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The JamesWebb Space Telescope (JWST) opened a new era for the identification
of molecular systems in the interstellar medium (ISM) by vibrational features. One
group ofmolecules of increasing interest is cyano-derivatives of aromatic organic
molecules, which have already been identified in the ISM on the basis of the
analysis of rotational signatures, and so, are plausible candidates for the detection
by the JWST. Benzonitrile considered in this work represents a suitable example
for the validation of a computational strategy, which can be further applied for
different, larger, and not-yet observed molecules. For this purpose, anharmonic
simulations of infrared (IR) spectra have been compared with recent FTIR
experimental studies. The anharmonic computations using the generalized
second-order vibrational perturbation theory (GVPT2) in conjunction with a
hybrid force field combining the harmonic part of revDSD-PBEP86-D3/jun-
cc-pVTZ with anharmonic corrections from B3LYP-D3/SNSD show very good
agreement with those in the experiment, with a mean error of 11cm−1 for all
fundamental transitions overall and only 2cm−1 for the C≡N stretching
fundamental at 4.49 μm. The inclusion of overtones up to three-quanta
transitions also allowed the prediction of spectra in the near-infrared region,
which shows distinct features due to C≡N overtones at the 2.26 μm and 1.52 μm.
The remarkable accuracy of the GVPT2 results opens a pathway for the reliable
prediction of spectra for a broader range of cyano-astroCOMs.
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1 Introduction

Despite being initially considered too harsh and diluted for molecule creation and
survival, it is now recognized that several chemical processes can happen in astronomic
environments leading to more than 310 molecules already detected in the interstellar
medium (ISM) or circumstellar shells (Endres et al., 2016). Several of these molecules have
been detected in the last decade, in particular, a number of complex organic species
(COMs), defined as astrophysically relevant organic molecules consisting of six or more
atoms. Some COMs that contain C, H, N, O, and possibly also S atoms can be claimed as
prebiotic (Fulvio et al., 2021). To date, more than 30 prebiotic molecules have been detected
in Taurus molecular cloud 1 (TMC-1), a dust-enshrouded gaseous cloud located 400 light-
years from the Sun in the Taurus constellation. Such progress and fast increase in new
detections has become possible due to advances in instrumentation, in particular the sub-
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millimeter and radio domains, allowing the analysis of the lowest
rotational lines where radiation can pass through dust-enshrouded
clouds (Guélin and Cernicharo, 2022).

However, rotational transitions are not always suitable and
accessible for a study, for instance, for exoplanet atmospheres or
dense dark regions, for which vibrational spectroscopies are often
the methods of choice. The increasing importance of vibrational
transitions in astrochemical context is clearly represented by the
James Webb Space Telescope (JWST), which, with the infrared (IR)
(Frost et al., 2022) observations obtained by the mid-infrared (MIR)
and near-IR (NIR) instruments integrated within the Integrated
Science Instrument Module (ISIM, Near-Infrared Camera
[NIRCam], Near-Infrared Spectrograph [NIRSpec], Mid-Infrared
Instrument [MIRI], and Jet Propulsion Laboratory [JPL]), already
provides superlative sensitivity, spectral resolution, and wavelength
coverage compared to previous space telescopes, such as Herschel,
that observe in the visible and ultraviolet spectra (see Figure 1).
These emerging experimental data already provide new information
about the major ices in molecular cloud cores just prior to their
collapse to form protostars (McClure et al., 2023). Currently, the
Mars 2020 Perseverance rover also searches for signs of organic
matter, in the contexts of the emergence of life, as well as its
consideration as a habitable planet, performing, among others,
NIR studies using SuperCam (Perez et al., 2017; Eigenbrode
et al., 2018; Lasne, 2021; Sharma et al., 2023; McIntosh et al.,
2024). These missions yield a huge amount of new significant
results, which need to be analyzed, also highlighting the urgent
need for accurate reference data in the MIR-to-NIR (0.6–28 μm)
range (Öberg, 2016; Nazari et al., 2021; Zapata Trujillo et al., 2023;
Fortenberry, 2024b).

Spectroscopic techniques are the key for the analysis of
astronomical observations and the detection of molecules in the
interstellar medium and other astrochemical environments, such as
atmospheres or soils of exoplanets or planetary moons (Loru et al.,
2022; Lemmens et al., 2022; Mackie et al., 2022; Peeters et al., 2021;
K. Lemmens et al., 2023; Petrignani and Candian, 2022; Puzzarini
et al., 2023). However, the investigation of the chemical composition

of “astrochemical samples” is complicated due to the concomitant
presence of many, possibly unknown species. The detection of
molecules is based on the comparison of spectra from
spectroscopic observations in space with reference experiments
from the laboratory (Puzzarini et al., 2023). Unfortunately, the
latter might be limited, incomplete, or difficult to obtain under
appropriate conditions (Barone et al., 2015c; Fortenberry, 2024b).
The optimal strategy is represented by the combination of
experiments with the theoretical approaches (Barone et al., 2021;
Puzzarini, 2022), supporting and/or complementing laboratory
studies (Biczysko et al., 2018a; Barone and Puzzarini, 2023;
Fortenberry, 2024a). An increasing role of computational
spectroscopy is related to its increasing accuracy (Yang et al.,
2021; Barone and Puzzarini, 2023), as well as the possibility to
match different, often extreme environmental conditions possible in
space (Barone et al., 2015c; Biczysko et al., 2018b; Zapata Trujillo
et al., 2023; Fortenberry, 2024b).

Among all the molecules detected to date in the ISM, over 30%
bear a nitrogen atom, which usually bonds to carbon, in a large
fraction (over 80% of species) by the triple C≡N bond (Endres et al.,
2016). This is in line with the increased dipole moment that
facilitates detection by rotational features, as well as the
abundance of the CN radical in the ISM (McGuire, 2022) and its
extreme reactivity (McGuire et al., 2018; 2021) leading to the
abundance of cyano-substituted derivatives (cyano-astroCOMs
and C≡N-astroCOMs) in the ISM. Indeed, benzonitrile (BC≡N,
cyano-benzene, C6H5C≡N), was the first six-membered aromatic
compound detected in 2018 in the ISM (McGuire et al., 2018),
toward the dark molecular cloud TMC-1, a well-studied region
where most molecules were first observed. This detection was
possible as the C≡N group attachment creates a permanent
dipole moment, which is null in otherwise “silent” (poly-)
aromatic hydrocarbons (PAHs). This breakthrough intensified
the search for aromatic C≡N-astroCOMs, leading to the
detection in the TMC-1 of 1- and 2-cyanonaphthalene
(C10H7C≡N) isomers (McGuire et al., 2021) in 2021 and 2-
cyanoindene (C9H7C≡N) (Sita et al., 2022) in 2022. Following

FIGURE 1
Cyano-derivatives in the ISM and the year of detection by rotational (left panel) or vibrational (right panel) features. Left panel: astro- COMs and
Herschel’s view of TMC-1 (Herschel Space Observatory, 2017) (credit: ESA/Herschel/NASA/JPL-Caltech TMC-1). Right panel: OCN− recently detected by
the JWST and NGC 604 NIRCam Image (Webb Space Telescope, 2024) (credit: NASA/ESA/CSA/STScI).
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the observation of the six-membered rings, 1- and 2-
cyanocyclopentadiene (C5H5C≡N) (McCarthy et al., 2021; Lee
et al., 2021), which contains a five-membered cycle, were also
detected in the same source (see Figure 1). Further searches
extending to other hetero-aromatic and bridged bicyclic
compounds (Martin-Drumel et al., 2023) also aim at establishing
the abundance ratio between C≡N-PAHs and their parent PAHs
(Barone and Lazzari, 2023). To date, none of these molecules have
been identified by their vibrational features, but the first cyano-
compound, i.e., the OC≡N- anion, which is one of the most well-
detected species in astrophysical ices, has been detected in the low-
mass star-forming region ChameleonI by the JWST based on the
peak centered at 2165.9cm−1 (4.62 μm) (McClure et al., 2023)
(see Figure 1).

In this work, we focus on the first observed cyano-astroCOM,
i.e., benzonitrile (McGuire et al., 2018). The experimental
microwave spectrum of benzonitrile was first studied
simultaneously by Erlandsson (1954) and Lide (1954). Bak et al.
conducted comprehensive analyses of benzonitrile utilizing infrared
and centimeter-wave techniques, also including feasible mono-
substituted isotopologs (Bak and Nielsen, 1960; Bak et al., 1962).
This led to the first derivation of a substitution structure, rs, which
was further refined by Casado et al. by incorporating multiple
Q-branch transitions for the majority of mono-substituted
isotopologs (Casado et al., 1971). Green and Harrison
subsequently enhanced the analysis of the experimental IR
spectrum, taking into account the lowest wavenumber modes
(Green and Harrison, 1976). Recently, these initial spectroscopic
investigations have been improved, also in view of the increasing
accuracy and spectrum coverage requirements due to the
astrochemical importance of BC≡N (Yamamoto et al., 2000;
Kwon et al., 2003; Burova and Anashkin, 2007; Rajasekhar et al.,
2022). The accurate equilibrium structure of benzonitrile has been
determined by Rudolph et al. (2013) using two different,
complementary techniques, namely, the theoretical estimate rBO
and semi-experimental rSEe . The most extended study is the
2022 synchrotron investigation of BC≡N in a very broad
spectrum range, up to 90′000cm−1 (11.1 eV), which also included
the new detection of the gas-phase IR spectra at a resolution of
0.5cm−1 (Rajasekhar et al., 2022). This work, along with the high-
resolution far-infrared spectra collected in the 65 − −695cm−1 range
using synchrotron radiation at the SOLEIL facility (Zdanovskaia
et al., 2022), represents the reference for the anharmonic
computations of IR spectra.

This work focuses on the IR spectra in the MIR-NIR region, first
comparing the simulated infrared spectra with the available
experimental counterparts and then providing the prediction of
not yet available spectral data, which can support either laboratory
or astrochemical studies.

2 Computational details

In order to simulate the spectroscopic parameters of benzonitrile
in its electronic ground state ~X

1
A1, the geometry optimization and

harmonic and anharmonic vibrational computations are performed
using GAUSSIAN 16 (Frisch et al., 2016). In geometry optimization,
the tight convergence criteria (maximum forces and displacements

smaller than 1.5 × 10−5 Hartree/Bohr and 6.0 × 10−5Å,
respectively), as required for the anharmonic computations, are
used. The equilibrium structure, harmonic force constants, and first-
order electric dipole moment derivatives have been computed using
the double-hybrid density functional revDSD-PBEP86 (Santra et al.,
2019), which has been recommended for spectroscopic studies of
medium-sized biomolecules (Barone et al., 2020; Yang et al., 2021;
Mehta et al., 2023). These computations have been performed in
conjunction with the jun-cc-pVTZ (denoted hereafter as junTZ)
basis set (Papajak et al., 2011), which provides the optimal accuracy/
cost ratio, as recently discussed by Xu et al. (2024). Moreover, the
B3LYP (Becke, 1993)/SNSD (Barone et al., 2014) level has been used
in the anharmonic computations. For both density functional theory
(DFT) functionals, the dispersion correction proposed by Grimme
(2011) has been added using the D3 (Grimme et al., 2010) version
with Becke–Johnson (BJ) damping (Grimme et al., 2011; Najibi and
Goerigk, 2018). For brevity, hereafter, the revDSD-PBE86-D3/jun-
cc-pVTZ and B3LYP-D3/SNSD levels will be denoted as revDSD
and B3LYP.

Computations of the third- and fourth-order derivatives of
the potential energy surface have been performed at the B3LYP
level by the numerical differentiation (Barone, 2005; Bloino,
2015) of analytic second-order derivatives, while the cubic
electric dipole moment surfaces have been obtained through
numerical differentiations of the dipole moment derivatives.
The revDSD equilibrium and harmonic computations have
been combined with B3LYP anharmonic computations to
create a hybrid model used in spectroscopic simulations. The
consistency of these two sets of data has been checked
automatically, as implemented in GAUSSIAN 16. In other
words, the overlap between two sets of normal modes (two
different levels of theory) is defined using the linear
transformation, as proposed by Duschinsky (1937):

Q � JQ′ +K,

where Q and Q′ represent the two sets of mass-weighted normal
coordinates. The Duschinsky matrix J describes the projection of
normal coordinate basis vectors on those of the other, allowing the
automatic check of the normal mode consistency between the two
levels of theory used to define the hybrid method. To ensure that the
two sets of normal modes computed at different levels of theory are
equivalent, a 90% cut-off for each coordinate was required.

This cost-effective (Xu et al., 2024) hybrid revDSD/B3LYP
scheme has been further used to compute spectroscopic
parameters using the second-order vibrational perturbation
theory (VPT2) (Nielsen, 1951; Mills, 1972). The ground
vibrational state rotational constants have been obtained from
the revDSD equilibrium structure by adding vibrational
corrections computed at the revDSD/B3LYP level, which also
provided data allowing the determination of the quartic and
sextic centrifugal-distortion constants (Puzzarini et al., 2010;
Puzzarini, 2013). For the vibrational spectra, it is also necessary
to account for the possible presence of anharmonic resonances
(Amos et al., 1991; Martin et al., 1995; Barone, 2005; Vázquez
and Stanton, 2007; Rosnik and Polik, 2014; Barone et al., 2014;
Bloino et al., 2015; Bloino, 2015; Krasnoshchekov et al., 2015; Franke
et al., 2021; Mendolicchio et al., 2021; Franke et al., 2021) by the
generalized VPT2 (GVPT2) model (Bloino and Barone, 2012;
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Bloino et al., 2015), where nearly resonant contributions are
removed from the perturbative treatment (leading to the
deperturbed model, DVPT2) and treated in a second step
variationally. Resonance definition and general recommendations

on the applied computational procedures are described in detail in
the tutorial review by Bloino et al. (2016). It should be noted that,
although improved criteria to define automatic resonances have
been proposed recently, they would have negligible impacts on the
energies (Yang and Bloino, 2022). Overall, the GVPT2 scheme
employed in this work has been successfully applied to medium-
sized or larger biomolecules with up to 100 atoms (Fornaro et al.,
2015; Fusè et al., 2019; Yatsyna et al., 2019; Green and Improta, 2020;
Yang et al., 2021; Sheng et al., 2021), also in the astrochemical
context (Zhao et al., 2021; McIntosh et al., 2024; Alberini et al.,
2024), so it is a valuable tool to be employed also for significantly
larger cyano-astroCOMs.

3 Results and discussion

3.1 Equilibrium structure and rotational
parameters

Selected equilibrium structural parameters of benzonitrile
calculated at the revDSD/junTZ level are shown in Figure 2,
while Table 1 compares all equilibrium parameters with the
semi-experimental equilibrium structure rSEe (Pulay et al., 1978)

FIGURE 2
Structural parameter of benzonitrile as computed at the rDSD/
junTZ level, with bond lengths (black) in Å and angles (blue) in degrees.

TABLE 1 Equilibrium parameters of benzonitrile (bond lengths in Å; angles in degrees).

rSEe
a rBOe

b CCSD(T)/ANO1c rDSD/junTZ

C1-C2 1.3968 1.3962 1.4012 1.3993

C2-C3 1.3884 1.3882 1.3934 1.3905

C3-C4 1.3917 1.3917 1.3967 1.3941

C1-C12 1.4347 1.4359 1.4393 1.4360

C2-H8 1.0780 1.0803 1.0823 1.0826

C3-H7 1.0799 1.0803 1.0824 1.0830

C4-H9 1.0800 1.0806 1.0828 1.0832

C12-N13 1.1582 1.1583 1.1646 1.1629

|MAX|d . 0.0023 0.0064 0.0047

MAEd . 0.0007 0.0043 0.0030

C1C2C3 119.42 119.52 119.54 119.55

C2C3C4 120.27 120.13 120.13 120.17

C3C4C6 120.07 120.22 120.19 120.16

C2C1C5 120.55 120.50 120.46 120.41

C1C2H8 119.77 119.61 119.61 119.64

C4C3H7 120.10 120.16 120.16 120.14

|MAX|d . 0.16 0.16 0.15

MAEd . 0.09 0.09 0.08

aSemi-experimental rSEe from Rudolph et al. (2013), obtained by combining the experimental ground-state rotational constants for a set of isotopologs with rovibrational corrections derived

from cubic force fields determined at the B3LYP level.
bTheoretical best estimated from rBOe Rudolph et al. (2013), obtained using a composite ab initio approach based on CCSD(T) andMP2 all-electron optimizations with basis sets up to quintuple-

zeta quality.
cTheoretical structure obtained at the CCSD(T)/ANO1 level from Zdanovskaia et al. (2022).
dLargest absolute (|MAX|) and mean absolute errors (MAEs) of the bond length and angles compared to the rSEe from Rudolph et al. (2013).
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derived in the reference (Rudolph et al., 2013) by combining the
experimental ground-state rotational constants for a set of
isotopologs with rovibrational corrections derived from cubic
force fields determined at the B3LYP level (Piccardo et al., 2015).
Moreover, Table 1 reports the best estimated theoretical structure
rBO obtained using the composite scheme employing all-electron
CCSD(T) andMP2 geometry optimizations, with basis sets up to the
quintuple-zeta, reaching this way the complete basis set (CBS) limit,
as well as computations at the CCSD(T)/ANO1 level (Rajasekhar
et al., 2022). Structural parameters computed by all combinations of
revDSD and B3LYP functionals with the junTZ and SNSD basis sets
are provided in Supplementary Material, along with the Cartesian
coordinates by revDSD/junTZ. All DFT structures agree very well
with the rSEe reference, among which revDSD/junTZ shows the
smallest mean absolute errors (MAEs) of approximately
0.0030 A˚ for bond lengths and 0.08° for the angles, which, in
terms of the largest discrepancies, correspond to approximately
0.005 A˚ and ± 0.15°, respectively. The good quality structure
with MAEs of 0.0045 A˚ and 0.13°, respectively, is also observed
for B3LYP/SNSD, justifying its application in the hybrid scheme.
Interestingly, the revDSD/junTZ structure is closer to the rSEe
reference than the CCSD(T)/ANO1 structure, further proving the
reliability of revDSD as a cost-effective computational model,
allowing to derive accurate geometrical parameters (Ceselin et al.,
2021; Barone and Lazzari, 2023).

The final validation is provided by the direct comparison with
the experiment, i.e., spectroscopic constants from Watson’s
asymmetric rotor Hamiltonian (A-reduction, Ir representation),
which are given in Table 2. Interestingly, the vibrational ground-
state rotational constants obtained based on the revDSD structures
with anharmonic corrections computed at the revDSD/B3LYP level

agree with experiment within 0.4%, which is even better than the
CCSD(T)/ANO1 obtained by Zdanovskaia et al. (2022). Moreover,
good agreement, again similar to the CCSD(T)/ANO1 results, is also
obtained for the quartic and sextic centrifugal-distortion constants.
Notably, in some cases, such as the ΦJ sextic constant, very good
agreement with the most recent global fit including previous and
expanded mm-wave measurements (Zdanovskaia et al., 2022) is
obtained, while older experimental data reported values
smaller by 50%.

3.2 Vibrational properties and IR spectra

Table 3 compares harmonic vibrational wavenumbers and IR
intensities with those computed at the CCSD(T)/ANO1 level,
showing very good agreement with the average error of
approximately 6 cm−1 and largest differences of approximately
18cm−1, as well as qualitative agreement for IR intensities, with a
MAE below 1 km/mol, and largest discrepancies of approximately ±
7 km/mol observed for the most intense bands ]18 and ]19. Thus, the
good accuracy of revDSD harmonic wavenumbers is also
demonstrated for benzonitrile, in accordance with what has been
observed based on the comparison with CCSD(T) results with the
CBS extrapolation from MP2 computations (Pietropolli Charmet
et al., 2022; Tasinato et al., 2022; Xu et al., 2024). In Table 3 and
following, we have adapted mode numbering, mode description, and
Wilson notation, as done by Rajasekhar et al. (2022).

Table 4 lists all fundamental anharmonic wavenumbers and IR
intensities of benzonitrile computed at the rDSD/junTZ//B3PLYP/
SNSD GVPT2 level, while selected overtones and combination
bands are given in Table 5. The accuracy of the simulated IR

TABLE 2 Rotational spectroscopic constants for the ground vibrational state of benzonitrile.

Experimenta CCSD(T)/ANO1b rDSD/junTZ//B3LYP/SNSD

A0 (MHz) 5,655.265,428 5,616. 5,638.

B0 (MHz) 1,546.8757715 1535. 1,541.

C0 (MHz) 1,214.4040832 1,205. 1,210.

ΔJ (kHz) 0.0452858 0.0437 0.0433

ΔJK (kHz) 0.937983 0.923 0.922

ΔK (kHz) 0.24411 0.241 0.226

δJ (kHz) 0.01101116 0.0106 0.0106

δK (kHz) 0.609187 0.593 0.592

ΦJ (Hz) 0.000002486 0.00000230 0.00000226

ΦJK (Hz) 0.0015586 0.00149 0.00150

ΦKJ (Hz) -0.007863 -0.00761 -0.00769

ΦK (Hz) [0.0066915] 0.0066915 0.0067529

ϕJ (Hz) 0.000001159 0.00000110 0.00000105

ϕJK (Hz) 0.0007398 0.000755 0.000757

ϕK (Hz) 0.007480 0.00712 0.00714

aSpectroscopic constants derived by Zdanovskaia et al. (2022) using the single-state approach based on the ground state
bSpectroscopic constants obtained by Zdanovskaia et al. (2022) using the VPT2 computations at the CCSD(T)/ANO1 level.
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TABLE 3 Harmonic wavenumbers (ω, cm−1) and IR intensities (km/mol) compared with reference computed data.

Sym CCSD(T)/ANO1a rDSD/junTZ

ω IR int. ω IR int.

A1

]1 3,219 3.53 3,221 3.85

]2 3,206 5.43 3,208 6.29

]3 3,189 0.01 3,189 0.00

]4 2,277 6.14 2,263 11.32

]5 1,645 0.12 1,653 0.12

]6 1,520 9.82 1,530 8.75

]7 1,213 0.16 1,221 0.30

]8 1,195 0.55 1,202 0.72

]9 1,043 2.67 1,051 3.34

]10 1,010 0.12 1,018 0.23

]11 763 1.38 769 1.49

]12 459 0.00 462 0.00

A2

]13 987 0.00 996 0.00

]14 860 0.00 866 0.00

]15 402 0.00 405 0.00

B1

]16 1,006 0.01 1,009 0.00

]17 939 2.81 945 2.83

]18 769 48.33 770 56.01

]19 696 26.77 679 19.74

]20 550 15.42 556 15.05

]21 378 0.69 382 0.64

]22 143 1.70 144 1.79

B2

]23 3,214 6.27 3,217 6.86

]24 3,198 1.94 3,200 2.52

]25 1,620 1.33 1,628 1.24

]26 1,471 6.71 1,481 6.18

]27 1,348 0.96 1,358 1.15

]28 1,314 1.97 1,329 1.46

]29 1,175 0.26 1,182 0.24

]30 1,096 2.96 1,104 3.60

]31 629 0.12 633 0.12

]32 546 0.14 552 0.24

]33 162 4.44 162 4.65

(Continued on following page)
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spectra of benzonitrile in the 500 cm−1–4,000 cm−1 range can be
assessed by comparing with experimental results recorded in the gas
phase (Kwon et al., 2003; Rajasekhar et al., 2022). Table 4 provides
both spectra, with the latter showing a higher resolution of 0.5cm−1.
This increased resolution allows us to identify and assign non-
fundamental transitions, as shown in Figure 3. The
GVPT2 computations show overall good agreement with the
experiment with a MAE of approximately 11cm−1 and the largest
positive and negative errors of approximately ± 44cm−1. Moreover, the
largest errors are all related to the C-H stretching vibrations, which
contribute to the broad bandwith some additional side peaks, which has
not been assigned. Considering that our simulation agrees within
12cm−1 with the most intense peak assigned as ]2, it could be
expected that further analysis of experimental data, including non-
fundamental transitions, would lead to some re-assignments. Excluding
all C-H stretching vibrations from the statistics leads to the average
errors of 8cm−1 and maximum discrepancies within 31cm−1. The most
important result is extremely good agreement, within 2cm−1, for the
]C≡N, the fingerprint vibration of benzonitrile, which is predicted at
2227cm−1 (4.49 μm). This result can be compared with the very recent
study where the B3LYP/N07D quadratic force field was combined with
VPT2 computations with resonances included (see Esposito et al.
(2024) for details) but performed with the SPECTRO code, yielding
]C≡N of 2298cm−1. Indeed, GVPT2 B3LYP-D3/N07D computations in
GAUSSIAN 16 lead to a similar result, with ]C≡N of 2305cm−1. Such a
huge discrepancy of approximately 70cm−1 was not expected based on
previous benchmark tests, highlighting the need for a dedicated
validation. We hope that the proposed GVPT2 revDSD/B3LYP
methodology will allow us to distinguish between the different
cyano-astroCOMs observed in the ISM using the ]C≡N vibrations
normally occurring in the broader region 2,200–2,400 cm−1 (Császár
and Fogarasi, 1989).

A direct comparison between the spectra given in Figure 3
highlights that the GVPT2 computation not only correctly predicts
fundamental bands but also a pattern of five distinct non-
fundamental bands in the 1650 − 1980cm−1 range, allowing to
correct their assignment with respect to the tentative one
reported by Rajasekhar et al. (2022). These non-fundamental
bands are reported in Table 5, together with those observed in
the far-infrared spectra in a high-resolution FTIR experiment
(Zdanovskaia et al., 2022). The overestimated intensity of the ]18
band at the 758cm−1 should be noted (computed as 746cm−1), while
the experimental spectra show two similar intensity peaks in this
range, the second one being ]19 at 686cm−1. However, this
discrepancy needs to be linked to the harmonic values, which
already predict the intensity of ]18 as twice that of ]19. Notably,

CCSD(T)/ANO-1 harmonic IR intensities yield the same pattern of
these two bands as revDSD/junT. In order to provide more
information about this discrepancy, a dedicated benchmark
analysis, which would require appropriate numerical data on
integrated intensities Charmet et al. (2013), not available at
present, would be required.

Overall, the good accuracy of our simulations, for both
fundamental and non-fundamental transitions, allows us to predict
the spectra in the NIR region, which is shown in Figures 4A and B for
4000 − 6500cm−1 and 6500 − 10000cm−1, respectively (the whole
100 − 9000cm−1 spectrum is also reported in Supplementary
Material). The most pronounced bands in 4040 − 4300cm−1 and
6000 − 6180cm−1 are related to the combinations of ]CH with in-
plane ring deformations and 2]CH overtones, respectively. Similarly,
at the higher energies, there are combinations of ]CH two quanta
transitions with in-plane ring deformations (7070 − 7350cm−1) and
3]CH second overtones (9000 − 9200cm−1). Although it is expected
that the accuracy of GVPT2 results decreases for the higher-quanta
transitions, the error bars for the first and second overtones can be
estimated based on the fundamental bands (Barone et al., 2015a). For
instance, in the case of formaldehyde (Biczysko et al., 2018a), good
accuracy within 1cm−1 has been obtained for fundamentals and first
overtones of ]6 and ]2, while a lower accuracy of ]4 of approximately
10cm−1 transfers to errors of 20cm−1 and 26cm−1 for 2]4 and 3]4,
respectively. This allows us to provide a reliable prediction of ]C≡N
overtones, with distinct 2]C≡N transition at 4,426± 2cm−1 (2.26 μm)
and a significantly weaker second overtone 3]C≡N at
6,598± 5cm−1 (1.52 μm).

4 Conclusion and astrochemical
implications

Good accuracy of simulated MIR spectra, confirmed by a
comparison with available experimental results, allowed us to
provide predictions regarding the “missing” data on relevance for
the astrochemical observations, in particular, concerning the
NIR region.

The availability of NIR references is important for the
interpretation of data collected during the Mars 2020 (Williford
et al., 2018) space mission by instruments such as SuperCam, for
incoming ExoMars 2022 (ESZ-Roscosmos) (Vago et al., 2017), as
well as for the JWST observations by the NIRSpec (McClure et al.,
2023). The advantage of NIR is its lower spectrum congestion than
MIR, which is also clearly visible in Figures 3, 4. However, these
reference NIR data are often very scarce and were not available even

TABLE 3 (Continued) Harmonic wavenumbers (ω,cm−1) and IR intensities (km/mol) compared with reference computed data.

Sym CCSD(T)/ANO1a rDSD/junTZ

ω IR int. ω IR int.

MAX - 15 7.7

MIN - -18 -7.0

MAE - 6 0.8

aRef. (Zdanovskaia et al., 2022).
bLargest positive (MAX), negative (MIN), and mean absolute errors (MAEs) of the harmonic wavenumbers compared with the CCSD(T)/ANO1 reference (Zdanovskaia et al., 2022).
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TABLE 4 Fundamental wavenumbers (υ, cm−1) and IR intensities (km/mol) computed at the GVPT2//revDSD/junTZ//B3LYP/SNSD level for benzonitrile
compared with reference experimental and computed data.

Sym Mode
descriptiona

Wilson
notation

Ref.a Ref.b Current work Assignments (PED)c

Expt Theoryd Expt Theorye IR Int. scaled υ IR int

A1

]1 20a ] CH 3,080 3,207 3,106 3,210 2.40 3,148 2.19 ] CH

]2 2 ] CH 3,071 3,196 3,066 3,208 6.54 3,078 3.90 ] CH

]3 7a ] CH 3,042 3,178 3,043 3,198 8.46 2,999 1.20 ] CH

]4 ] CN ] CN 2,232 2,332 2,229 2,323 34.02 2,227 7.44 ] CN, ] CC

]5 8a ] CC 1,599 1,641 1,599 1,643 0.62 1,610 0.01 ] CC, β CCH

]6 19a ] CC 1,492 1,582 1,491 1,509 8.39 1,496 6.98 β HCC, β R sym, ] CC

]7 13 X-sens 1,191 1,220 1,193 1,214 0.33 1,202 0.08 ] CC, β CCH, β R sym

]8 9a Ring 1,178 1,203 1,178 1,192 0.93 1,185 0.84 β CCH, ] CC

]9 18a β CH 1,027 1,050 1,027 1,045 3.79 1,039 1.90 ] CC, β R sym, β CCH

]10 12 β CH 1,001 1,019 1,001 1,010 0.00 1,008 0.14 ω CCCH, τ R asy

]11 1 X-sens 769 774 758 769 2.05 764 1.11 β R tri, ] CC

]12 6a X-sens 461 467 459 463 0.00 458 0.00 β R tri, ] CC

A2

]13 17a γ CH 978 1,002 975 984 0.00 968 0.00 ω CCCH, τ R asy

]14 10a γ CH 848 863 844 849 0.00 841 0.00 ω CCCH

]15 16a ϕ CC 401 410 398 408 0.00 395 0.00 τ R asy, ω CCCH

B1

]16 5 γ CH 987 1,021 1,001 1,008 0.37 977 0.00 β R asy, ] CC

]17 17b γ CH 925 954 926 935 2.50 917 2.86 ω CCCH

]18 11 γ CH 758 781 758 773 34.79 746 50.72 ω CCCH,τ R tri, ω CCCC

]19 4 ϕ CC 686 706 687 704 38.87 656 23.67 τ R asy, ω CCCH

]20 16b X-sens 548 573 547 566 17.79 531 12.09 β CCN, ω CCCH, τ R asy

]21 γ CN X-sens 381 392 372 388 0.61 371 0.72 τ R asy, β CCN

]22 10b γ CN 172 147 141 147 1.93 138 1.90 ω CCCC, β CCN, τ R tri

B2

]23 20b ] CH 3,039 3,188 3,093 3,208 6.54 3,093 7.49 ] CH

]24 7b ] CH 3,027 3,204 3,027 3,190 3.95 3,068 0.86 ] CH

]25 8b ] CC 1,584 1,615 1,583 1,614 0.80 1,591 0.89 ] CC

]26 19b ] CC 1,448 1,481 1,448 1,462 6.69 1,454 5.73 β CCH, ] CC

]27 14 ] CC 1,337 1,361 1,335 1,351 1.79 1,337 0.25 ] CC, β CCH

]28 3 β CH 1,298 1,319 1,288 1,322 0.46 1,298 1.58 β CCH, ] CC

]29 9b β CH 1,163 1,188 1,163 1,176 0.16 1,172 0.13 β CCH, ] CC

]30 18b β CH 1,071 1,105 1,071 1,099 4.35 1,093 2.52 β CCH,] CC

]31 6b α CCC 629 641 633 0.12 628 0.11 β R sym

(Continued on following page)
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for benzonitrile prior to this work. It has been already highlighted that
anharmonic computations provide significant support in the analysis
of experimental results and identification of plausible molecules by
NIR features (Fornaro et al., 2020; Alberini et al., 2024).

Computational spectroscopy can also support the identification
of BC≡N in other spectral regions, also considering effects due to
the interactions with cosmic rays (Öberg, 2016; Arumainayagam
et al., 2021), relevant for different astrochemical environments, from

the ISM to planetary atmospheres or soil. These interactions can
initiate different processes within molecules, depending on the
photon energies, and can lead to electronic excitation within
neutral molecules or create ions by ejecting off the valence or
even inner-layer electrons. Interactions with photons can lead to
the creation of new molecules, or their damage, but are also relevant
for extending observable spectral ranges (Öberg, 2016).

Extensive laboratory experimental investigation of the
photoabsorption spectra of benzonitrile recorded using
synchrotron radiation in 35′000 − 90′000cm−1 (4.3–11.1 eV,
0.111–0.286 μm), which encompasses several neutral and ionic
excited states, as recently reported by Rajasekhar et al. (2022).
From a computational perspective, these processes can be
simulated by means of vibronic computations (Bloino et al.,
2016; Barone et al., 2021), which have been demonstrated to
allow us to decipher a broad range of energies by the combination
of two-state electronic transitions for a series of halogenated benzene
(Palmer et al., 2015a; b). Moreover, first-principle spectral simulations
also allow us to obtain reference data for unstable species difficult to
study in the laboratories and to improve the resolution and predict
spectra at a broad range of temperatures (Zhao et al., 2021).
Computational spectroscopy studies combining anharmonic
vibrational and vibronic simulations covering the broad range
from MIR at approximately 20 μm up to even 20 nm in a high-
energy photoelectron range can be extended toward other cyano-
astroCOMs, supporting their possible detection.

The most relevant are those based on aromatic systems, such as
1- and 2-cyanocyclopentadiene (McCarthy et al., 2021; Lee et al.,
2021), and 1- and 2-cyanonaphthalene (McGuire et al., 2021), which
have been already discovered in TMC-1. However, it can be expected
that similar accuracy can also be obtained for aliphatic systems, for

TABLE 4 (Continued) Fundamental wavenumbers (υ,cm−1) and IR intensities (km/mol) computed at the GVPT2//revDSD/junTZ//B3LYP/SNSD level for
benzonitrile compared with reference experimental and computed data.

Sym Mode
descriptiona

Wilson
notation

Ref.a Ref.b Current work Assignments (PED)c

Expt Theoryd Expt Theorye IR Int. scaled υ IR int

]32 β CN β CN 551 570 547 559 0.27 547 0.09 β CCC, ω CCCN

]33 15 X-sens 162 169 167 4.65 158 4.69 β R asy, ω CCCN

All MAXf 42

MINf -44

MAEf 11

Exclude all ] CH MAXg 22

MINg -31

MAEg 8

aRef (Kwon et al., 2003).
bRef (Rajasekhar et al., 2022).
cNormal mode assignments, ], β, ω, τ, and tri denote the stretching, in-plane bending, out-of-plane bending, torsion, and trigonal deformation, respectively. “sym” and “asy” stand for

symmetrical and asymmetric deformation, respectively.
dScaled harmonic computations at the B3LYP/6-311++G(2df,2pd) level of theory.
eScaled harmonic computations at the B3LYP/aug-cc-pVDZ level of theory.
fLargest positive (MAX), negative (MIN), and mean absolute errors (MAEs) of the benzonitrile fundamental wavenumbers compared with the experiment by Rajasekhar et al. (2022).
gLargest positive (MAX), negative (MIN), and mean absolute errors (MAEs) in the benzonitrile fundamental wavenumbers, with all C-H stretching excluded, compared with the experiment by

Rajasekhar et al. (2022).

TABLE 5 Non-fundamental band wavenumbers (υ, cm−1) and IR intensities
(km/mol) computed at the GVPT2//revDSD/junTZ//B3LYP/SNSD level for
benzonitrile compared with reference experimental data.

Experiment Current work

Assign. υ Assign. υ IR int.

2]22 282a 2]22 275 0.007

]22+]33 303a ]22+]33 296 0

2]33 323a 2]33 315 0.01

2]32+2]22 1,393b ]18+]19 1,397 0.41

2]18+]22 1,688b ]17+]18 1,658 1.37

]26+]22 1,769b ]14+]17 1,754 1.30

]26+3]22 1,816b ]13+]14 1,803 1.69

]26+]12 1,900b ]16+]17, ]13+]17 1,883 2.83

]26+]32 1,970b ]13+]16 , 2]15 1,942 3.23

]32+]18 2,178b 2]30 2,178 0.02

aHigh-resolution IR spectra in the gas phase obtained by Zdanovskaia et al. (2022).
bGas-phase IR spectra obtained by Rajasekhar et al. (2022).
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which several conformers can be present (Barone et al., 2013;
2015b). This situation was highlighted by the recent discovery of
five cyano-derivatives of propene (CH2CHCH3), based on the
QUIJOTE line survey of TMC-1 (Cernicharo et al., 2022). Such

computations, including electronic spectra for benzonitrile and MIR
to PES spectra for other C≡N-astroCOM species, are deferred to
subsequent works, within the framework of development of the
COSY-ASTRO dataset (COSY COST Action CA21101, 2024).

FIGURE 3
IR spectrum of benzonitrile in the range 500–4,000 cm−1. Computed stick spectra were broadened by Lorentzian functions with half-width at half-
maximum (HWHM) of 2 cm−1. The experimental IR gas-phase spectrum of benzonitrile (Rajasekhar et al., 2022) is shown for comparison.

FIGURE 4
NIR spectra simulated at the GVPT2//rDSD/junTZ//B3LYP/SNSD level. The spectra were broadened by Lorentzian functions with HWHM of 2 cm−1.
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