters appeared as a yellow afterglow. The information was then
erased by immersing the paper in an aqueous PPi solution and
performing a desiccative process, although the 1-TDB@PVA-based
turquoise afterglow remained. This can be explained by the
dissociation of Al3+ from dye 1 in PVA upon the addition of PPi,
as inferred from a model experiment using 1H NMR (Figure 6B,

Vide Supra). However, re-printing by adding Al3+ resulted in
unclarity, which has made us consider the following reasons: (1)
Immersing 1-TDB@PVA-coated film in PPi aqueous solution could
cause leaching of 1 doped; (2) Residual PPi on the filter paper may
serve as a scavenger for Al3+ in the re-printable process. Although
some improvement is desired to solve this issue, afterglow systems
with reversible metal ion-ligand coordination would provide a
potent approach for developing information encryption techniques.

FIGURE 6
(A) Delayed emission spectra of 1-TDB@PVA plus Al3+ (0.6 mM) before and after drop-casting PPi: Adding Al3+ (0.6 mM) to 1-TDB@PVA path (a), PPi
(0.3 mM) was drop-casted to 1-TDB@PVAwith Al3+ (path (b)) and adding Al3+ (0.6 mM) as the second run (path (c)). (B) 1H NMR spectra of 1-TDB@PVA (b-
1), 1-TDB@PVA plus 4 equiv. of Al3+ (b-2), and an excess amount of PPi was added to (b-2) solution, then shaken in CDCl3 at room temperature (b-3).
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4 Conclusion

Our ongoing program for developing chemical stimulus-tunable
RTP films has led to the investigation of thiophene boronate-cross-
linked PVA. The afterglow properties were influenced by
the substituent groups on the thiophene skeleton, as evaluated
by TD-DFT and DFT calculations. TDB@PVA exhibits
RTP characteristics with a turquoise afterglow. Combined

with N-(rhodamine-6G)lactam dye 1 that serves as a metal
ion-responsive color element, color-tunable afterglow
emissions were obtained through TS-FRET between thiophene
boranate with a turquoise emission and the metal-ion-activated
colored form of 1 in PVA. More impressively, the reversible
metal-ligand coordination on 1 enabled afterglow manipulation
in PVA by combining Al3+ and PPi as chemical stimuli. This
approach was applied to information encryption films, allowing

FIGURE 7
Plausible mechanism of chemical stimuli-induced afterglow manipulation with 1-TDB@PVA.

FIGURE 8
Images of the logo printed on filter paper under ambient light, UV irradiation, and after ceasing the UV light.

FIGURE 9
Schematic diagram of encryption systems with 1-TDB@PVA. The information was invisible under ambient light. The letters “TMU” written by Al3+

aqueous solution were visible both under UV light irradiation and after ceasing UV light. The written information was erased after immersing the paper in
an aqueous solution of PPi. The printing/erasing process was repeated.
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us to propose a write/erase system with 1-TDB@PVA using
dynamic coordination behavior.
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