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The present investigation deals with the natural convection (NC) of Al2O3-Cu-
water hybrid nanofluid (HNF) within a “ π”-shaped cavity under the influence of an
externally applied magnetic field (MF). Also we studied the porous media with
radiative effect as well as common heat transfer for better fitting to real industrial
problems. The inverse U shaped-cavity design includes upper walls that are
partially heated and wavy right and left walls designed for cooling purposes, while
the remaining walls are maintained as adiabatic. A FORTRAN home code using
finite difference method-based approach is adopted to solve the governing
equations. A verification is performed by comparing with previous numerical
investigations to substantiate the precision of the established numerical model.
The findings are expressed in term of stream function, isotherms, and local and
averaged Nusselt number. It was found that by increasing amplitude (A), location
of the heater (D), thermal radiation parameter (Rd) and wavelength (λ) about
140%, 94%, 775%, and 28% Nuavg increases, respectively. In addition, by increasing
Dimensionless of heat source/sink length (B), Ha, and heat generation/absorption
coefficient (Q) about 20%, 1.1% and 28% Nuavg decreases, respectively. Also, Nuavg

first decreases and then increases by increasing Ra.
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1 Introduction

The natural convection (NC) mechanism exists in various natural operations such as
weather processes, evaporation, and condensation. It is also used in engineering sciences
such as cooling systems (Liu et al., 2022), thermal storage (Huang et al., 2022), solar power
receivers (Oyewola et al., 2021) and designing buildings (Mikhailenko et al., 2021). Using
Nanofluids (NF) and Nanotechology can solve low heat transfer and energy transport in
some industrial problems (Zhu et al., 2021; Huang et al., 2020; Ding et al., 2020). A hybrid
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nanofluid (HNF) is a NF that has at least two kinds of nanoparticles

(NPs) suspended in a base fluid leading to more enhanced properties

compared to a mono NF (Wang et al., 2022). Some researchers have

been published in the field of HNFs (Bantan et al., 2023; Sepehrnia

et al., 2022a; Sepehrnia et al., 2023; Sepehrnia et al., 2022b).
Several studies have been conducted on the NC in a porous

cavity (PC) with the application of a MF. Jino and Kummar (Jino

and Kumar, 2021) worked on the MHD copper-water-NF

convective flow in a square PC. The applied MF generates a

Lorentz force, which acts on the fluid and opposes the convective

motion and heat transfer. Hashemi-Tilehnoee et al. (2020)

considered the MHD convection and entropy production in an

incinerator filled with Al2O3-water-NF. The results showed that for

fixed Ra value, when the magnitude of the magnetic field is

increased, the HT is decreased by 6.28%, while the entropy

production is increased by about 31%. Usman et al. (2019)

proposed investigating the effects of HT on fluid when a

magnetic field is present in a closed square cavity with multiple

obstacles. Zhang et al. (2017) considered the coupled effect of

thermal radiation and on magneto-natural convective heat

TABLE 1 Overview of the papers on natural convection.

Authors Geometry Nanofluid MHD Porous Radiation

Jino and Kumar (2021) Square Cu-water nanofluid ✓ ✓ 7

Hashemi-Tilehnoee et al. (2020) Incinerator shaped Al2O3– water nanofluid ✓ ✓ 7

Usman et al. (2019) Square with obstacles - ✓ 7 ✓

Zhang et al. (2017) Square and Cubic Magnetic fluid ✓ 7 ✓

Li et al. (2018) Sinusoidal annulus Fe3O4– water nanofluid ✓ 7 ✓

Ahmed et al. (2014a) Inclined square Air 7 ✓ ✓

Alluguvelli et al. (2020) Square Fe3O4– E.G., nanofluid 7 ✓ ✓

Sivaraj and Sheremet (2016) Square Fluid-saturated ✓ ✓ ✓

Ahmed et al. (2014b) Square Fluid-saturated ✓ ✓ ✓

Massoudi and Ben Hamida (2020) Trapezoidal Diamond–water nanofluid ✓ ✓ ✓

Sheikholeslami et al. (2018) Complex shaped Water ✓ ✓ ✓

Sivaraj and Sheremet (2017) Inclined square Fluid-saturated ✓ ✓ ✓

Babazadeh et al. (2021) Complex shaped Fe3O4-MWCNT-water HNF ✓ ✓ ✓

Younis et al. (2022) Semicircular SWCNTs–water nanofluid ✓ ✓ ✓

Rashad et al. (2018) Inclined square Cu-water nanofluid ✓ ✓ ✓

Sreedevi and Reddy (2022) Square TiO2-EG nanofluid ✓ ✓ ✓

Amine et al. (2021) Right-angled triangular with a PM quarter-circle
shape

Ag-MgO-water HNF ✓ ✓ ✓

Ghalambaz et al. (2019) Complex shaped MgO-MWCNTs-EG hybrid
nanofluid

✓ ✓ ✓

Dogonchi et al. (2021) Crown wavy Al2O3– water nanofluid ✓ ✓ ✓

Izadi et al. (2019) Square Fe3O4-MWCNT-water HNF ✓ ✓ ✓

Present work Inverse U-shaped wavy Al2O3-Cu-water HNF ✓ ✓ ✓

FIGURE 1
Considered configuration.
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transfer in a porous cavity. The findings revealed that with the

increase of thermal radiation inside the cavity, the NCHT across its

width increased, but with the intensification of the MF magnitude,

the HT rate is decreased. Li et al. (2018) studied the NCHT under

thermal radiation effect in an enclosure containing iron oxide NPs

dispersed in water. Ahmed et al. (2014a) proposed the investigation

of NCHT in an inclined PC and conduct heat with a heater in the

corner. Alluguvelli et al. (2020) used the FEM to investigate the

NCHT in ethylene glycol NF-filled PC. Recently, numerous

investigations have been undertaken to explore the MHD

coupled convective and radiative heat transfers within porous

cavities (PC). Massoudi and Ben Hamida (2020) conducted a

simulation using COMSOL software, modeling the behavior of a

diamond-water nanofluid within a trapezoidal enclosure featuring

elliptical baffles. Ahmed et al. (2014b) provided insights into the

impacts of radiation on heat transfer within a porous medium

embedded in a cavity, under the effect of an external MF.

Sheikholeslami et al. (2018) delved into the simulation of the

coupled radiation-convection. The study employed the finite

element approach, where the outcomes illuminated that

increasing the permeability led to important enhancements in the

Nusselt number. Sivaraj and Sheremet (2016) adopted the finite

volume numerical approach to study the combined convection-

radiation within a porous enclosure. Sivaraj and Sheremet (2017)

explored the impact of theMF angle and PM permeability on the HT

in a square porous cavity. Employing the finite volume method in

their numerical analysis, the results unveiled an inversely correlated

relationship between heat transfer andMF strength. Babazadeh et al.

(2021) investigated HNF HT in an impermeable cavity that is also

affected by an MF. Younis et al. (2022) investigated SWCNTs–water

NF HT inside a semi-circular PC in the presence of an MF. The

findings revealed that the shorter length of the heated area on the

wall enhanced the NCHT. Also, with the growth of Rd and Ha, a 4%

increase and a 56.5% decrease in the Nuavg obtained, respectively.

Rashad et al. (2018) considered the HT of Cu-water NF in a porous

medium under the influence of a MF. The confirmed experimental

relationships were used to evaluate the properties of the NF. The

findings demonstrated that when VF grows, the Nuavg drops. In

another study, Sreedevi and Reddy (2022) examined the NCHT in a

porous 2D enclosure subjected to the impacts of the thermal

radiation source and MF. Amine et al. (2021) investigated NCHT

of MgO-Ag-water HNF in a triangular PC under the influence of

TABLE 2 Thermophysical properties of water, copper, and Alumina NPs (Rashad et al., 2018; Dogonchi et al., 2021).

Properties Water Cu Al2O3

ρ [kg.m-1] 997.1 8,933 3,970

Cp [kJ.kg-1.oC-1] 4.179 0.385 0.765

k [W.m-1] 0.613 401 40

β [K−1] 21 × 10−5 1.67 × 10−5 0.85 × 10−5

σ [S.m-1] 0.05 5.96 × 107 1 × 10−10

TABLE 3 Grid-independency study.

Grid-size 41 × 41 51 × 51 61 × 61 71 × 71

Num 1.469,836 1.458,858 1.437,232 1.43654

FIGURE 2
Comparison of the temperature field with the results of Aminossadati and Ghasemi (2009) at B = 0.4, Ra � 105 ,ϕ � 0.1,D � 0.5.
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MF. As the permeability of the PM grew, so did the efficiency of HT.

Ghalambaz et al. (2019) investigated NCHT of MWCNTs-MgO-EG

HNF in a porous cavity under MF and radiation. It was

demonstrated that rising the VF of NF, decreased the HT rate.

Dogonchi et al. (2021) considered a closed 2D enclosure with a

cylindrical barrier to study the NCHT of NF. Navier-Stokes

equations were used to examine the effect of Rd and VF on HT.

The results showed that the Nuavg increased as the parameters Rd

and VF grew. Izadi et al. (2019) investigated the unsteady MHD

NCHT of a HNF. The impacts of Ra and MF demonstrated on HT.

The outcomes demonstrated that as the MF intensity grew, so did

the HT. Some other related papers can be seen at Ref. Uma Devi

Sathyanarayanan et al. (2021), Mohanty et al. (2021), Pattnaik and

Mishra (2020), Mohanty et al. (2019), Pattnaik et al. (2019).
Finally in Table 1, the studies related to the present work are

summarized to clarify the differences between the current work and
the studies of other researchers. In the present study, NCHT has
been carried out inside a π -shaped square wavy PC. As a literature
the novelties of current work are: study the heat transfer of HNF in
new configuration (inverse U shaped cavity with wavy wall) +
unsteady + MHD + porous with radiation. These types of

TABLE 4 Comparison the values of Nuav with the findings of Aminossadati
and Ghasemi (Aminossadati and Ghasemi, 2009) fo B � 0.4,
ϕ � 10%,D = 0.5.

Ra Aminossadati and
Ghasemi (2009)

Present
results

Deviation
%

104 5.474 5.475 0.018

105 7.121 7.204 1.2

106 13.864 14.014 1.1

FIGURE 3
(A) Stream function and (B) isotherms for HNFs at Ha = 10, φ = 0.05, Q = 1, D = 0.5, Rd = 1, λ = 3, α = 45°, Ra = 105, Φ = 60°, φCu = φAl2O3 = φ/2.
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problems such as current work study the future candidate for better
cooling process of electronic devises.

2 Mathematical formulation

The considered configuration is illustrated in Figure 1, featuring
an inclined π -shaped cavity (α � 450) containing Al2O3-Cu-water
HNF saturated PM. The cavity comprises two wavy walls of

wavelength λ, with the right and left walls being cold sinusoidal
TC. Certain areas in the upper side wall (of length b) are heated with
Th (where Th > TC), while the remaining walls are considered
adiabatic. A MF (B0) with an angle Փ in the horizontal orientation
acts on the flow. The flow is considered to be Newtonian, laminar,
unsteady, No viscous dissipation, No chemical reaction and
incompressible. Single phase approach is used for modeling of
NHF heat transfer. Nanoparticles and base fluid are in thermal
equilibrium. Table 2 lists the properties of both the water and NPs.

FIGURE 4
(A) Nu and (B) Nuavg at Ha = 10, φ = 0.05, Q = 1, B = 0.5, Rd = 1, λ = 3, α = 450, Ra = 105, Φ = 600, φCu = φAl2O3

= φ/2.

FIGURE 5
(A) Stream function and (B) isotherms for HNFs at Ha = 10, φ = 0.05, Q = 1, D = 0.5, Rd = 1, λ = 3, α = 450, Ra = 105, Φ = 600, φCu = φAl2O3

= φ/2. .
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FIGURE 6
(A) Nu and (B) Nuavg at Ha = 10, ϕ = 0.05, Q = 1, B = 0.5, Rd = 1, λ = 3, α = 450, Ra = 105, Φ = 600, ϕCu = ϕAl2O3

= ϕ/2.

FIGURE 7
(A) Stream function and (B) isotherms for HNFs at Ha = 10, φ = 0.05, Q = 1, B = 0.5, Rd = 1, λ = 3, α = 450, Ra = 105, Φ = 600, φCu = φAl2O3

= φ/2.
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The governing equations employed in this research are derived
from the Boussinesq approximation, which posits that the variation
in density within the nanofluid (NF) is essentially negligible, except
when considering the influence of buoyancy forces (Rashad
et al., 2018).

∂u
∂x

+ ∂v
∂y

� 0, (1)

1
ε2

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

( ) � − 1
ρhnf

∂p
∂x

+ ]nf
ε

∂2u
∂x2

+ ∂2u
∂y2

( )
+ gβhnf T − Tc( ) sin α − ]hnf

K
u

+ σhnfB2
0

ρhnf
v sinΦ cosΦ − u sin 2 Φ( ), (2)

1
ε2

∂v
∂t

+ u
∂v
∂x

+ v
∂v
∂y

( ) � − 1
ρnf

∂p
∂y

+ vhnf
∂2v
∂x2

+ ∂2v
∂y2

( )
+ gβhnf T − Tc( ) cos α − ]hnf

K
v

+ σhnfB2
0

ρhnf
u sinΦ cosΦ − v cos 2 Φ( ), (3)

1
ε

∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

( ) � αeff.nf[ + 16σ*T3
c

3k* ρcp( )
hnf

⎤⎥⎥⎥⎥⎥⎦.∇2T + Q0

ε ρcp( )
hnf

,

(4)
The imposed initial and boundary conditions are (Alsabery

et al., 2021):

t ≺ 0: u � v � T � 0, 0≤ x≤H, 0≤y≤H,

t≥ 0: u � v � 0, 0≤y≤H, 0≤x≤Hat all walls,

T � TH,D − 0.5B≤
y

H
≤D + 0.5B,

∂T
∂x

� 0, else at wall x � 1

T � Tc, x � H − AH 1 − cos
2πλy
H

( )[ ], 0≤y≤H

T � Tcx � AH 1 − cos
2πλy
H

( )[ ], 0≤y≤H

(5)

Multiple formulations for the thermophysical properties of NFs
have been put forth in existing literature. However, in this

FIGURE 8
(A) Nu and (B) Nuavg at Ha = 10, φ = 0.05, Q = 1, B = 0.5, Rd = 1, λ = 3, α = 450, Ra = 105, Φ = 600, φCu = φAl2O3

= φ/2.
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investigation, the employed relationships solely rely on the VF and
have been validated and employed in prior research endeavors by
Khanafer et al. (2003) and Brinkman (1952).

The thermal diffusivities of an HNF (αeff,nf) and a PM (αeff,f)
can be illustrated through the use of two following Equations 6 and 7:

αeff,Hnf and αeff,f illustrate the efficient thermal
diffusion of HNF and PM and, likewise, the efficient
thermal diffusion of the base fluid and PM. These values are
equal to:

αeff,nf � keff,hnf

ρcp( )
hnf

(6)

αeff,f � keff,f

ρcp( )
f

(7)

The effective thermal conductivity (keff, hnf) of an HNF and a
PM can be determined by using a specific equation (Rashad
et al., 2018).

keff,nf � εkhnf + 1 − ε( )ks (8)

The keff,hnf of a PM can be determined based on the solid thermal
conductivity (ks) and the porosity (ε) of the PM. This can be
expressed mathematically using the following equation.

keff,f � εkf + 1 − ε( )ks (9)

It is noteworthy to mention that the thermal conductivities of
the HNF and the PM have been treated as highly similar in depicting
the outcomes, according to the thermal equilibrium assumption
presented in Equations 8, 9.

FIGURE 9
(A) Stream function and (B) isotherms for HNFs at φ = 0.05, Q = 1, B = 0.5, D = 0.5, Rd = 1, λ = 3, α = 450, Ra = 105, Φ = 600, φCu = φAl2O3

= φ/2.
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2.1 Thermophysical properties of NF
and HNF

Although previous research has made efforts to ascertain the
thermophysical characteristics of Nanofluids (NFs), the
conventional models employed in these investigations have
shown limited accuracy when applied to NFs. Nevertheless,
empirical data can aid in selecting an appropriate model for a
particular property. The effective characteristics of two specific
Nanofluids, specifically, Al2O3-water and Al2O3-Cu-water Hybrid
Nanofluids (HNFs), can be articulated as follows:

ρnf � 1 − ϕ( )ρbf + ϕρp (10)

Equation 10 is used to determine the density of NFs. Consequently,
the density of HNF is defined as follows in Equation 11:

ρnf � ϕAl2O3
ρAl2O3

+ ϕCuρCu + 1 − ϕ( )ρbf, (11)

where ϕ � ϕAl2O3
+ ϕCu,

The heat capacity of the NF is expressed as Khanafer et al. (2003):

ρCp( )
nf

� ϕ ρCp( )
p
+ 1 − ϕ( ) ρCp( )

bf
(12)

Referring to Equation 12, the heat capacity of HNF can be
calculated in the subsequent manner Presented at Equation 13:

ρCp( )
nf

� ϕAl2O3
ρCp( )

Al2O3
+ ϕCu ρCp( )

Cu
+ 1 − ϕ( ) ρCp( )

bf
(13)

Other thermal properties of nanofluid and hybrid nanofluid can
be seen at Equations 14–23. The thermal expansion coefficient of the
NF can be obtained through the equation:

ρβ( )nf � ϕ ρβ( )p + 1 − ϕ( ) ρβ( )bf (14)

Therefore, for HNF, thermal expansion is describable in the
subsequent manner:

ρβ( )nf � ϕAl2O3
ρβ( )Al2O3

+ ϕCu ρβ( )Cu + 1 − ϕ( ) ρβ( )bf (15)

Thermal diffusivity, αnf of the NF is expressed as Oztop and
Abu-Nada (2008):

FIGURE 10
(A) Nu and (B) Nuavg at Ha = 10, φ = 0.05, Q = 1, B = 0.5, Rd = 1, λ = 3, α = 450, Ra = 105, Φ = 600, φCu = φAl2O3

= φ/2.
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αnf � knf

ρcp( )
nf

(16)

The thermal conductivity of the NF is (Maxwell, 1873):

knf
kbf

� kp + 2kbf( ) − 2ϕ kbf − kp( )
kp + 2kbf( ) + ϕ kbf − kp( ) (17)

Therefore, the thermal diffusivity, αnf of the HNF is:

αnf � khnf

ρCp( )
hnf

, (18)

The thermal conductivity of the HNF is expressed as:

knf
kbf

� ϕAl2O3
kAl2O3 + ϕCukCu( )

ϕ
+ 2kbf + 2 ϕAl2O3

kAl2O3 + ϕCukCu( ) − 2ϕkbf⎛⎝ ⎞⎠
×

ϕAl2O3
kAl2O3 + ϕCukCu( )

ϕ
+ 2kbf − ϕAl2O3

kAl2O3 + ϕCukCu( ) + ϕkbf⎛⎝ ⎞⎠−1

(19)

The dynamic viscosity of the NF and HNF are expressed as
Mohanty et al. (2019):

μnf � μbf

1 − ϕ( )2.5 (20)

μnf � μbf

1 − ϕAl2O3
+ ϕCu( )( )2.5 (21)

the electrical conductivity of the NF and HNF are expressed as
Mohanty et al. (2019):

FIGURE 11
(A) Stream function and (B) isotherms for HNFs at φ = 0.05, Q = 1, B = 0.5, D = 0.5, Ha = 10, λ = 3, α = 450, Ra = 105, Φ = 600, φCu = φAl2O3

= φ/2.
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σnf
σbf

� 1 +
3 σp

σbf
− 1( )ϕ

σp
σbf

+ 2( ) − σp
σbf

− 1( )ϕ (22)

σnf
σbf

� 1 +
3

ϕAl2O3σAl2O3+ϕCuσCu( )
σbf

− ϕAl2O3
+ ϕCu( )( )

ϕAl2O3σAl2O3+ϕCuσCu( )
ϕσbf

+ 2( ) − ϕAl2O3σAl2O3+ϕCuσCu( )
σbf

− ϕAl2O3
+ ϕCu( )( ) (23)

These thermal properties equations of HNF and NF also used in
some related papers (Pattnaik et al., 2019; Alsabery et al., 2021;
Khanafer et al., 2003).

Introducing the subsequent dimensionless variables:

X � x

H
, Y � y

H
,U � uH

αf
, V � vH

αf
, P � pH2

ρnfα
2
f

, θ � T − Tc

Th − Tc
, τ � αf

H2
t

(24)

into Equations 1–5 gives rise to the dimensionless set of equations:

∂U
∂X

+ ∂V
∂Y

� 0 (25)

1
ε2

∂U
∂τ

+U∂U
∂X

+V∂U
∂Y

( )�−∂P
∂X

+ vnf
εvf

Pr
∂2U
∂X2

+ ∂2U
∂Y2

( )
+Raβhnf

βf
Prθ sinα− vhnf

vf

Pr

Da

+Ha2.Pr .
σhnf
σf

VsinΦcosΦ−Usin 2Φ( )
(26)

1
ε2

∂V
∂τ

+U∂V
∂X

+V∂V
∂Y

( )�−∂P
∂Y

+ vnf
εvf

Pr
∂2V
∂X2

+ ∂2V
∂Y2

( )
+Raβhnf

βf
Prθcosα− vhnf

vf

Pr

Da

+Ha2Pr
σhnf
σf

UsinΦcosΦ−Vcos 2Φ( )
(27)

1
ε

∂θ
∂τ

+ U
∂θ
∂X

+ V
∂θ
∂Y

( ) � αeff.nf
αeff.f

1 + Rd( ) ∂2θ
∂X2

+ ∂2θ
∂Y2

( )
+

ρcp( )
f

ρcp( )
hnf

.Q (28)

FIGURE 12
(A) Nu and (B) Nuavg at Ha = 10, φ = 0.05, Q = 1, B = 0.5, Rd = 1, λ = 3, α = 450, Ra = 105, Φ = 600, φCu = φAl2O3

= φ/2.
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Where

Pr � ]f
αf

, Ra � gβf TH − Tc( )H3

αf]f
,Ha � B0H

���
σf
μf

√
, Rd � 16σ*T3

c

3knfk*
,

Q � Q0H2

ρcp( )
f
αf

The dimensionless boundary conditions become:

τ ≺ 0: U � V � θ � 0, 0≤X ≤ 1, 0≤Y ≤ 1,

τ ≥ 0: U � V � 0, 0≤Y ≤ 1, 0≤X ≤ 1 at all walls

θ � 1,D − 0.5B≤Y ≤D + 0.5B,

∂θ
∂X

� 0, otherwise at wall X � 1

θ � 0, X � 1 − A 1 − cos 2πλY( )[ ], 0≤Y≤ 1

θ � 0, X � A 1 − cos 2πλY( )[ ], 0≤Y≤ 1

(29)

The local Nu is specified as Equation 30:

Nus � −knf
kf

1 + Rd( ) ∂θ
∂Y

( ) (30)

And the average Nu is specified as Equation 31:

Num � 1
B

∫D+0.5*B

D−0.5*B
NusdX (31)

3 Numerical procedure

In this particular investigation, the transient dimensionless
governing equations (Equations 25–28) are addressed using the
iterative finite difference method, while adhering to the specific

FIGURE 13
(A) Stream function and (B) isotherms for HNFs at ϕ = 0.05, Ha = 10, B = 0.5, D = 0.5, Rd = 1, λ = 3, α = 450, Ra = 105, Φ = 600, ϕCu = ϕAl2O3

= ϕ/2.

Frontiers in Chemistry frontiersin.org12

Rashad et al. 10.3389/fchem.2024.1441077

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2024.1441077


boundary conditions described in Equation 29. To consider
the directional influence of perturbations, a second-order
upwind finite differencing scheme is applied to approximate
convective terms.

The finite difference approximation for the heat equation can be
represented in Equation 32:

θn+1i,j � θni,j +
Δτ
σ

αnf
αf

( ) θni+1,j − 2θni,j + θni−1,j
ΔX( )2 + θni,j+1 − 2θni,j + θni,j−1

ΔY( )2[ ]{
+Q

ρcp( )
f

ρcp( )
nf

θni,j − Un
i,j

θni+1,j − θni−1,j
2ΔX

− Vn
i,j

θni,j+1 − θni,j−1
2ΔY

} (32)

The cell locations in question are denoted by i and j. Equations
26–28 are subject to a similar approximation method. The next
conjunction criteria were employed for parameters that were based
on unknowns shown in Equation 33:∑

i,j

χnewi,j − χoldi,j

∣∣∣∣∣ ∣∣∣∣∣≤ 10−6. (33)

The non-uniform grid contains of 61 × 61 grid nodes in the
X-and Y-directions, respectively. The obtained data are separated of

the number of the grids. The grid independency data are displayed
in Table 3.

These parameters were determined to be adequate for achieving
a steady state within a computationally feasible time frame. A
FORTRAN home code using finite difference method-based
approach is adopted to solve the governing equations. To verify
the precision of the current approach, the acquired outcomes
were compared with those obtained by Aminossadati and
Ghasemi (2009) in particular cases (B � 0.4,; � 10% ). Nuav at
the heat source was used as the metric for comparison, and the
findings were displayed in Figure 2 and Table 4. A high degree of
agreement was observed between the results obtained by the
two methods.

4 Results and discussion

In this research endeavor, a numerical modeling approach is
used to scrutinize the influence of fluctuations in amplitude (A)
and wavelength (λ) of sinusoidal wall oscillations, as well as
the parameters Ra, Ha, length of the heat source (B), location

FIGURE 14
(A) Nu and (B) Nuavg at Ha = 10, ϕ = 0.05, Q = 1, B = 0.5, Rd = 1, λ = 3, α = 450, Ra = 105, Φ = 600, ϕCu = ϕAl2O3

= ϕ/2.
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of the heater (D), heat generation/absorption coefficient (Q),
and thermal radiation parameter (Rd) on the characteristics
of stream function, isotherms, and the local-average
Nusselt number (Nu).

Figure 3 presents the effects varying the sinusoidal amplitude
of the left and right boundaries (A) on the flow structure
(stream function) and temperature field (isotherms) for Ha �
10, φ � 0.05,Q � 1,D � 0.5,Rd � 1, λ � 3, α � 45°,Ra � 105, Φ �
60°,φCu � φAl2O3 � φ/2.

The temperature of Fluid near the hot wall increases so the
gravity decreases and the fluid move to top wall. After facing the cold
wall the fluid temperature reduces as well as increasing the gravity.
So the fluid moves to bottom of cavity and the streamlines appears as
a clock wise rotation. Generally this manner can be seen in all of
streamlines figures.

The isotherm lines sown very high temperature gradient need
the edges of top wall. So the Nu number experiences more values in

these areas. As a same this manner can be seen in all of figures about
local Nu Number.

Figure 4 displays the variations of the Nulocal versus the A and
the Nuavg versus the VF. As can be seen, the stream function and
isotherms have become compressed by increasing A. The stream
function and isotherms in the cavity slope from top to bottom. These
variations give rise to an elevation in the temperature gradient
proximate to the active surface, thereby causing a corresponding
enhancement in Nuavg. In this regard, by increasing A from 0.05 to
0.15, about a 140% increase in the Nuavg is observed. Also, by
increasing the VF, HT is improved owing to the rise in the thermal
conductivity and the increase in the average temperature in
the cavity.

Figures 5, 6 illustrate the impact of the B on the stream function,
isotherms, and Nulocal - Nuavg in specific conditions as follows:

Ha � 10,φ � 0.05,Q � 1,D � 0.5,Rd � 1, λ � 3, α � 45°,Ra �
105, Φ � 60°,φCu � φAl2O3 � φ/2. The results indicate that

FIGURE 15
(A) Stream function and (B) isotherms for HNFs at ϕ = 0.05, Ha = 10, B = 0.5, D = 0.5, Rd = 1, λ = 3, α = 450, Ra = 105, Φ = 600, ϕCu = ϕAl2O3

= ϕ/2.
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reducing B is an effective way to improve NCHT. In other words,
reducing B reduces waste, increases the strength of vortices, and
increases NCHT in the cavity. Increasing B makes the core of eddy
larger. Results show that by increasing B, the Nulocal - Nuavg
decreases so that when B changes from 0.2 to 0.8, about a 20%
decrease in Nuavg is observed. At a constant B, increasing the VF
from 2% to 5% increases the Nuavg by about 4.6%.

Figures 7, 8 show the impact of the D on the stream function,
isotherms, and Nulocal - Nuavg in specific conditions as follows:

Ha � 10,φ � 0.05,Q � 1,B � 0.5,Rd � 1, λ � 3, α � 45°,
Ra � 105,Φ � 60°,φCu � φAl2O3 � φ/2.

The results show that increasing D from the isotherms with a
higher temperature towards the center of the cavity can cause NCHT
and more flow circulation in the cavity. In fact, by increasing D, the
buoyancy force is strengthened, and the HNF can easily overcome
the viscous force. In addition, by increasing D, the strength of
vortices and convection areas increases, which increases the mean
temperature of the HNF in the cavity and increases HT. Following

this phenomenon, the Nulocal - Nuavg in the cavity improves by
increasing D so that when D changes from 0.3 to 0.7, about a 94%
increase in Nuavg is observed. Also, at a constant D, increasing the
VF from 2% to 5% increases the Nuavg by about 3.7%.

Figures 9, 10 present the impact of Ha on the stream function,
isotherms, and Nulocal - Nuavg in specific conditions as follows:

φ � 0.05,Q � 1,B � D � 0.5,Rd � 1, λ � 3, α � 45°,Ra � 105,
Φ � 60°,φCu � φAl2O3 � φ/2.

The magnetic field (MF) induces alterations in the flow patterns
by exerting the Lorentz force.When the Lorentz force aligns with the
buoyancy force, it promotes an augmentation of Nusselt number
and leads to an increase in the average temperature within the
enclosure. In contrast, when the Lorentz force counteracts the
buoyancy force, it results in a reduction of NCHT. However, it is
noteworthy to highlight that in the current investigation, as evident
from the stream function and isotherm contours, the application of
the MF yields minimal impact on both the flow and temperature
patterns. The Nulocal - Nuavg changes with increasing Ha show a

FIGURE 16
(A) Nu and (B) Nuavg at Ha = 10, ϕ = 0.05, Q = 1, B = 0.5, Rd = 1, λ = 3, α = 450, Ra = 105, Φ = 600, ϕCu = ϕAl2O3

= ϕ/2.
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slight decrease in HT; as the Ha increases from 0 to 100, there is a
1.1% decrease in the Nuavg. At a constant Ha, by increasing the VF
from 2% to 5%, an average increase of 4.9% in Nuavg is observed.

Figures 11, 12 illustrate the impact of the Rd on the stream
function, isotherms, and Nulocal - Nuavg in specific conditions
as follows:

φ � 0.05,Q � 1,B � D � 0.5,Ha � 10, λ � 3, α � 45°,Ra � 105,
Φ � 60°,φCu � φAl2O3 � φ/2. Increasing Rd increases the core size of
hot and cold HNF vortices. Thus, it increases mixing and improves
HT. As can be seen, by increasing Rd, the Nulocal increases.
Furthermore, under constant values of the thermal radiation
parameter (Rd), the average Nusselt number (Nuavg) experiences
a rise as the volume fraction (VF) increases. Therefore, increasing Rd

positively affects NCHT inside the cavity; so by increasing Rd from
0 to 5, the Nuavg becomes about 8.75 times larger. Increasing the VF
does not have much influence on strengthening the Rd effect.

Figures 13, 14 show the impact of Q on the stream function,
isotherms, and Nulocal - Nuavg in specific conditions as follows:

φ � 0.05,B � D � 0.5,Ha � 10,Rd � 1, λ � 3, α � 45°,Ra � 105,

Φ � 60°,φCu � φAl2O3 � φ/2.
The results show that when Q = −2, the stream function and

isotherms are drawn from the top to the bottom of the cavity,
which indicates the predominance of NC and the practical effect of
the buoyancy force to circulate the flow. In this condition, the
mean temperature of the HNF in the cavity increases, and the
Nuavg also increases. When Q > 0, the stream function and
isotherms extend towards the side walls, indicating a decrease
in the strength of convection and vortices in the cavity and
reducing Nuavg and HT. In this regard, by increasing Q
from −2 to 2, about a 28% decrease in Nuavg is observed. At a

FIGURE 17
(A) Stream function and (B) isotherms for HNFs at ϕ = 0.05, Ha = 10, B = 0.5, D = 0.5, Rd = 1, λ = 3, α = 450, Ra = 105, Φ = 600, ϕCu = ϕAl2O3

= ϕ/2.
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constant Q, by increasing VF from 2% to 5%, about 2.6% increase
in Nuavg is observed.

Figures 15, 16 illustrate the impact of the Rayleigh number (Ra)
on the stream function, isotherms, as well as the local and average
Nusselt numbers for Q � 1,B � D � 0.5,Ha � 10,Rd � 1, λ � 3, α �
45°, Φ � 60°,φCu � φAl2O3 � φ/2.

Increasing the Ra from 10 to 104 causes the extension of vortices
and swirling flows towards the two cold lateral walls. This issue reduces
themean temperature of the HNF in the cavity and reduces HT. As can
be seen, the Nuavg decreases with the increase of the Ra until Ra = 104

and then increases, which can be caused by changing the HT
mechanism from conduction to convection. In a constant Ra, by
increasing VF from 2% to 5%, about 4.8% increase in Nuavg is observed.

Figures 17, 18 demonstrate the impact of wavelength (λ) on the
stream function, isotherms, and Nulocal and Nuavg for φ = 0.05, Q =
1, B = D = 0.5, Ha = 10, Rd = 1, λ = 3, α = 45°, Ra = 105,V = 60°, φCu =
φAl2O3 = φ/2.

It is noticed that by increasing λ, the density of lines increases
from the top to the bottom, and the areas of NC become larger.
Consequently, the average temperature increases, causing an increase
in theNulocal (especially in the lower part of the cavity) and an increase
in the Nuavg. In this regard, by increasing λ from 1 to 5, about a 28%
increase in Nuavg has been observed. It can also be seen that by

increasing VF, HT increases so that for each λ, by increasing VF from
0.2% to 0.5%, an increase in Nuavg is observed by about 4.5%.

5 Conclusion

In the present numerical research, Al2O3-Cu-water HNF NC in
an inverse U-shaped square wavy PC is studied in the presence of an
MF. As NFs are a serious candidate for working flow for electronic
devises cooling process this work studied NFs in very novel
geometry with radiative porous media. In this research, A, B, D,
Ra, Ha, Rd, Q, and λ are discussed. The remarkable outcomes of the
present research are expressed as follows:

• By increasing A from 0.05 to 0.15, about 140%; by increasing D
from 0.3 to 0.7, about 94%; by increasing Rd from 0 to 5, nearly
775%; and by increasing λ from 1 to 5, about 28%, an increase
in Nuavg is observed.

• By increasing B from 0.2 to 0.8, about 20%, by increasing Ha
from 0 to 100, about 1.1%, and by increasing Q from −2 to 2,
about 28% decrease in Nuavg is observed.

• By increasing Ra from 10 to 104, Nuavg decreases, and then by
increasing Ra from 104 to 105, Nuavg increases.

FIGURE 18
(A) Nu and (B) Nuavg at Ha = 10, ϕ = 0.05, Q = 1, B = 0.5, Rd = 1, λ = 3, α = 450, Ra = 105, Φ = 600, ϕCu = ϕAl2O3

= ϕ/2.
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• By increasing A, the stream function and isotherms compress;
by increasing D, the strength of vortices and convection areas
increases, and by increasing B and Rd, the core size of vortices
becomes larger.

As the application of this work is mainly on cooling process of
Microelectronic that can save some energy it needs more study in
this field.
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Nomenclature

A Amplitude

B Dimensionless of heat source/sink length

B0 Magnetic field strength

b Length of heat source

Cp Specific heat

CT Difference temperature

D Dimensionless heat source position

Da Darcy number

d Location of heat sink and source

g Acceleration due to gravity

H Length of cavity

HNF Hybrid Nanoofluid

Ha Hartmann number

K Permeability of porous medium

k Thermal conductivity

kff Effective thermal conductivity of porous media

NF Nanofluid

Nus Local Nusselt number

Num Average Nusselt number of heat source

NC natural convection

MF magnetic field

p Fluid pressure

P Dimensionless pressure

Pr Prandtl number

PC porous Cavity

Q heat generation/absorption coefficient

Q0 heat generation coefficient

Ra Rayleigh number

Rd thermal radiation parameter

S Entropy generation

T Temperature

Tc Cold wall temperature

Th Heated wall temperature

u,v Velocity components in x, y directions

U,V Dimensionless velocity components

x, y Cartesian coordinates

X,Y Dimensionless coordinates

Greek symbols

α Thermal diffusivity

β Thermal expansion coefficient, K−1

ϕ Solid volume fraction

σ Effective electrical conductivity

θ Dimensionless temperature

μ Dynamic viscosity

ν Kinematic viscosity

ρ Density

ε Porosity of the porous medium

λ wavelength

Subscripts

c Cold

0 Reference

f Pure fluid

h Hot

m Average

nf Nanofluid

p Nanoparticle
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