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Editorial on the Research Topic
Novel design, synthesis, and environmental applications of covalent
organic frameworks

The exploration of Metal Organic Frameworks (MOFs) and Covalent Organic
Frameworks (COFs) have surpassed traditional boundaries of material science, offering
innovative solutions to a range of global challenges from environmental pollution to the
detection of risky substances. This editorial aims to encapsulate the recent strides made in
the characterization and application of these versatile materials, while also highlighting
methodological advancements that are propelling the field forward.

Advancements in material characteristics and
applications

Recent research of Guo et al. into the electrochemical behavior of chiral-doped Fe
(Sudik et al., 2005; Scherb et al., 2008; Chen et al., 2017; Millange andWalton, 2018; Le et al.,
2019; Navarathna et al., 2019; Ajpi et al., 2023) and Zn-based MOFs (Altaf et al., 2018) has
unveiled significant insights into their potential as advanced materials for electronic
applications. The findings indicate that the electronic and structural properties of these
MOFs are predominantly influenced by the type of metal center rather than the chemical
nature of the chiral dopants. This revelation was established through solid-state
electrochemical measurements complemented by infrared spectroscopy, X-ray
diffraction, and absorption techniques to further characterize their properties.

Chiral-doped MOFs, such as MIL53 S-CSA, have shown promising results in
photocatalytic applications, particularly in water splitting for oxygen evolution reactions
(OER). The enhanced photocurrent and efficiency observed in these materials can be
attributed to their improved light absorption and catalytic properties. This makes them
highly suitable for applications in sustainable energy solutions and advanced
electronic devices.

The research also explores the impact of different organic ligands and synthetic
conditions on the stability, porosity, and electronic properties of MOFs. By carefully
selecting and manipulating these factors, researchers can fine-tune the MOFs’
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characteristics to meet the demands of various specialized
applications, including chiral recognition, separation
and catalysis.

In summary, the development of chiral-doped MOFs
represents a significant step forward in the field of materials
science. By leveraging both experimental and theoretical
approaches, researchers are unlocking new potentials for
these materials in electronic and photocatalytic applications,
paving the way for innovative solutions in technology and
energy sustainability.

Ma et al.’s advancements highlight COFs’ potential as
multifunctional photonic materials. Incorporating
fluorophores into COFs has led to luminescent COFs with
superior fluorescence compared to traditional organic solids.
Their porous structures host various guest molecules, reducing
internal friction, vibrations, and thermal losses that usually
quench fluorescence.

The article highlights the application of fluorescent COFs in the
detection and monitoring of explosive chemicals, showcasing their
potential as chemical sensors (Das et al., 2015). The design principles
and examples provided pave the way for future innovations in this
field. Additionally, the article discusses the challenges of achieving
fluorescence in two-dimensional (2D) (Dalapati et al., 2013) and
three-dimensional (3D) COFs (Lin et al., 2016), such as overcoming
aggregation-caused quenching (ACQ) in 2D COFs (Dalapati et al.,
2013) and the scarcity of suitable fluorescent building blocks for 3D
COFs (Lin et al., 2016).

Fluorescent COFs are promising for optoelectronics, energy
storage, adsorption, separation, and catalysis due to their
tunable structures. Incorporating aggregation-induced
emission (AIE) concepts, as seen in TPE-Ph-COF (Dalapati
et al., 2016) and 3D-TPE-COF (Smith et al., 2017), has
boosted their fluorescence intensity and photoluminescence
quantum yield (PLQY).

The article reviews fluorescence in COFs, focusing on π-π
stacking, conjugated structures, stacking modes and fluorescent
groups. These factors are critical for improving COFs’
fluorescence and applications, making them competitive with
organic semiconductors. Ongoing research aims to unlock new
functionalities for fluorescent COFs.

Innovative research methods

In a groundbreaking study by Kriesche et al., researchers
have combined ANI-2 Neural Network Potential (NNP) with
molecular dynamics (MD) frameworks to explore the CO2

adsorption properties of COFs: HEXCOF1 (Alahakoon et al.,
2016) and 3D-HNU-5 (Guan et al., 2019). Both COFs share
the same linking unit, yet exhibit distinct structural
configurations and CO2 adsorption capabilities (Alahakoon
et al., 2016; Guan et al., 2019). HEXCOF1 features a two-
dimensional layered structure, while 3D-HNU-5 boasts a
three-dimensional tetrahedral geometry, forming an
interpenetrated diamond-like topology (Alahakoon et al.,
2016; Guan et al., 2019).

The study chose these structurally similar COFs to compare
CO2 storage in 2D and 3D environments. Evaluating ANI-2

NNP’s performance before loading CO2 provided insights into
how dimensionality affects CO2 adsorption in the COFs. The
study shows that combining computational methods with
experimental data enhances our understanding of COFs’
adsorption properties, aiding in the design of more efficient
COF-based materials for environmental applications.

Emerging applications in food safety

Guo et al.’s researches highlight MOFs’ potential in food
contamination adsorption and detection. With large surface
areas, unique pore structures, and versatile modifications, MOFs
enhance food safety. Cost-effective zinc, copper, and zirconium-
based MOFs effectively adsorb pollutants and serve as
sensitive sensors.

MOFs’ selective adsorption improves sample purification and
detection efficiency, leading to novel, rapid, portable, and cost-
effective detection methods. They summarize these
advancements, emphasizing MOFs’ ability to address traditional
food safety challenges like high labor costs, expensive equipment,
lengthy detection times, and complex sample preparation (Liu et al.,
2019; Chen et al., 2022; Fu et al., 2022; Ghiasi et al., 2022; Majd et al.,
2022; Zhang et al., 2022).

Despite these promising developments, MOFs’ integration
into food safety protocols faces hurdles, including stability and
selectivity Research Topic in complex matrices. Addressing
these challenges through continued research and optimization
will pave the way for MOFs to become indispensable in ensuring
food safety, offering innovative solutions to one of the most
pressing global concerns.

Challenges and future directions

Despite these promising developments, the field faces several
challenges. The scalability of synthetic methods, the long-term
stability of MOFs and COFs under various environmental
conditions, and the economic viability of these materials are
areas that require ongoing research. Addressing these challenges
will be crucial for transitioning MOFs and COFs from the
laboratory to actual environmental applications.

Conclusion

As the research community continues to explore the vast
potential of MOFs and COFs, it is vital that we maintain a focus
not only on advancing fundamental science but also on applying
these materials to solve real-world problems. The convergence of
innovative material properties with practical applications promises
to drive the next wave of material science breakthroughs, potentially
revolutionizing industries and improving global living standards.
For researchers and students in the field, the journey is just
beginning, and the opportunities to make a significant impact are
boundless. As we advance, let us ensure that these materials are
developed responsibly, with a clear vision towards sustainability and
society benefit.
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