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The study aimed to extract and characterize natural fibers from Pulicaria
gnaphalodes (Vent.) Boiss. plants and assess the impact of alkali treatment on
the physicochemical and antioxidant properties of these fibers. Fibers were
extracted from dried P. gnaphalodes aerial parts by grinding with an average
yield of 18.1%. Physicochemical and FTIR analysis revealed that the hemicellulose
was mostly lost during alkali treatment. Results of the X-ray diffraction and
thermogravimetric analysis indicated that the crystallinity and thermal stability
of P. gnaphalodes fibers were considerably increased after alkali treatment. In
antioxidant activity assessment studies, raw fibers of P. gnaphalodes showed
significantly higher radical scavenging and reducing power potentials compared
to the alkali-treated samples, indicating that the majority of antioxidant
components such as lignin and other polyphenols were lost from P.
gnaphalodes fibers during alkali treatment. In conclusion, the promising
antioxidant activity of raw P. gnaphalodes can be utilized in developing
functional materials, particularly for cosmetic and wound healing applications.
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1 Introduction

Non-woody plant fibers are generally termed natural fibers, which are rich in cellulose
and have good physicochemical properties and crystallinity (Gholampour and
Ozbakkaloglu, 2020). Moreover, their affordability, environmental friendliness, and
widespread availabilities make them popular materials in diverse industries including
household goods, marine applications, and automotive sectors (Lokantara et al., 2020).
Likewise, raw plant fibers such as sisal and ramie fibers are also found to be useful for
biomedical purposes due to their biocompatibility and biological properties (Kandimalla
et al., 2016; Guambo et al., 2020; Zamora-Mendoza et al., 2022). However, the use of plant
fibers in their raw form has various limitations, as they possess high moisture absorption,
poor durability, as well as low thermal stability and strength (Zamora-Mendoza et al., 2023).
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Hence, modifying surfaces of natural fibers is usually recommended
to increase their crystallinity, hydrophobicity, mechanical, and
thermal properties (Tavares et al., 2020).

Various physical, chemical, and biological methods have been
employed to modify natural fiber surfaces (Cruz and Fangueiro,
2016). Physical treatments such as plasma, γ-ray treatments, and
corona treatment reacts with surface functional groups of the fibers
and modify them, thereby significantly improving the mechanical
properties of natural fibers (Jagadeesh et al., 2021). Similarly, natural
fibers have also been treated with various chemicals such as alkali,
silane, water-repelling agents, peroxides, and permanganates to
improve the crystallinity, hydrophobicity, mechanical, and
thermal properties of natural fibers (Cruz and Fangueiro, 2016).
Moreover, besides physical and chemical treatments, biological
methods mainly using enzymes are also used to treat natural
fibers (Koohestani et al., 2019). However, there is a need to
understand the effect of these treatments on the surface,
mechanical, and biological properties of different natural fibers.

Pulicaria gnaphalodes (Vent.) Boiss. is one of the commonly
occurring Pulicaria species in Qatar, locally known as “Nufaij”
(Abdel-Bari, 2012; Kasote et al., 2024). It is a perennial or
subshrub that primarily grows in the temperate biome and is
native to Iraq, Central Asia, the Western Himalayas, and the
Arabian Peninsula (Kasote et al., 2024; POWO, 2024). However,
P. gnaphalodes is reported to be a widely distributed species in the
Persian region and is recognized as a medicinal plant (Hassanabadi
et al., 2023). Traditionally, this plant is used as an herbal tea,
including as a flavoring, antimicrobial, and anti-inflammatory
agent (Kazemi et al., 2022). In recent studies, most of these
traditional uses have been validated, and P. gnaphalodes has been
reported to have promising antioxidant, antimicrobial, anticancer,
antihypercholesterolemic, and anticonvulsant properties (Kamkar
et al., 2013; Naqvi et al., 2020; Zadali et al., 2022; Pourhossein
Alamdary et al., 2023). Flavonoids, terpenes (monoterpenes,
sesquiterpenes, diterpenes, and triterpenes), and phenolic acids
are the main reported bioactive phytochemicals in P. gnaphalodes
(Kasote et al., 2024). As previously reported, Pulicaria undulata (L.)
CA Mey. is known to be rich in fiber (Fahmi et al., 2019). We also
found that the aerial part of P. gnaphalodes is rich in fibers. However,
fibers from P. gnaphalodes have not yet been extracted and
characterized, and their potential bioactivity also remains
unexplored.

Herein, we extracted fibers from P. gnaphalodes for the first time
and studied their physicochemical, thermal, and surface properties.
Similarly, the effect of alkali treatment on the matrix and surface of
P. gnaphalodes fibers was also investigated. Moreover, the
antioxidant potential of both raw and alkali-treated fiber samples
of P. gnaphalodeswas evaluated to understand their potential wound
healing and cosmetic applications.

2 Material and methods

2.1 Materials

Plants were harvested from Ash Shamal, Qatar. The aerial parts
were cleaned, separated from the roots, and dried at 50°C for 72 h in
a hot air oven to extract fibers. ABTS [2,2′-azinobis (3-

ethylbenzothiazoline-6-sulfonic acid)] was purchased from
Sigma-Aldrich, China. All other chemicals used, including
potassium permanganate, potassium persulfate, sodium
hydroxide, acetone, ethanol (95% pure), sulfuric acid, and
ammonium oxalate, were of analytical grade.

2.2 Extraction of fibers

Fibers from P. gnaphalodes were extracted by grinding the dried
aerial parts in a home-use grinder. The workflow of fiber extraction
from P. gnaphalodes is summarized in Figure 1. The fibers were
manually cleaned before conducting physicochemical analysis and
characterization studies. The fiber yield was then measured.

2.3 Alkali treatment

An aliquot of 20 mL of 0.2N NaOH (5%) was added to the
Falcon tube containing around 1 g of raw fiber sample and the tube
was kept in a boiling water bath for 90 min. The tube was cooled for
1 h before neutralizing the reaction mixture with a 1% (w/v) HCl
solution. The fiber sample was then washed with distilled water after
centrifugation at 5,000 rpm for 5 min. This washing process was
repeated two to three times until the fiber sample was neutralized.
The neutralized fiber sample was dried in an air oven at 105°C for
24 h and stored in Ziploc bags until further analysis (Ilangovan et al.,
2018; Senthamaraikannan and Saravanakumar, 2023).

2.4 Physicochemical analysis

2.4.1 Physical analysis
In the physical analysis, the diameters of the raw and alkali-

treated fibers were measured using scanning electron microscopy
(SEM). The diameter of each 3–6 single fiber was measured at
3–4 locations on each fiber, and the average value was recorded for
each fiber.

2.4.2 Chemical analysis
Cellulose, hemicelluloses, lignin, extractives, wax, ash, and

moisture content in raw and alkali-treated fibers were determined
using different methods. The moisture content was initially
determined using a method described by Ngoup et al. (2024).
Ash content in fiber samples was determined using the ASTM
E1755-01 Method (Kulandaivel et al., 2018). To estimate the wax
content, 1 g ± 0.1 g of both raw and treated fiber samples (n = 3) were
placed in 50 mL of hot ethanol for 3 h. After extraction, the samples
were dried overnight at 105°C and reweighed. The wax content was
estimated based on weight loss (Thomsen et al., 2005). The lignin
content of raw and treated fibers wasmeasured using the gravimetric
method (Valls Calm, 2017). Dewaxed fiber samples (100 ± 0.1 mg,
n = 3) were placed in Falcon tubes and treated with 3.0 mL of 72%
sulfuric acid for 24 h. The samples were then diluted with 18 mL of
water and hydrolyzed for an additional 5 h. The lignin content was
determined gravimetrically after the hydrolysis process (Valls Calm,
2017). To determine the extractives content, 20 mL was added to
dewaxed samples (200 ± 0.1 mg) and kept in a water bath at 56°C for
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1 h. After centrifugation, the acetone extract was separated, and the
acetone was allowed to evaporate. The weight of the remaining
residue was then measured to calculate the percentage of extractives
content based on the weight loss (Kale et al., 2018). The pectin
content was estimated using the dried residues of fiber samples after
extractives removal. An aliquot of 20 mL aliquot of a 0.5% solution
of ammonium oxalate was added to the fiber residues and heated in a
boiling water bath for 5 h. The supernatant was then separated,
dried, and weighed after cooling, and the percentage of pectin was
calculated based on the weight loss (Whistler et al., 1940). The
remaining residue was used for the estimation of hemicellulose and
cellulose after weighing. To estimate hemicellulose, 10 mL of 0.5N
NaOH was added to the tube containing the fiber sample residues
left after pectin isolation, and these tubes were placed in a boiling
water bath for 3 h. Following centrifugation (5,000 rpm, 5 min), the
residue was collected, washed with water, and then dried in the oven.
The weight of this residue was measured, and the weight percentage
was calculated as the hemicellulose content (Cakmak and Dekker,
2022). Finally, the cellulose content (%) was calculated using
the formula “100-%wax-%extractives-%pectin-%hemicellulose-
%lignin” (Alsafran et al., 2024).

2.5 Fourier transform-infrared (FTIR) analysis

FTIR analysis was conducted to identify the functional groups in
the fiber samples. The raw and alkali-treated fibers were powdered,
mixed with KBr, and pressed into pellets. Spectra were obtained
using a Perkin Elmer Spectrometer in the range of 4,000–500 cm−1.

2.6 X-ray diffraction (XRD) analysis

The PANalytical Empyrean X-ray diffractometer (Malvern
Panalytical B.V., Brighton, United Kingdom; Cu Kα = 1.5404 Å)
was used to estimate the crystallinity index of raw and alkali-treated
fiber samples. Scans were measured at 2θ in the range of 10°–80° with
an accuracy of 0.02.

2.7 Thermogravimetric analysis (TGA)

Thermal stability of raw and alkali-treated fiber samples was
measured using thermogravimetric analysis (PerkinElmer, Pyris
6, United States). Fiber samples were placed in an alumina
crucible and then kept in the furnace with a controlled
environment of nitrogen flow rate of 20 mL/min. The
temperature of the chamber was increased from room
temperature to 600°C at a rate of 10°C/min.

2.8 Scanning electron microscopy
(SEM) analysis

The surface topography and diameters of raw and alkali-treated
fibers were analyzed using SEM. The SEM images and energy
dispersive X-ray spectroscopy (EDX) data were obtained with a
JCM 6000 SEM.

2.9 Antioxidant activity

The antioxidant and reducing power properties of raw and
alkali-treated fiber samples were evaluated using modified ABTS
and potassium permanganate (KMnO4) reduction (PPR) assays
described by Kasote et al. (2019). In the ABTS assay, 7.4 mM
ABTS and 2.6 mM potassium persulfate solutions were prepared
and mixed in equal amounts (v/v) and left to react overnight in
the dark. The next day, the reagent was diluted with water (1:40,
v/v) before use. Fiber samples (10 ± 0.1 mg, n = 4) were placed in
24-well plates, and 1 mL of the reagent solution was added to each
well, including control wells. The plate was incubated for 5 min in
the dark. Finally, fibers were removed, and absorbance was
measured at 730 nm using a microplate reader. The
percentage of ABTS radical scavenging activity was calculated
for both raw and treated fiber samples (Kasote et al., 2019).
Similarly, for the PPR assay, A 0.125 mM KMnO4 solution was
prepared freshly. Then, 1 mL of this solution was added to wells

FIGURE 1
The workflow of fiber extraction process from P. gnaphalodes.
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containing control and fiber samples (n = 4) in a microtiter plate
and incubated for 5 min. The fibers were then removed, and the
absorbance of the plate was measured at 525 nm using a
microplate reader. The results were calculated as % PPR
activity for both raw and alkali-treated fiber samples (Kasote
et al., 2019).

2.10 Statistical analysis

All assays were performed using sufficient replicates. Data were
expressed as mean ± SD. Microsoft Excel was used for statistical
analysis and data visualization.

3 Results and discussion

3.1 Physicochemical characterization

In this study, raw fibers were extracted from dried P.
gnaphalodes aerial part by grinding. The yield of fiber obtained
was 18.1% ± 2.5%. Later, the effect of alkali treatment (5%) on the
physicochemical properties of P. gnaphalodes fibers was
investigated. The average diameter of raw P. gnaphalodes fibers
was observed to be 4.68 ± 0.42 μm, which decreased to 4.15 ±
0.40 μm after alkali treatment (Supplementary Figure S1). This
reduction is primarily attributed to the removal of impurities,
wax, and extractives from the fiber surface (Pokhriyal et al.,
2023). The results chemical composition analysis of raw and
alkali-treated P. gnaphalodes fibers are documented in Table 1.
The composition of natural fibers varies according to their
botanical origins, climate, maturity, and extraction method
(Chaudhary and Ahmad, 2020). The observed cellulose,
hemicellulose, and lignin content of raw P. gnaphalodes fibers
were similar to that of bamboo, ost, rye, and sugar fibers (Bakar
et al., 2020; Karimah et al., 2021). Alkali treatment significantly
removed wax, extractives, and hemicellulose from raw fiber. The
observed fold loss of hemicellulose, wax, and extractives was 3.9, 4.2,
and 9.6 times, respectively. The cellulose content increased by 91.8%
after alkali treatment.

3.2 FTIR analysis

The results of FT-IR analysis of raw and alkali-treated P.
gnaphalodes fibers are shown in Figure 2. The peak observed
around 3,324 cm−1 in raw and alkali-treated P. gnaphalodes fibers
was associated with the stretching vibration of OH groups and
inter- and intra-molecular hydrogen bond vibrations. This peak
was attributed to the presence of α-cellulose and water molecules
due to the moisture content (Merlini et al., 2011; George et al.,
2020). Furthermore, the peaks at 2,918 and 2,850 cm−1

correspond to the stretching vibrations of C-H bonds in
alkanes found in Cellulose I or α-cellulose (Pradhan et al.,
2023). The peak at 1715 cm−1 corresponds to the C=O
stretching vibration in lignin and hemicellulose (Maran et al.,
2022). Similarly, the C=O stretching vibration associated with the
lignin and hemicellulose components was also confirmed by the
peak observed at around 1,608 cm−1 (George et al., 2020;
Ravindran et al., 2020). The peak at 1,242 cm−1 was associated
with the C–O stretching vibration of the acetyl group in lignin
and hemicellulose (Ponnu Krishnan and Selwin Rajadurai, 2017).
However, this peak was almost non-visible in alkali-treated fiber
samples, indicating the removal of hemicellulose and lignin from
P. gnaphalodes fibers during alkali treatment, as reported in
previous studies (Kamaruddin et al., 2022). Furthermore, a
strong peak at 1,031 cm−1 indicated the presence of lignin
(C–OH stretching) in the fiber (Senthamaraikannan and
Kathiresan, 2018). As seen in the chemical composition
analysis, the findings of the FTIR analysis clearly show that a
significant amount of hemicellulose, lignin, and other
components are removed from the surface of P. gnaphalodes
fibers during alkali treatment.

3.3 XRD analysis

The XRD patterns of the raw and alkali-treated fibers of P.
gnaphalodes are shown in Figure 3. Both raw and alkali-treated

TABLE 1 The chemical composition of raw and alkali-treated
P. gnaphalodes fibers.

Constituent Raw fibers (%) Alkali-treated fibers (%)

Cellulose 35.5 ± 4.24a 68.1 ± 0.91b

Hemicellulose 22.8 ± 1.45a 5.82 ± 0.88b

Lignin 24.5 ± 1.99a 20.9 ± 0.00b

Pectin 5.82 ± 0.88a 3.46 ± 0.29b

Wax 4.65 ± 0.13a 1.10 ± 0.04b

Extractives 6.73 ± 0.71a 0.70 ± 0.05b

Moisture 8.55 ± 0.29a 2.98 ± 0.36b

Ash 0.08 ± 0.00a 0.06 ± 0.01b

The significant differences (p ≤ 0.05) among raw and alkali-treated samples are shown by

different letters, based on the Student’s t-test.

FIGURE 2
FTIR spectra of the raw and the alkali-treated fibers of
P. gnaphalodes.
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fiber samples showed two intense peaks at around 2θ values at 15°
and 22°, corresponding to the (110) and (200) planes,
respectively. These two peaks at 2θ = 15° and 22° represent the
amorphous and crystalline constituents of the fiber, respectively
(Rathinavelu and Paramathma, 2023). After the alkali treatment,
an increase in the intensities of both peaks was observed,
indicating an increase in the crystalline fraction in the alkali-
treated fibers. The Crystallinity Index (CI) is a quantitative
indicator of crystallinity (Sa et al., 2017).

In general, fibers with a higher CI value may have better
mechanical properties (Ravindran et al., 2020). The observed CI
of the raw and alkali-treated fibers of P. gnaphalodes

was 67.0% and 79.2%, respectively, indicating raw fiber
had good crystallinity that enhanced considerably with
alkali-treatment. This indicates that the raw fiber had
good crystallinity, which significantly improved with
alkali treatment.

3.4 TGA analysis

The TGA and derivative thermogravimetric (DTG) curves of
raw and alkali-treated fibers of P. gnaphalodes are shown in Figure 4.
In general, studying the thermal degradation properties of natural
fibers is crucial for high-temperature applications (Vijay et al., 2019).
Both raw and treated samples were found to show weight loss in
phases. In the phase (up to 150°C) both raw and alkali-treated fibers
showed a small amount of weight loss due to the removal of moisture
content in the sample (Borchani et al., 2015). At 150°C, raw and
alkali-treated fibers were found to exhibit weight losses of up to
8.14% and 5.58%, respectively, due to their differential moisture
content. Next phase, raw (200°C–400°C) and alkali-treated
(250°C–400°C) fibers showed maximum weight loss due to the
degradation of fiber components such as pectin, hemicellulose,
and cellulose (Raia et al., 2021). Typically, lignocellulosic fibers
degrade at around 240°C (Mahmud et al., 2021). The observed
maximum fiber degradation temperatures for raw and alkali-treated
fibers were 338.8°C and 351.0°C, respectively (Figure 4A). This
indicates that raw P. gnaphalodes fibers have good thermal
stability that can be further increased with alkali treatment. In
general, alkaline treatment is also used to improve the thermal
stability of natural fibers (Elfaleh et al., 2023). Lignins in plant fibers
are difficult to degrade, so they begin to break down in the late phase
(up to 351.0°C), leaving behind residue (Loganathan et al., 2020). At
the end of the experiment, we found that the raw fibers (23.5%) left
more residual mass than the alkali-treated fibers (16.5%). This could
be due to their high lignin content, including wax.

FIGURE 3
XRD pattern of the raw and the alkali-treated fibers of
P. gnaphalodes.

FIGURE 4
(A) TGA and (B) DTG graphs of raw and alkali-treated fibers of P. gnaphalodes.

Frontiers in Chemistry frontiersin.org05

Alsafran et al. 10.3389/fchem.2024.1437277

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2024.1437277


3.5 SEM analysis

Figure 5 shows the surface morphology of raw and alkali-treated
fibers of P. gnaphalodes. The fiber of P. gnaphalodes is comprised of a
series of parallel microfibrils. However, the surface of the raw fiber
was found to be rough and had impurities and wax on it (Figure 5A).
After the alkali treatment, impurities, wax, and lignin present on the
surface were found to be washed out. Alkali-treated fiber had a
smooth surface and clearly visible microfibrils (Figure 5B). This fact
was also evidenced by the EDX spectra, which showed a loss of Si, Cl,
and Mg contents after alkali treatment (Supplementary Figure S2).
These observations collectively indicate that alkali-treated P.

gnaphalodes fibers can be an appropriate material for making
lightweight fiber-reinforced composites.

3.6 Antioxidant activity

The results of free radical scavenging and reducing power potentials
of the raw and alkali-treated fibers of P. gnaphalodes in ABTS and PPR
assays are shown in Figure 6. In both assays, the raw fibers of P.
gnaphalodes showed significantly higher radical scavenging and
reducing power potentials compared to the alkali-treated fibers,
indicating that the majority of antioxidant components such as

FIGURE 5
Scanning electron microscopy (SEM) micrographs of (A) raw and (B) alkali-treated P. gnaphalodes fibers.

FIGURE 6
Antioxidant activity of the raw and the alkali-treated fibers of P. gnaphalodes in (A) ABTS and (B) PPR assays.
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lignins and other polyphenols were lost from P. gnaphalodes fibers
during alkali treatment. We found a nearly 7.3-fold decrease in radical
scavenging activity and a 6-fold decrease in reducing power potential in
ABTS and PPR assays after alkali treatment, respectively. So far,
antioxidant activity has been reported in the flax, hemp and colored
cotton fibers (Ma et al., 2016; Zamora-Mendoza et al., 2022; Zamora-
Mendoza et al., 2023). These natural fibers with antioxidant properties
can function as anti-inflammatory, wound healing, antitumor, and anti-
aging agents, as well as prolonging the shelf-life of products (Pedro et al.,
2022). These findings about the free radical scavenging and reducing
power potentials of raw P. gnaphalodes can be utilized in developing
functional materials, particularly for cosmetic and wound healing
applications.

4 Conclusion

In the present study, raw fibers from dried P. gnaphalodes aerial
parts were extracted by grindingwith an average yield of 18.1%. The raw
fiber of P. gnaphalodes was found to have an average diameter of
4.68 μm, mainly composed of cellulose (35.7%), lignin (24.5%),
hemicellulose (22.7%), extractives (6.73%), pectin (5.64%), and wax
(4.65%). Furthermore, the effect of 5% alkali treatment on the
physicochemical, thermal, morphological, and antioxidant properties
was studied. These findings showed that alkali treatment effectively
extracted most of the hemicellulose, including lignin, pectin, wax, and
extractives, and increased the cellulose content in the fibers. This was
further evident from the increased thermal stability of alkali-treated
fibers. In antioxidant activity assessment studies, raw fibers of P.
gnaphalodes showed significantly higher radical scavenging and
reducing power potentials compared to the alkali-treated fibers,
indicating that the majority of antioxidant components such as
lignins and other polyphenols were lost from P. gnaphalodes fibers
during alkali treatment. Altogether, Overall, this study highlighted that
alkali treatment enhanced mechanical and thermal characteristics,
including crystallinity. However, the antioxidant activity of raw P.
gnaphalodes was considerably reduced as a result of this treatment.
Moreover, observed promising free radical scavenging and reducing
power potentials of raw P. gnaphalodes can be utilized in developing
functional materials, particularly for cosmetic and wound healing
applications.
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