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Stabilized enzymes are crucial for the industrial application of biocatalysis due to
their enhanced operational stability, which leads to prolonged enzyme activity,
cost-efficiency and consequently scalability of biocatalytic processes. Over the
past decade, numerous studies have demonstrated that deep eutectic solvents
(DES) are excellent enzyme stabilizers. However, the search for an optimal DES
has primarily relied on trial-and-error methods, lacking systematic exploration of
DES structure-activity relationships. Therefore, this study aims to rationally design
DES to stabilize various dehydrogenases through extensive experimental
screening, followed by the development of a straightforward and reliable
mathematical model to predict the efficacy of DES in enzyme stabilization. A
total of 28 DES were tested for their ability to stabilize three dehydrogenases at
30°C: (S)-alcohol dehydrogenase from Rhodococcus ruber (ADH-A), (R)-alcohol
dehydrogenase from Lactobacillus kefir (Lk-ADH) and glucose dehydrogenase
from Bacillus megaterium (GDH). The residual activity of these enzymes in the
presence of DES was quantified using first-order kinetic models. The screening
revealed that DES based on polyols serve as promising stabilizing environments
for the three tested dehydrogenases, particularly for the enzymes Lk-ADH and
GDH, which are intrinsically unstable in aqueous environments. In glycerol-based
DES, increases in enzyme half-life of up to 175-fold for Lk-ADH and 60-fold for
GDH were observed compared to reference buffers. Furthermore, to establish
the relationship between the enzyme inactivation rate constants and DES
descriptors generated by the Conductor-like Screening Model for Real
Solvents, artificial neural network models were developed. The models for
ADH-A and GDH showed high efficiency and reliability (R2 > 0.75) for in silico
screening of the enzyme inactivation rate constants based on DES descriptors. In
conclusion, these results highlight the significant potential of the integrated
experimental and in silico approach for the rational design of DES tailored to
stabilize enzymes.
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1 Introduction

Deep Eutectic Solvents (DES), as innovative and tunable liquid
media, are gaining attention for their non-toxic, versatile properties
applicable across diverse domains such as synthesis, catalysis,
separation processes, material science and biomedicine (Zhang
et al., 2012). Originally coined to describe mixtures solidifying at
temperatures lower than individual components’ crystallization
points, DES now encompass combinations maintaining a liquid
state at specific temperatures (Abranches and Coutinho, 2023).
Deep eutectic solvents (DES) are commonly prepared by mixing
two or more components, like a hydrogen bond donor (HBD) and a
hydrogen bond acceptor (HBA), in precise molar ratios to achieve a
liquid state at ambient or application-specific temperature. DES
formulations may incorporate various compounds such as
carboxylic acids, sugars and polyols as HBDs, and metal
chlorides, metal oxides and organic compounds (e.g., quaternary
ammonium compounds) as HBAs. The choice of components is
dictated by the intended properties and applications of the resulting
DES. Water is often included as an additional component to reduce
the melting point and viscosity of the mixture, as well as to enhance
the DES’s effectiveness for specific uses (Zhang et al., 2012).

Utilizing the synergy of DES and biocatalysis as a
biotechnological approach aligns seamlessly with the goal of
achieving efficient and sustainable production of various
commercially significant products. Biocatalysis facilitates complex
transformations with high levels of regio-, chemo- and
enantioselectivity under mild and cost-effective conditions. DES,
in turn, offer robust support for modulating and directing reaction
pathways towards desired products in an environmentally friendly
manner (Panić et al., 2021). Given the vast array of structural
possibilities inherent in DES, it becomes feasible to tailor an
optimal DES for each specific enzymatic reaction system. This
versatility enables DES to enhance substrate solubility/loading,
enzyme activity and stability, increase reaction yields, modify
biocatalyst stereopreference and contribute to the overall eco-
friendliness of the process, including options for recycling and
reuse. In the realm of (bio)catalytic processes, DES do not serve
just as solvents or co-solvents, but also as smart co-substrates,
enzyme storage media, extractive reagents for enzymatic products
and pretreatment solvents for enzymatic biomass (Juneidi et al.,
2017; Pätzold et al., 2019; Panić et al., 2021). Until 2020, hydrolases
received themajority of attention in DES environments. However, in
recent years, research has broadened to include other hydrolytic
enzymes (such as epoxide hydrolases, phospholipases, proteases and
haloalkane dehalogenase), as well as lyases and dehydrogenases
(Panić et al., 2021; Zhang et al., 2024). Among the listed
enzymes, alcohol dehydrogenases as vital enzymes facilitating
reversible redox reactions to yield specific alcohols or ketones
have been the focus of research by several research groups.
Bittner et al. highlighted that choline chloride-based DES with
high glycerol content are excellent stabilizers of horse liver
alcohol dehydrogenase (HLADH), while Gajardo-Parra et al.
demonstrated that DES based on glycerol and sorbitol enhance
formate dehydrogenase (FDH) stability against thermal stress
(Bittner et al., 2022; Gajardo-Parra et al., 2023). Most studies
indicate that enzyme activity decreases in DES, especially in neat
DES or those with low water content. For instance, Huang et al.

reported that a minimum water activity of 0.2 was necessary for
HLADH catalytic activity in choline chloride:glycerol/water
mixtures (Huang et al., 2020). This finding was supported by
Bittner et al. through molecular dynamics simulations, revealing
a rigid HLADH structure in low-water DES (Bittner et al., 2022).

The quest for identifying an optimal DES for specific
applications has traditionally relied on trial-and-error methods,
lacking systematic exploration of DES structure-activity
relationships. Consequently, the strategic design of these solvents
remains relatively undeveloped. To advance their industrial utility,
it’s crucial to gather data on DES properties and develop
mathematical tools for solvent design. The Conductor-like
Screening Model for Real Solvents (COSMO-RS) offers a
computational approach for generating molecular σ-profiles.
These molecular descriptors provide essential information on a
molecule’s electrostatic, hydrogen bonding and dispersion
interactions, allowing for quantification of structural changes (Klamt
et al., 1998a). Past studies have showcased the effectiveness, reliability
and cost-efficiency of employing molecular descriptors generated by
COSMO-RS in Quantitative Structure-Property Relationships (QSPR)
and machine learning (ML) to predict physicochemical properties of
DESs, such as density (Lemaoui et al., 2020b), viscosity (Benguerba
et al., 2019), conductivity (Lemaoui et al., 2020a), melting point (García
et al., 2015) and pH value (Panić et al., 2022). Additionally, in the
context of DES applications, QSPRmodels for predicting the solubilities
of gases and drugs have recently been successfully developed (Wang
et al., 2021; Asghar et al., 2023). These models leverage the structural
properties of various inorganic and organic molecules to forecast their
behavior in DES, providing valuable insights for their application in
various industrial processes. However, to the best of our knowledge, no
QSPR models have been reported for predicting the behavior of
complex biomolecules, such as enzymes, in these solvents.
Developing predictive models could significantly enhance our ability
to design and optimize bioprocesses in DES. Building upon the
aforementioned, this study aimed to rationally design DES for the
stabilization of various dehydrogenases through extensive experimental
screening, followed by the development of a straightforward and reliable
mathematical model to predict the efficacy of DES in enzyme
stabilization. To achieve this, we initially experimentally tested the
stabilization effects of 28 DES on three different dehydrogenases: (S)-
alcohol dehydrogenase from Rhodococcus ruber (ADH-A), (R)-alcohol
dehydrogenase from Lactobacillus kefir (Lk-ADH) and glucose
dehydrogenase from Bacillus megaterium (GDH). Based on the
calculated enzyme inactivation rate constants and DES descriptors
generated by COSMO-RS, QSPR models for predicting the efficacy
of DES in enzyme stabilization were developed using artificial neural
networks (ANNs).

2 Materials and methods

2.1 Chemicals

Betaine (>99%), choline chloride (>98%), ethylene glycol
(anhydrous, >99.8%), urea (>98%) and D-glucose (>99.5%) were
purchased from Sigma Aldrich. NAD+ and propylene glycol were
obtained from BASF while glycerol (>99%) was from Alfa Aesar.
The HPLC grade 2-propanol was obtained from Honeywell.
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2.2 Tested enzymes

For this research, cell-free extracts of three dehydrogenases were
produced and investigated. Glucose dehydrogenase Bacillus megaterium
(GDH, internal plasmid number pEG521) (Lampel et al., 1986) and
two NAD(P)H-dependent alcohol dehydrogenases (ADHs), namely,
ADH-A from R. ruberDSM 44541 (pEG10) (Karabec et al., 2010) and
Lk-ADH from L. kefir (pEG326). Additional data provided in the
Supplementary Material.

2.3 Solvent preparation

DES preparation was performed by mixing hydrogen bond
acceptor (HBA), hydrogen bond donor (HBD) and water in defined
molar ratios (Table 1). Before use, choline chloride was dried in the
vacuum concentrator at 60°C for 24 h. Weighted HBA, HBD and water
were placed in a glass container where the mixture was stirred and
heated up to 60°C until a colourless and homogeneous liquid was
formed. All individually preparedDESwere stored at room temperature
in sealed glass bottles and later used for stability experiments. For each
enzyme, a reference buffer was chosen according to its optimal pH value
and prepared according to standard protocols. More precisely, 50 mM
TRIS-HCl buffer (pH = 7.5) was chosen for ADH-A and Lk-ADH,
while 50 mM potassium-phosphate buffer (pH = 7.5) for GDH.

2.4 Model enzymatic activity assays

To ensure quick activity screenings of a large number of samples,
spectroscopic enzymatic activity assays in 96-multi well plates were
developed. For each enzyme, a model oxidation reaction was chosen.
The commonNADH formation rate was immediately monitored for
10 min at a fixed wavelength of 340 nm on a UV-Vis
spectrophotometer (plate reader). Dehydrogenase activity
(A, μmol min-1 dm-3) was calculated according to the expression:

A � ΔA
Δt · 106

ε340 · d

where ΔA/Δt is the absorbance change through time (min-1); ε340 is
the extinction coefficient (6,220 cm2 mmol-1 for NADH at λ =
340 nm); d is cuvette diameter (0.61 cm for a well in a 96-well plate);
106 is a conversion factor (cm3 μmol dm-3 mmol-1).

To ascertain whether the enzymes oxidize not only the
substrates utilized in the assays but also the components of the
deep eutectic solvents (DES), namely, polyols, we replaced the model
substrates with pure DES components. Subsequently, the assays
were conducted as described below.

2.4.1 GDH activity assay
GDH activity assay was conducted directly in a 96-well plate

with a total volume of 200 µL by adding 0.1 mg mL-1 of the enzyme
(10 µL), 20 mM NAD+ (5 µL), 50 mM potassium-phosphate buffer
pH = 7.5 (175 µL) and 200 mM glucose (10 µL) in that exact order.
Upon mixing, the microplate was immediately measured on the
plate reader.

2.4.2 ADHs activity assay (ADH-A and Lk-ADH)
ADH-A and Lk-ADH activity assays were conducted directly in

a 96-well plate with a total volume of 200 µL. 1 mg mL-1 of the
enzyme (10 µL), 20 mM NAD+ (5 µL), 50 mM TRIS-HCl buffer
pH = 7.5 (180 µL) and pure 2-propanol (5 µL) were added in that
exact order, mixed and immediately measured on the plate reader.

2.5 Monitoring enzymatic stability

Stock solutions enzymes (0.1 mg mL-1 for GDH; 1 mg mL-1 for
ADH-A and Lk-ADH) were separately prepared in 29 different
solvents, namely, 28 aqueous DES and corresponding reference
buffer (Table 1). A total of 29 individual stock solutions for each
enzyme were kept in sealed glass vials in the dark and incubated at

TABLE 1 List of DES used for ADHs activity and stability screening.

Abbrev. (HBA:HBD) Molar ratio of components Water content (wt%)

10% 30% 50%

Betaine-
based DES

1 B:EG 1:2 DES 1.1 DES 1.2 DES 1.3

2 B:PG 1:3 DES 2.1 DES 2.2 DES 2.3

3 B:Gly 1:2 DES 3.1 DES 3.2 DES 3.3

4 B:U 1:3 x* x* DES 4.3

Choline
chloride-
based DES

5 ChCl:U 1:2 DES 5.1 DES 5.2 DES 5.3

6 ChCl:U:EG 1:2:2 DES 6.1 DES 6.2 DES 6.3

7 ChCl:U:Gly 1:2:2 DES 7.1 DES 7.2 DES 7.3

8 ChCl:EG 1:2 DES 8.1 DES 8.2 DES 8.3

9 ChCl:Gly 1:2 DES 9.1 DES 9.2 DES 9.3

10 ChCl:PG 2:3 DES 10.1 DES 10.2 DES 10.3

Abbreviations: betaine (B), choline chloride (ChCl), ethylene glycol (EG), glycerol (Gly), propylene glycol (PG), urea (U). *B:U at molar ratio 1:3 with 10 and 30 wt% of water is a solid at room

temp.
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30°C. Aliquots were periodically withdrawn from these vials, for
stability measurements according to previously defined model
enzymatic activity assays. For simultaneous evaluation of all stock
solutions, experiments were performed in a 96-well plate and each
measurement was carried out in triplicates. More precisely, each well
represented an individual model oxidation reaction catalyzed by
enzyme incubated in different solvents. For each measurement in
time, a new 96-multi well plate was used.

Initially, activity measurements were conducted daily for 1 week,
followed by measurements every 7 days until a 50% decrease in
residual activity was observed. Furthermore, to capture any initial
enzymatic activity changes, activity assessments on the first day of
incubation were performed at 0, 2, 4, 6 and 8 h. Residual enzymatic
activity (AR, %) was separately calculated for enzymes in each tested
solvent and expressed as a percentage according to 100% activity
measured in each tested solvent 20 min after preparing its stock
solution (set as time zero). The decrease of residual enzymatic
activity through time was described by the first-order kinetic model:

AR t( ) � AR,0 · e−k·t

where k is the first-order rate constant (day-1) and AR is residual
enzymatic activity (either at time zero or at time t). Kinetic
parameters were estimated by fitting the experimental data to the
nonlinear equation using the Levenberg–Marquardt algorithm
implemented in WR Mathematica 10.0.

Half-life of enzymes (t1/2, day) was calculated based on
determined k, the first-order rate constant (day-1), according to
the equation for first-order reactions:

t1/2 � ln 2
k

2.6 DES σ-decriptors

All DES constituents, including HBA, HBD and water
molecules, underwent geometry and energy optimization using
the BIOVIA TmoleX19 version 2021 (Dassault Systèmes)
software. For quantum chemical calculations, DFT (density
functional theory) with the BP86 functional level of theory and
def-TZVP basis set were employed (Klamt et al., 1998b). To obtain a
simplified and user-friendly database, only the single most abundant
non-ionized conformer with the lowest energy was selected for each
molecule and utilized for subsequent calculations. Molecules
consisting of two or more ions (e.g., choline chloride) were
treated as ion pairs (Abranches et al., 2019). The COSMO file for
each optimized molecule, generated using BOVIA COSMOtherm
version 2021 (Dassault Systèmes) software, contained its σ-profile
curve (Figure 1B). Molecular descriptors for all DES constituents
were defined based on their σ-profile curves, which were divided into
10 regions with a width of 0.005 e/Å2, covering the range
from −0.025 to +0.025 e/Å2. The areas under the curve were
integrated separately for each defined region. The ordinate values
on the boundaries of the regions were evenly split and attributed to
neighboring regions. Consequently, 10 S descriptors (S1–S10) of the
σ-profiles were calculated, representing the numerical values of these
10 areas (Supplementary Table S1; Figure 1C). To generate a unique
descriptor set for each specific DES, the σ-profiles of its constituents

underwent the following processing. The descriptors of the studied
DESs (Simix) were derived from the HBA, HBD and water
descriptors according to equation (Benguerba et al., 2019):

Simix � ∑
NC

j�1
XjS

i
σ−prof ile,j

where i is the descriptor number (1–10), j is the DES constituent
number, Xj is the molar fraction of HBA, HBD or water, Siσ-profile,j is
the jth constituent ith descriptor and NC is the total number of
constituents from which DES is prepared.

2.7 Artificial neural network (ANN) modelling
of correlation between enzymes’
inactivation rate constant and DES
descriptors

It was assumed that the enzymes’ inactivation rate constant can
be described as a function of the σ-profile of the mixture, expressed
by a set of Simix descriptors according to equation:

k1 � f S1mix, S
2
mix, S

3
mix, S

4
mix, S

5
mix, S

6
mix, S

7
mix, S

8
mix, S

9
mix, S

10
mix( )

Multilayer perceptron (MLP) artificial neural networks (ANNs)
were used for the prediction of the enzymes’ inactivation rate
constant based on Simix descriptors. The ANN input layer was
different for individual enzymes; (i) for ADH-A input variables
were S3mix, S

4
mix, S

5
mix, S

6
mix, S

7
mix, S

8
mix, S

9
mix and S

10
mix; (ii) for GDH

input variables were S1mix, S
5
mix, S

6
mix, S

7
mix, S

8
mix and S10mix; (iii) for

Lk-ADH input variables were S1mix, S6mix and S5mix.The number of
input variables was estimated based on the Spearman correlation
matrix between enzymes’ inactivation rate constant and Simix

descriptors. The number of neurons in the hidden layer varied
between 4–13 and was randomly selected by the algorithm. The
hidden activation function and output activation function were
selected randomly from Identity, Logistic, Hyperbolic tangent and
Exponential function. 84 experiment data were randomly divided into
a calibration set (55 data points) and a prediction set (23 data points).
The calibration data set was furthermore divided into 70% for
network training, 15% for network testing and 15% for model
validation. Model training was carried out using a back error
propagation algorithm and the error function was a sum of
squares implemented into Statistica v.14.0. The developed model’s
performance was estimated by calculating R2 and Root Mean Squared
Error (RMSE) values for the training, test and validation sets. The
prediction performance of the models was estimated based on the
coefficient of determination for prediction (Rpred

2), the adjusted
coefficient of determination for calibration (Rpred

2
adj), the root

mean square error for prediction (RMSEP), the standard error of
prediction (SEP), the ratio of prediction to deviation (RPD) and the
ratio of the error range (RER) (Fearn, 2002).

3 Results and discussion

Stabilized enzymes are essential for industrial biocatalysis due to
their enhanced operational stability, resulting in prolonged enzyme
activity and overall cost-efficiency. In that sense, ensuring enzyme
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stability is a significant challenge in integrating enzymes into
continuous systems and large-scale biocatalysis, as well as in
minimizing enzyme inactivation during storage, reagent
preparation and biocatalytic assays. Previous research groups
have demonstrated DES capability to stabilize various industrially
relevant dehydrogenases (Gotor-Fernández and Paul, 2019;
Gajardo-Parra et al., 2023). Additionally, we recently showcased
significant stabilization of the nicotinamide coenzyme utilized by
these enzymes within DES (Radović et al., 2022). Given the
demonstrated influence of DES composition, including starting
components and water content, on the stability of
dehydrogenases, we were compelled to broaden the scope of DES
experimental screening for a more nuanced understanding of DES
stabilization capability. For that purpose, a total of 28 DES were
prepared and the σ-profile of each DES was calculated to develop a
straightforward and reliable QSPR-ANN model for predicting the
stability of these three enzymes in DES. This endeavor aimed to
highlight the potential of a combined experimental and theoretical
approach in guiding the rational design of DES and underscore its
significance in studies concerning enzyme stability within these
solvents. We assessed the capability of a diverse array of DES to
stabilize NADH-dependent alcohol dehydrogenases (ADHs),
specifically ADH-A from R. ruber and Lk-ADH from L. kefir,

widely utilized for stereoselective ketone reduction (Bradshaw
et al., 1992; Pȩkala en Zelaszczyk, 2009; Karabec et al., 2010),
along with glucose dehydrogenase GDH from Bacillus
megaterium, a versatile tool for nicotinamide adenine
dinucleotide (NAD(P)H) regeneration in enzyme-catalyzed
ketone reduction.

3.1 DES selection and σ-descriptor definition

For clarity in data interpretation, DES were roughly divided into
two categories according to the chosen HBA, namely, betaine-based
and choline chloride-based DES (Table 1). The choice of HBD such
as ethylene glycol, glycerol and propylene glycol was influenced by
promising studies recognizing polyol-based DES as effective
stabilizers for dehydrogenases and enzymes in general (Bittner
et al., 2022; Gajardo-Parra et al., 2023). Consequently, DES
containing urea or both urea and polyol were also added to
assess their individual or combined effect on enzymatic stability.
The inclusion of urea in polyol-based DES builds upon our prior
findings, which suggested that urea, acting as a HBD, significantly
enhances the stabilization of the NAD coenzyme (Radović et al.,
2022). Finally, various water contents were investigated for each

FIGURE 1
σ-surfaces of different DES components (A) and their individual σ-profiles (B) used to calculate σ-profiles of respective DES at different water
shares (C).
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DES, specifically 10, 30 and 50 wt%. DES dilutions beyond 50% were
not considered, as additional water would result in a solvent
behaving more like a solution of its individual components in
water (Gutiérrez et al., 2021).

For the purpose of developing QSPRmodels (Section 3.3), the σ-
profile of each DES was calculated by using BOVIA COSMOtherm
software. The σ-profile shows the probability of finding surface
segments with specific σ polarities on a molecule’s surface. It
contains the essential chemical information to predict a
compound’s electrostatic interactions, hydrogen bonding and
dispersion forces. The charge distribution and the width and
height of peaks in the σ-profile vary with the nature of the
molecules, allowing for quantitative assessment of any structural
changes, making them extremely useful in deep learning to
accurately correlate and predict a wide range of physicochemical
properties (Abranches et al., 2022; Panić et al., 2022). Herein, the σ-
profile curves for each HBA and HBD were divided into 10 regions
and the area under each region was calculated, taking into account
the molar ratios of the components and the water content
(Supplementary Table S1). As evident from Figure 1, the
variation in HBD and water proportions led to the formation of
DES with distinct molecular polarity distributions. This property
can be quantitatively represented by the DES σ-profile - a mixture’s
polar surface charge on the polarity scale (calculated by BOVIA
COSMOtherm software) (Klamt, 1995). Typically, HBA exhibits
peaks in the negative potential region, HBD peaks in the positive
potential region and nonpolar molecules peaks in the potential
region around zero (Figure 1B). Figure 1C clearly shows that
even small changes in DES composition, such as increasing the
water content from 10 to 50 wt%, drastically influence the overall
DES σ-profile. This illustrates the capability of the molecular
descriptors generated by the software to capture nuanced
phenomena such as polarizability and asymmetry in electron
density. These characteristics are pivotal for comprehensively
exploring and quantifying the expansive chemical landscape of
these solvents, which all potentially have a detrimental effect on
enzyme behavior.

3.2 Experimental assessment of DES
influence on enzyme stability

To determine whether DES are effective in suppressing the
inactivation of the three selected dehydrogenases, the residual
enzymatic activity during incubation in 28 different DES and
their corresponding reference buffers at 30°C was measured
utilizing model activity assay (Section 2.4). Considering that the
selected dehydrogenases have the potential to oxidize hydroxyl
groups present in some HBDs (ethylene glycol, glycerol and
propylene glycol), we investigated whether the enzymes not only
oxidize the substrates used in the assays but also the DES
components. By substituting the model substrates used in the
assays with pure DES components, we examined whether NADH
formation occurred. No turnover of cofactors was detected,
confirming that the model activity assays can be applied to the
entire experimental setup (data not shown). While investigating the
stability of dehydrogenases in their optimal reference buffer, it is
evident that they do not share the same stabilization issues: a

comparison of their individual stabilities in the reference buffer
reveals notable differences (Table 2). Specifically, ADH-A
demonstrates high stability in the reference buffer, retaining up
to 50% of residual activity even after 21 days of incubation. On the
other hand, Lk-ADH and GDH are good candidates for prolonged
stability enhancements. Unlike ADH-A, they experience a complete
loss of activity in the reference buffer by the fourth and seventh day
of incubation. Replacing reference buffers with DES resulted in
varying trends in residual enzymatic activities (Supplementary
Figures S1-S3), depending on the enzyme. For all enzymes, both
in reference buffers and DES, inactivation followed first-order
kinetics. Therefore, such kinetic model was used to calculate
enzymes’ inactivation rate constants (k, h-1) (Supplementary
Table S2) and the corresponding enzymes’ half-lifes (t1/2, day)
(Figures 2–4). It is important to note that in most cases, the
residual enzymatic activity increased from initial value of 100%
within the first few days of incubation in DES, followed by a gradual
decrease. This phenomenon of enzyme “overstabilization” in DES
has been previously reported for laccase and hydrolytic enzymes
(Delorme et al., 2020; Varriale et al., 2022; Guo et al., 2023). The
authors of these studies explained it as the enzymes needing time to
uniformly distribute through the viscous medium or to undergo
certain rearrangements of their secondary and tertiary structures
while adapting to the DES environment. However, as none of these
explanations were applicable to the setup used in this study
(incubated enzyme’s activity measured in buffer), for the sake of
developing reliable kinetic models, values for residual activities
exceeding 100% were omitted. Finally, for clarity, the results for
each enzyme’s behavior are first analyzed individually. This is
followed by a comprehensive discussion, with a special emphasis
on the relationship between DES structure and enzyme stability.

Figure 2; Supplementary Figure S1 illustrate the notable stability
of ADH-A in various DES and the reference buffer, persisting for up
to 21 days. This observation is consistent with previous findings
indicating that this enzyme displays high stability in non-
conventional media, particularly organic solvents (Karabec et al.,
2010). Such stability comes in handy when biocatalysis of
hydrophobic substrates is performed that often requires
substantial amounts of organic solvents typically inadequate for
enzymes. Predicting the industrial demand for a fast adaptation to
growing environmental challenges, DES are hereon being explored
as novel green solvents intended to replace currently used organic
solvents. As shown in Figure 2, incubating ADH-A in different DES
during the period of 21 days at 30°C revealed that, in general, most of
the DES containing 30 and 50 wt% water provided equal or slightly
lower stabilization for ADH-A. Residual ADH-A activity after the
incubation period ranged from 20% to 50% (t1/2 from 11.0 to
36.1 days) compared to the reference buffer, where residual
ADH-A activity was 50%, with t1/2 = 23 days. Only in two
betaine-based DES with ethylene glycol as HBD, namely, DES
1.2 and DES 1.3, an improvement in the enzyme stability
compared to the reference buffer was observed, with t1/2 values
of 36.1 and 29.7 days, respectively. It is worth noting that after the
same incubation period, ADH-A activity was completely lost in all
DES containing 10 wt% water with t1/2 < 7.8 days.

GDH has been identified as an enzyme requiring significant
stabilization improvement, as its residual activity drastically
dropped by 97% after just 1 day of incubation in the reference
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buffer and was completely lost after only 4 days at 30°C, giving a t1/
2 of 0.2 days (Figure 3). However, incubating GDH in various DES
over the same period revealed that nearly all tested DES provided
significantly greater stabilization than the reference buffer. This
effect was most pronounced in polyol-based DES, with DES

3.1 showing 45%, DES 3.3 showing 48%, DES 8.1 showing 47%
and DES 10.3 showing 46% residual activity after 14 days of
incubation (Supplementary Figure S2). Comparing the half-life
of GDH in the reference buffer (t1/2 = 0.2 days) with those in DES
3.1 (t1/2 = 11.1 days) and DES 9.1 (t1/2 = 12.7 days), an astonishing

TABLE 2 Residual activity (AR, %) and half-life (t1/2, day) of dehydrogenases in reference buffers.

enzyme Time (days) t1/2 ± st. dev. (day)

0 0.1 1 2 3 4 7 14 21

ADH-Aa 100 112 120 138 138 133 126 62 50 23.038 ± 3.122

GDHb 100 92 3 2 1 1 0 0 0 0.193 ± 0.009

Lk-ADHa 100 78 6 1 1 0 0 0 0 0.796 ± 0.546

a50 mM TRIS-HCl, pH = 7.5.
b50 mM potassium-phosphate buffer, pH = 7.5.

FIGURE 2
Half-life of ADH-A (t1/2, days) in different DES (A) and exemplary residual ADH-A activity (AR, %) over time in DES 1 (B) compared to 50 mM TRIS-HCl
buffer, pH = 7.5.

FIGURE 3
Half-life of GDH (t1/2, days) in different DES (A) and exemplary residual GDH activity (AR, %) over time in DES 3 (B) compared to 50 mM potassium-
phosphate buffer, pH = 7.5.
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60-fold approximate increase was observed. Interestingly, in
contrast to ADH-A, in DES 3, DES eight and DES 9, this
enzyme was particularly stabilized at low water content of
10 wt%.

Lk-ADH is an (R)-specific alcohol dehydrogenase that exhibits
significant stability issues in the reference buffer at 30°C. As shown
in Figure 4; Supplementary Figure S3, Lk-ADH lost 99% of its
residual activity after just 2 days of incubation in buffer. Efforts to
enhance this poor stability by using DES were largely successful.
Several DES significantly stabilized the enzyme, retaining more
than 50% of its residual activity even after 28 days of incubation.
Specifically, DES 3.2, 3.3, and 9.1 maintained residual activities of
60%, 76% and 56%, respectively. Notably, the half-life of Lk-ADH
in the reference buffer (t1/2 = 0.8 days) increased dramatically in
DES 3.2 (t1/2 = 33.7 days) and DES 3.3 (t1/2 = 74.6 days),
representing up to a 90-fold improvement. The addition of
water to DES generally enhanced the medium’s ability to
stabilize the enzyme.

Having examined the specific impacts of DES on
dehydrogenase stability and considering the results presented,
several overarching conclusions can be drawn and discussed.
Overall, DES demonstrate significant potential in stabilizing
enzymes Lk-ADH and GDH, which are inherently unstable in
aqueous buffered solutions. However, for ADH-A, an enzyme that
is relatively stable in such environments, stabilization
improvements were observed primarily in betaine-based DES
featuring ethylene glycol as the HBD (DES 1). When we
analyze the molecules used as HBA or HBD, it seems that
choline chloride-based DES are generally more suitable for
long-term enzyme incubations than betaine-based ones. In
depth, DES 3 (B:Gly), DES 8 (ChCl:EG), DES 9 (ChCh:Gly)
and DES 10 (ChCh:PG), all containing exclusively polyols as
HBD, emerge as top candidates for all tested enzymes. This
aligns with literature findings that recognize polyol-based DES,
especially glycerol-based ones, as excellent stabilizers for
dehydrogenases and other enzymes relevant to industry (Bittner
et al., 2022; Gajardo-Parra et al., 2023). Specifically, observed

beneficial effect is attributed to the abundance of hydroxyl
(OH) groups in the HBD: the greater the number of these
groups, the better, as they enhance enzyme stability by forming
hydrogen bonds with the amino acids of the enzyme (Toledo et al.,
2019; Delorme et al., 2020). More specifically, by studying the
mechanism of lysozyme stabilization in choline chloride-based
DES with glycerol as a HBD using molecular dynamics, Hebbar
et al. detected a high number of protein-glycerol interactions,
which could be attributed to the numerous hydrogen bond-
donating functional groups (Hebbar et al., 2023). This DES also
induced a sharp decrease in intra-protein interactions and an
increase in protein-choline hydrogen bonds, indicating a change
in the overall protein conformation. Additionally, Sanchez-
Fernandez et al. showed that the same DES forms a protective
hydration layer around lysozyme, thus retaining its globular nature
and backbone rigidity, even though changes in the secondary
structure were observed (Sanchez-Fernandez et al., 2022).
Regarding urea, another HBD tested in this study, the results
demonstrated its limited capacity to stabilize the three tested
enzymes, whether used as the sole HBD or as part of a three-
component DES. Nevertheless, DES incorporating this amide were
able to stabilize the enzymes as effectively as, or even better than,
the corresponding reference buffer. Furthermore, the results
indicate that the stability of the tested dehydrogenases is
significantly influenced by the water content in DES. Generally,
all three enzymes exhibit faster activity loss in DES with the lowest
water content (10 wt%), while in DES containing 30 or 50 wt% of
water, the enzyme inactivation rates were similar. This suggests
that the selected enzymes generally require more than 10% water in
DES to maintain their structural integrity. These findings align
with previous observations that most oxidoreductases, including
the selected alcohol dehydrogenases, require small amounts of
water in DES to retain their activity (Mourelle-Insua et al., 2019;
Bittner et al., 2022). Namely, it is well established that the water
content in the enzyme’s environment directly influences its
hydration level and, consequently, its structural integrity,
crucial for maintaining enzymes in an active and stable state. In

FIGURE 4
Half-life of Lk-ADH (t1/2, days) in different DES (A) and exemplary residual Lk-ADH activity (AR, %) over time in DES 3 (B) compared to 50mMTRIS-HCl
buffer, pH = 7.5.
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this context, DES are unique solvents: at low water content, they
effectively absorb water into their hydrogen bond-based
supramolecular network. For example, small amounts of water
in hydrated DES can enhance the hydrogen bond network by
integrating water molecules into the DES voids, acting as a small
HBD or HBA. This phenomenon has been confirmed by López-
Salas et al., who demonstrated that in a “water-in-DES” system
with up to about 40 wt% water, the tetrahedral structure of water is
distorted due to its incorporation into the hydrogen bond
complexes formed among the original DES components (López-
Salas et al., 2019). Consequently, this phenomenon reduces the
availability and activity of water molecules in the medium (DES),
potentially leading to enzyme dehydration to a level where
irreversible denaturation occurs (as herein evidenced by a
complete loss of activity upon returning the enzymes to
buffered aqueous medium).

Lastly, if we consider DES as a medium for a long-term storage
of the enzymes, a significant advantage of these solvents is their
resistance to contamination. Typically, incubation of enzymes in
aqueous solutions at 30°C is susceptible to contamination, which was
observed in this research as well. Enzyme samples prepared in
buffers exhibited turbidity and sensory changes. Conversely, no
contamination was detected in the DES samples, further
underscoring the robustness of these solvents for long-term
enzyme storage. This finding highlights the stability and integrity
of DES, making them an ideal medium for maintaining enzyme
activity over extended periods without the risk of inactivation or
contamination.

3.3 Development of QSPR-ANN models
using DES molecular descriptors

Our next step was to model the relationship between the
enzyme inactivation rate constant and DES descriptors (QSPR
model) for each enzyme based on the experimental data, utilizing
ANNs. First, the first-order kinetic model was used to compare
the inactivation rate constants over time for all three analyzed
enzymes (Supplementary Table S2). By analyzing the enzymes’
inactivation rate constants, we can quantify the influence of DES
on enzyme activity. For ADH-A, the highest inactivation rate
constant was observed with DES 2.1 (k = 0.9639 h⁻1), while the
lowest constant was obtained with DES 1.2 (k = 0.0008 h⁻1). This
difference is directly linked to DES composition: although both
DES contain the same HBA (betaine) and similar HBD (polyols -
ethylene glycol and propylene glycol), DES 2.1 contains only
10 wt% water while DES 1.2 contains 30% water. For GDH, the
lowest inactivation rate constant was found with DES 9.1 (k =
0.0023 h⁻1), while for Lk-ADH, the lowest rate constant was with
DES 9.2 (k = 0.0002 h⁻1). However, some DES resulted in very
high inactivation rate constants for GDH and Lk-ADH (up to
50.9799 and 51.0000 h⁻1, respectively). For GDH, this was
observed with DES 1.1 and DES 2.1, while for Lk-ADH, high
inactivation rates were noted across multiple DES, specifically
DES 1.1, DES 6.2, DES 6.3, DES 8.1, DES 10.1 and DES 10.2.

The number of input variables was selected based on the
correlation matrix between inactivation rate constants and
10 DES descriptors. Table 3 shows the ANNs selected asT
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optimal for predicting specific inactivation rate constants based on
R2 and RMSE for the training, test and validation datasets, as well
as considering the number of neurons in the hidden layer. A lower
number of neurons in the hidden layer was considered
advantageous as it implies a simpler network structure (Chen
et al., 2022). Developed models were used for independent
prediction to analyze their applicability. Results showed that the
best agreement between the experimental data and the data
predicted by the ANN model was obtained for ADH-A
(Rpred

2 = 0.99904, Rpred
2
adj = 0.9902, RMSEP = 0.0016, SEP =

0.0004, RPD = 3.0466, RER = 7.9065), followed by GDH (Rpred
2 =

0.9021, Rpred
2
adj = 0.8655, RMSEP = 0.0051, SEP = 0.0011, RPD =

2.4902, RER = 7.7491) and Lk-ADH (Rpred
2 = 0.8927, Rpred

2
adj =

0.8524, RMSEP = 0.0066, SEP = 0.0032, RPD= 1.1976, RER= 4.1260).
Based on Rpred

2, all developed ANN models can be considered
substantial (Rpred

2 > 0.75) (Hussain et al., 2018). The suitability of
the developed ANN models for predicting the inactivation rate
constants based on DES descriptors was also estimated using the
ratio of prediction to deviation (RPD) and the ratio of the error range
(RER). Models with RPD<1.4 are considered non-reliable, those with
RPD in the range from 1.4 to two are considered fair, while models
with RPD>2 are described as excellent models (Chang et al., 2001).
Furthermore, models with RER>4 are acceptable for data screening,
models with RER>10 can be used for quality control, while models
with RER >15 can be used for quantification (Sim et al., 2023). Based
on the obtained results, it can be concluded that developed ANN
models for ADH-A and GDH can be considered excellent (RPD>2)
and can be used for screening (4<RER<11) the inactivation rate
constants based on DES descriptors. To make the model useable for
quality control, the DES descriptor database should sourly expand to
more DES with different HBA and HBD. As mentioned by Lemaoui
et al. a significant advantage of DESs is their tailor-made nature,
leading to an extensive array of potential DES variants (Lemaoui et al.,
2022). Hence, computational methods capable of predicting the
properties of DESs are crucial for numerous industrial applications
and research endeavors.

4 Conclusion

This study demonstrates the significant potential of DES for
stabilizing tested dehydrogenases, highlighting their capacity to
enhance enzyme stability and operational efficiency in industrial
biocatalysis. By systematically screening 28 different DES and
developing robust ANN models, we identified DES based on
polyols as particularly effective stabilizers, significantly
outperforming reference buffers. Furthermore, we demonstrated
that the ANN models, with their high predictive accuracy,
provide a dependable means for in silico screening of DES,
bypassing the need for labour-intensive experimental screening
and paving the way for the rational design of tailored DES
formulations. Also, such models enable the exploration of a vast
chemical space of DES that would be impractical to cover
experimentally. In conclusion, the presented integrated
experimental and in silico approach offers a way to harness the
strengths of both methods, thereby enhancing reliability, optimizing
resources, and accelerating the development of DES for enzyme
stabilization.
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