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Biotoxins are ranges of toxic substances produced by animals, plants, and
microorganisms, which could contaminate foods during their production,
processing, transportation, or storage, thus leading to foodborne illness, even
food terrorism. Therefore, proposing simple, rapid, and effective detection
methods for ensuring food free from biotoxin contamination shows a highly
realistic demand. Aptamers are single-stranded oligonucleotides obtained from
the systematic evolution of ligands by performing exponential enrichment
(SELEX). They can specifically bind to wide ranges of targets with high affinity;
thus, they have become important recognizing units in safety monitoring in food
control and anti-terrorism. In this paper, we reviewed the technical points and
difficulties of typical aptamer screening processes for biotoxins. For promoting
the understanding of food control in the food supply chain, the latest progresses
in rapid optical detection of biotoxins based on aptamers were summarized. In
the end, we outlined some challenges and prospects in this field. We hope this
paper could stimulate widespread interest in developing advanced sensing
systems for ensuring food safety.
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1 Introduction

Biotoxins, also known as natural toxins, are groups of inherently small molecules,
peptides, or proteins, which are produced during themetabolism of plants, microorganisms,
and animals (Montecucco, 2012). Food contamination by biotoxin usually occurs due to
unsterilized processing, improper storage, as well as microbial spoilage, whereas others are
inherent ingredients in plants, or might be produced by environmental stimuli, such as
shellfish toxin (Rather et al., 2017). Biotoxins are prevalent in food-poisoning incidents
around the world and are the main culprits of various acute and chronic human diseases.
According to the World Health Organization (WHO), the consumption of mycotoxin-
contaminated grains (Alshannaq and Yu, 2017), meats, and vegetables (especially
fermented foods) with poor sanitation and bacterial contamination has been the first
cause of foodborne illness (WHO, 2015). Aquatic and marine foods such as shellfish, fish,
and even water are contaminated with algal biotoxins (Oliveira et al., 2011), as well as the
normal metabolites produced by some plants for natural defenses and resistance; all of these
become toxins in other organisms (Fletcher and Netzel, 2020). According to the
classification of toxin-producing organisms, they are classified as animal toxins (snake
venom and bee venom), plant toxins (lectins and alkaloids), microbial toxins (bacteria and
molds), and marine biotoxins (algae and shellfish) (Picardo et al., 2020). Specifically, some
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highly toxic biotoxins, such as ricin, acacia toxin, and tetrodotoxin,
have been listed in the Organization for the Prohibition of Chemical
Weapons (OPCW) and have a risk of being used by terrorist
organizations to threaten public security (Anderson, 2012).
Biotoxins act on the cell membrane or ribosomal protein with
high specificity, resulting in varying degrees of toxicity, which are
not only harmful to the health of consumers (Rather et al., 2017) but
also cause huge economic losses to the planting and aquaculture
industries. Although biotoxins cannot replicate themselves, they are
generally chemically stable and highly toxic. They can persist for a
long time after an organism dies, further entering food chains, and
finally triggering food safety and public health crises (Banach et al.,
2020). In the past, due to the lack in knowledge and reliable detecting
methods for biotoxins, food safety verification had been neglected,
thus leading to thousands of foodborne poisoning events. With the
continuous improvement of the economic level, people’s health
awareness also improved significantly. Therefore, highly sensitive
and rapid methods for detecting biotoxins are urgently required to
ensure foods free from biotoxin contamination (Bacha et al., 2023).

Until now, various analytical tools have been proposed to
determine biotoxin presence in foods, which can be mainly
divided into laboratory precision detection based on high-
performance liquid chromatography/mass spectrometry
(HPLC–MS) (Ahuja et al., 2023) and on-site rapid screening
represented by affinity-recognition sensors (Song et al., 2019;
Sarkar et al., 2023). Between them, LC–MS-based methods allow
precious, high throughput, and ultra-sensitive detection of
biotoxins. Benefited by the development of high-resolution mass
spectrometry (HRMS) and tandemmass spectrometry (MS/MS), the
sensitivity of biotoxin detection could further reach to ultra-low
levels, making them the gold standard for the identification and
quantification of toxins in food by research workers, regulatory
agencies, and the food industry. However, LC–MS-based methods
generally involve complicated sample preparation, costly
instruments, and well-trained personnel; these features confine
their applications in daily monitoring. In contrast, on-site rapid
screening biosensors, which are typically composed of highly

specific recognition ligands (e.g., antibodies and aptamers) with
advanced signal reporting materials, could well meet the need of the
modern society for daily safety monitoring of food samples. With its
rapid response, ease of use, and affordable advantages, it has become
an indispensable and powerful tool to ensure the safety and quality
of the food supply chain (Howes et al., 2014).

Aptamers are single-strandedDNAor RNA fragments of between
10 and 100 bases obtained from artistically synthesized libraries
(Scheme 1). They show unique three-dimensional structures,
which could form helices and single-stranded loop-like structures
tomatch specific targets (small molecules, proteins, cells, etc.) through
the non-covalent bonds, including hydrogen bonding, van der Waals
forces, electrostatic interactions, and π–π* stacking interactions.
Aptamers have multiple advantages of good stability, easy chemical
modification, high affinity and specificity, as well as low
immunogenicity. Until now, dozens of aptamers of biotoxins have
been obtained by the Systematic Evolution of Ligands by Exponential
Enrichment (SELEX) technology, as listed in Table 1. Aptamers have
also widely been used for constructing various biotoxin-specific
biosensors (He et al., 2023). In this field, optical biosensors based
on aptamer recognition (optical aptasensors) have gained more
scientific attention and offer promising applications in the field of
food safety and detection. They could transfer biorecognition events
into quantifiable optical signals without being restricted by the
environment and equipment, and they are rapid, accurate, cheap,
and portable. Specifically, through integrating aptamers as signal
reporting units with excellent optical materials (Loyez et al., 2022),
such as upconversion luminescent NPs, colloidal gold NPs, and time-
resolved fluorescent NPs, the detecting performance of aptasensors
could further be improved (Liu B. et al., 2022).

In this paper, a concise description of aptamer screening
processes for typical biotoxins and the key technical challenges
were briefly introduced. Then, the source and characteristics of
different biotoxins were summarized, and the general design for
optical aptasensors using advanced materials and the nucleic acid
isothermal amplification strategy were introduced in each chapter
comprehensively. Finally, the challenges and directions of future

SCHEME 1
Screening aptamer for biotoxin by SELEX and their food safety application.
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TABLE 1 Detailed information about the aptamers selected for mycotoxins.

Num Biotoxin Sequence (5′–3′) SELEX
method

Selection
buffer

Kd Ref.

1 AFB1 GTTGGGCACGTGTTGTCTCTCTGTGTCTCGTGCCCTTCGCTAGGCCCACA Resin SELEX 10 mM HEPES,
120 mM NaCl, 5 mM
KCl, 5 mM MgCl2,
pH 7.0

60 nM Shkembi et al.
(2021)

2 AFB1 AGCAGCACAGAGGTCAGATGGTGCTATCATGCGCTCAATGGGAGACTTTAGCTGCCCCCACCTATGCGTGCTACC
GTGAA

Magnetic bead-
SELEX

100 mM NaC1, 20 mM
Tris-HCl, 2 mM
MgCl2, 5 mM KCl,
1 mM CaCl2, 0.02%
Tween-20, pH 7.0

11.39 nM Ma et al. (2014)

3 AFB2 AGCAGCACAGAGGTCAGATGCTGACACCCTGGACCTTGGGATTCCGGAAGTTTTCCGGTACCTATGCGTGCTACC
GTGAA

Magnetic bead-
SELEX

100 mM NaCl, 20 mM
Tris-HCl, 2 mM
MgCl2, 5 mM KCl,
1 mM CaCl2, 0.02%
Tween-20, pH 7.0

9.83 nM Ma et al. (2015)

4 AFM1 ATCCGTCACACCTGCTCTGACGCTGGGGTCGACCCGGAGAAATGCATTCCCCTGTGGTGTTGGCTCCCGTAT Magnetic bead-
SELEX

20 mM Tris-HCl,
100 mM NaCl, 2 mM
MgCl2, 5 mM KCl,
1 mM CaCl2, pH 7.6

35 nM Malhotra et al.
(2014)

5 OTA GATCGGGTGTGGGTGGCGTAAAGGGAGCATCGGACA Resin-SELEX 10 mM HEPES,
120 mM NaCl, 5 mM
KCl, 5 mM MgCl2,
pH 7.0

50 nM Cruz-Aguado and
Penner (2008)

6 ZEN AGCAGCACAGAGGTCAGATGTCATCTATCTATGGTACATTACTATCTGTAATGTGATATGCCTATGCGTGCTACC
GTGAA

Magnetic bead-
SELEX

100 mM NaCl, 20 mM
Tris-HCl,2 mMMgCl2,
5 mM KCl,1 mM
CaCl2, 0.02% Tween-
20, pH 7.4

41 nM Chen et al. (2013)

7 FB1 ATACCAGCTTATTCAATTAATCGCATTACCTTATACCAGCTTATTCAATTACGTCTGCACAIACCAGCTTATTCAATTAG
ATAGTAAGTGCAATCT

Magnetic bead-
SELEX

100 mM NaCl, 20 mM
Tris, 2 mM MgCl,
5 mM KCl, 1 mM
CaCl2, pH7.6

100 nM McKeague et al.
(2010)

8 T-2 AGCTCAGAAGCTTGATCCTGTATATCAAGCATCGCGTGTTTACACATGCGAGAGGTGAAGACTCGAAGTCGTGCA
TCTG

Graphene oxide-
SELEX

10 mM Tris-HCl,
150 mM NaCl, 10 mM
KCl, 2.5 mM MgCl2,
pH 7.4

20.8 nM Chen et al. (2014)

9 DON GCATCACTACAGTCATTACGCATCGTAGGGGGGATCGTTAAGGAAGTGCCCGGAGGCGGTATCGTGTGAAGTGCT
GTCCC

Magnetic bead-
SELEX

50 mM Tris-HCl,
5 mM KCl, 100 mM
NaCl, 1 mM MgCl2,
pH 7.4

N/A Patent:
CN-102559686-A
(2024)

(Continued on following page)
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TABLE 1 (Continued) Detailed information about the aptamers selected for mycotoxins.

Num Biotoxin Sequence (5′–3′) SELEX
method

Selection
buffer

Kd Ref.

10 DON GGCACGGAGTCTGCCCGACTGGGGACCCTAGGATCACTTA Sepharose bead-
SELEX

2 mM KH2PO4, 8 mM
Na2HPO4, 136 mM
NaCl, 2.6 mM KC1,
5 mM MgCl2, 1 μg mL-
1 tRNA, 0.02%
Tween-20

40.5 nM Patent:
CN-113774063-A
(2024)

11 Patulin CGAAATCGCGTCCAGTGTTGGGGCGTGCTTATCCTTACACGATTTACCTGAAACGCACCGTACTGAACTACGGCG
AGGTC

Biolayer
interferometry-
SELEX

50 mM Tris HCl, pH 8 82 nM Mukherjee et al.
(2022)

12 STX TAGGGAAGAGAAGGACATATGATGGCACAAGGCCTCATCAATCGGTATACGGGTTGACTAGTACATGACCACTTGA Graphene oxide-
SELEX

2.7 mM KCl, 140 mM
NaCl, pH 7.4

50.8 nM Ha et al. (2019)

13 STX ATAGGAGTCACGACGACCAGCTTTTTACAAAATTCTCTTTTTACCTAIATTATGAACAGATATGTGCGTCTACCTCTTGA Magnetic bead-
SELEX

2.7 mM KCl, 140 mM
NaCl, 0.05% Tween-
20, pH 7.4

61.4 nM Yu et al. (2021)

14 STX GGTATTGAGGGTCGCATCCCGTGGAACATGTTCATTGGGCGCACTCCGCTTTCTGTAGATGGCTCTAACTCTCCTCT Magnetic bead-
SELEX

2.7 mM KCl, 140 mM
NaCl, 0.05% Tween-
20, pH 7.4

3,840 nM Handy et al. (2013)

15 OA GGTCACCAACAACAGGGAGCGCTACGCGAAGGGTCAATGTGACGTCATGCGGATGTGTGG Agarose bead-
SELEX

50 mM Tris, pH 7.5,
150 mM NaC1, 2 mM
MgCl2, pH 7.5

77 nM Eissa et al. (2013)

16 OA ATTTGACCATGTCGAGGGAGACGCGCAGTCGCTACCACCT Graphene oxide-
SELEX

50 mM Tris, 150 mM
NaCl, 2 mM MgCl2,
pH 7.4

40 nM Gu et al. (2016)

17 PTX GGAGGTGGTGGGGACTTTGCTTGTACTGGGCGCCCGGTTGAA Magnetic bead-
SELEX

20 mM Tris, 100 mM
NaCl, 2 mM MgCl2,
5 mM KCl, pH 7.5

84.3 nM Gao et al. (2017)

18 TTX ATAGGAGTCACGACGACCAGTCAAATTTTCGTCTACTCAATCTTTCTGTCTTATCTATGTGCGTCTACCTCTTGA Magnetic bead-
SELEX

2.7 mM KCl, 140 mM
NaCl, 0.05% Tween-
20, pH 7.4

44.1 nM Yu et al. (2021)

19 DTX-1 CCACCAGGCCAAACACGACCCCAAACA Magnetic bead-
SELEX

50 mM Tris-HCl,
150 mM NaCl, 2 mM
MgCl2, pH 7.5

64 nM Li et al. (2020)

20 BTX-2 GGCCACCAAACCACACCGTCGCAACCCCGAGAACCGAAGTAGTGATCATGTCCCTGCGTG Divinyl sulfone
bead-SELEX

50 mM Tris, 10 mM
MgCl2, pH 7.5

92 nM Eissa et al. (2015)

21 BTX-2 GAGGCAGCACTTCACACGATCTGTGAAGTTTTTGTCATGGTTTGGGGGTGGTAGGTAATGACTGTAGAGATG Microwell-
SELEX

20 mM HEPES,
120 mM, NaCl, 5 mM
KCl, 1 mM CaCl2,
1 mM MgCl2

4.8 µM Tian et al. (2016)
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TABLE 1 (Continued) Detailed information about the aptamers selected for mycotoxins.

Num Biotoxin Sequence (5′–3′) SELEX
method

Selection
buffer

Kd Ref.

22 GTX 1/4 AACCTTTGGTCGGGCAAGGTAGGTT Graphene oxide-
SELEX

20 mM Tris-HCl,
10 mM MgCl2, pH 7.5

17.7 nM Gao et al. (2016)

23 DA ATAGGAGTCACGACGACCAGAAAAAIAATTTAAATTTTCTACCCAATGCTTTTCGCATAATATGTGCGTCTACCTCTTGA Magnetic bead-
SELEX

2.7 mM KCl, 140 mM
NaCl, 0.05% Tween-
20, pH 7.4

62.1 nM Yu et al. (2021)

24 MC-LR GGCGCCAAACAGGACCACCATGACAATTACCCATACCACCTCATTATGCCCCATCTCCGC Sepharose bead-
SELEX

50 mM Tris, 150 mM
NaCl, 2 mM MgCl2,
pH 7.5

50 nM Ng et al. (2012)

25 MC-YR CACGCAACAACACAACATGCCCAGCGCCTGGAACATATCCTATGAGTTAGTCCGCCCACA Sepharose bead-
SELEX

50 mM Tris, 150 mM
NaCl, 2 mM MgCl2,
pH 7.5

28 nM Ng et al. (2012)

26 MC-LA GGACAACATAGGAAAAAGGCTCTGCTACCGGATCCCTGTTGTATGGGCATATCTGTTGAT Sepharose bead-
SELEX

50 mM Tris, 150 mM
NaCl, 2 mM MgCl2,
pH 7.5

193 nM Ng et al. (2012)

27 SEB GGTATTGAGGGTCGCATCCACTGGTCGTTGTTGTCTGTTGTCTGTTATGTTGTTTCGTGATGGCTCTAACTCTCCTCT Magnetic bead-
SELEX

2.7 mM KCl, 140 mM
NaCl, 0.05% Tween-
20, pH 7.4

N/A DeGrasse (2012)

28 SEA AGGCGATTACGCTTCTTGTACTTCAATAACGACTCAACTC Magnetic bead-
SELEX

20 mM Tris, 100 mM
NaCl, 5 mM KCl,
1 mM CaCl2, 1 mM
MgCl2, pH 7.4

48.57 nM Huang et al. (2014)

29 SEC1 AGCAGCACAGAGGTCAGATGTATACTTCTAAAATTTGTTTGTATCTACGATGTTCTTCGTCCTATGCGTGCTACC
GTGAA

Graphene oxide-
SELEX

20 mM Tris, 100 mM
NaCl, 5 mM KCl,
1 mM CaCl2, 1 mM
MgCl2, pH 7.4

65.14 nM Huang et al. (2015)

30 Shiga toxin1 ATCCAGAGTGACGCAGCAGTAGTTTGTTGGTTATTACGGCGGGTTGCGATGGGTGCGAATCGGTGGACACGGTGG
CTTAGT

Biolayer
interferometry-
SELEX

10 mM phosphate
buffer, 100 mM NaCl,
2.5 mM KCl, 5 mM
MgCl2, pH 7.2

47.2 p.m. Kaur et al. (2020)

31 Shiga toxin2 ATCCAGAGTGACGCAGCAGGAAAGGACGTCAAATTAGGGGCGGGACAACGAAAGCCCACAACTGGACACGGTGGC
TTAGT

Biolayer
interferometry-
SELEX

10 mM phosphate
buffer, 100 mM NaCl,
2.5 mM KCl, 5 mM
MgCl2, pH 7.2

28.6 p.m. Kaur et al. (2020)

32 Botulinum
neurotoxin

ATACCAGCTTATTCAATTGACATGACTGGGATTTTTGGCGAAATCGAAGGAAGCGGAGAGATAGTAAGTGCAATCT Agarose bead-
SELEX

20 mM HEPES,
150 mM NaCl; 5 mM
KCl, 2 mM MgCl2,
2 mM CaCl2, pH 7.4

3 nM Tok and Fischer
(2008)
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research of the existing rapid detection methods were discussed. We
hoped that this review would inspire research workers to develop
more optical aptasensors with superior performance for ensuring
food safety.

2 Screening aptamers for biotoxins and
their challenges

Nucleic acid aptamers are isolated by the Systematic
Evolution of Ligands by EXponential enrichment (SELEX)
screening technique, which was first proposed by Tuerk and
Gold (1990). Using this technique, aptamers can be screened
from a library of random single-stranded nucleic acid with high
target affinity (Radom et al., 2013). Generally, SELEX for
discovering biotoxin aptamers mainly involves four steps: 1.
Oligonucleotide library design and optimization. Random
nucleic acid libraries are usually obtained by chemical
synthesis but can also be constructed by genomic DNA design
and in vitro transcription (Pan and Clawson, 2010). 2.
Improvement of screening methods: currently, dozens of
SELEX methods and their derived strategies have been
reported by different groups worldwide, including
immobilized-based, non-immobilized-based, and assisted
SELEX strategy for small-molecule targets (Abdelsayed et al.,
2017; Yang et al., 2019). 3. Complex separation: the complex
between the targets and their oligonucleotides on the surface of
solid interfaces can be separated from the unbound ones, and
then they directly undergo PCR amplified without elution
(Stoltenburg et al., 2005). 4. Sub-library enrichment: after
acquiring aptamers from the oligonucleotide library, single-
strand splitting or truncation for structure optimization would
be conducted subsequently for improving their affinities and
specificities (Bawazer et al., 2014; Gu et al., 2018).

Developing a rational screening strategy is the footstone to
obtaining well-performed aptamers (Yu et al., 2021) (Figure 1).
Although standard screening processes for biotoxins have not
been proposed at the present stage, some basic evaluating rules
for enhancing the screening success rate are widely accepted
currently (McKeague et al., 2015). First, biotoxins of larger
molecular weights, fewer rotational bonds, and more aromatic
moieties could be more suitable for SELEX because they contain
more potential binding interfaces and sites, a lower entropic
binding retardation, and potential π–π* stacking effect with
aptamer bases. Second, the low polarity and poor water
solubility of some biotoxins make them incompatible with
traditional water phase conducted screenings. Third, biotoxins
require specialized conjugation chemistry or complicated
chemical synthesis steps to achieve immobilization, which
causes challenges and complexities for SELEX. In the process
of aptamer screening, it is usually necessary to immobilize the
targets on certain solid phase carriers, which could be magnetic
beads, graphene, gold nanoparticles (AuNPs), microcolumns,
chips, etc., to separate nonbinding sequences with the complex
(Lyu et al., 2021), which inevitably involve molecular structure
derivation and chemical coupling processes. However, biotoxins
have far fewer functional groups and simple chemical structures.
Any alterations may result in fundamental molecular changes,

changing the physicochemical properties inherently, which
induce the failure of SELEX screening (Ellington and Szostak,
1992). Above all, aptamer screening is the foundation of building
aptasensors for biotoxin analysis. Currently, only dozens of
aptamers have been successfully screened, which is far from
enough for biotoxins. To obtain more outstanding aptamers,
investigating more trustworthy aptamer screening and
optimization approaches is highly demanded (Wei et al.,
2023). Molecular recognition units are the core component of
optical sensors, which could fundamentally determine the
specificity of the method. Generally, as a kind of biological
recognition molecule, an aptamer is often compared with an
antibody to highlight its superior functions. Although antibodies
are commonly used as recognition ligands, obtaining biotoxin
antibodies based on animals is technically challenging due to
their high toxicity and poor immunogenicity. Compared with
antibodies, aptamers have advantages as follows: being non-
immunogenic, having good chemical stability, and not
involving animal ethical issues. Moreover, as aptamers are
chemically synthesized, they are easy to be structurally
modified for improving the application performance
(McKenzie et al., 2021).

3 Optical aptasensors for biotoxins

Optical aptasensors are always designed as portable analysis
devices which use aptamers as recognition components to convert
specific binding into measurable optical signals. Furthermore,
benefiting from the recent advancement of nanomaterials (Niazi
et al., 2022) and room-temperature nucleic acid signal amplification,
these progresses push optical aptasensors of biotoxins to
ultrasensitive detection levels (Li et al., 2019; Lei and Guo, 2022).
Compared with existing detection methods, aptasensors do not
require complex sample purifications and can complete sample
detection within 30 min, which are more suitable for in situ
detection, batch screening, and rapid diagnosis (Balbinot et al.,
2021) (Figure 2).

The exploration of biotoxin aptamers as sensing elements has
made unprecedented progress in the past 3 decades. Several
advanced nanomaterials have been applied for constructing
various optical aptasensors for rapidly detecting biotoxins (Zhang
N. et al., 2022). The colorimetric aptasensor is an instrumental
independent visual sensing manner (Hizir et al., 2016; Tang and Li,
2017; Tang et al., 2024). The fluorescent aptasensor is mainly utilized
for sensing biotoxins by rapidly converting target-induced aptamer
conformation changes to highly sensitive fluorescent signals (Chen
et al., 2017; Zhang Q. et al., 2022; Khan et al., 2023a). The SERS
aptasensor, recognized as a promising analytical technique of
biotoxin detection (Muhammad and Huang, 2021), possesses
multiple advantages of high sensitivity, rapid reports, and non-
destructiveness (Zhao X. et al., 2021). Developing outstanding SERS
substrates is highly necessary for building aptasensors (Zhao P. et al.,
2021). In addition to pushing the development on nanomaterial-
based signal reporting units, room temperature isothermal signal
amplification strategies based on complementary hybridization of
nucleic acids have also been regarded as important strategies to fulfill
sensing signal amplification (Gu et al., 2021; Tan et al., 2021)
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(Figure 3). In this aspect, enzyme-assisted nucleic acid amplification
(rolling circle amplification (RCA) with the assistance of DNA
polymerases) (Ali et al., 2014), a kinetics-controlled enzyme-free
nucleic acid amplification technique such as hybridization chain
reaction (HCR) (Bi et al., 2017) and the catalytic hairpin assembly
(CHA) (Liu et al., 2019) are all novel strategies used in optical
aptasensors. Furthermore, the signal amplification methods assisted
by nucleases, DNAzyme, such as exonuclease I (Exo I) (Lan et al.,
2020), exonuclease III (Exo III) (Wang et al., 2021),
deoxyribonuclease I (DNase I) (Gu et al., 2021), and ribonuclease
H (RNase H) (Gu et al., 2021) have also shown great opportunities
for constructing biotoxin-specific aptasensors. Beneficial from the
biodegradable properties of both double-stranded ssDNA (dssDNA)
and double-stranded DNA (dsDNA) in the presence of nucleases,
the biotoxins can repeatedly participate in the biological cascade
reaction (BCR), thus producing signal amplification (Ren
et al., 2022).

Moreover, smart synthetic DNA systems including DNA walker
and the CRISPR-Cas system were also applied in fabricating
aptasensors due to their programmatic behavior. Specifically, the
repetitive cleavage reaction through highly directional mechanical
movements was originally prelocked by the aptamer. The binding of
biotoxins to the aptamer walker systems would activate this sensing
system (Chen et al., 2022). For the CRISPR-Cas-based sensing
system, the aptamer worked as a Cas protein activation chain. In
the presence of biotoxins, the trans-cleavage activity of the Cas
protein would be inhibited (Lin et al., 2022). In the nuclease-assisted
signal amplification sensing systems, enzyme instability and
rigorous reaction conditions might be adverse factors. Therefore,
enzyme-free signal amplification aptasensors showed better

durability in real applications. In this section, we described the
current situation of high-performance optical aptasensors according
to different types of biotoxins.

3.1 Optical aptasensors for mycotoxins

Mycotoxins are highly toxic secondary metabolites secreted by
fungi. They are highly heat-resistant; therefore, they are hard to be
removed through cooking and easily traverse into the food chain,
affecting human and animal health (Eskola et al., 2020). According
to the EU Rapid Alert System for Food and Feed (RASFF) statistic,
mycotoxins might contaminate approximately a quarter of the
world’s food and oil crops per year. Currently, agencies such
as the World Health Organization and the Food Agriculture
Organization have determined the permissible limit for
mycotoxin contamination in food and feed to ensure food safety.

Colorimetric assay based on aggregation-induced Au/Ag NP
color change, which are realized through precious regulating
stability of NPs in a salt solution via an aptamer, has been
widely used for designing visual mycotoxin aptasensors (Mirón-
Mérida et al., 2021). In an AgNP-based colorimetric aptasensor,
aflatoxin B1 (AFB1) achieved sensitive detection with an LOD of
0.09 ng/mL in food samples (Lerdsri et al., 2021). The signal
amplification strategy was also widely integrated to the optical
aptasensors for monitoring mycotoxins. The sensing platform was
proposed with an LOD of 0.62 ng/mL, which could be utilized for
AFB1 monitoring in complex sample matrices (Chen et al., 2016).
Utilizing the peroxidase-like activity of AuNPs, a colorimetric
aptasensor for zearalenone (ZEN) was designed using a

FIGURE 1
(A) Schematic demonstration of AfB1 detection based on colorimetric aptasensor utilizing the specific aptamer, PCPD, and AgNPs (Yu et al., 2021).
(B) Schematic diagramof the AuNPs encapsulated PDDA-aptamer hydrogel for ultrasensitive colorimetry of ZEN (Lyu et al., 2021). (C) Schematic showing
upconversion-mediated CRISPR-Cas12a biosensor that sensitively detects OTA (Niazi et al., 2022). (D) Schematic representation of the universal surface-
enhanced Raman scattering (SERS) aptasensor platform for trace detection (Li et al., 2019).
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chimeric aptamer. The aptasensor provided an LOD of 0.58 ng/
mL, which could be well applied in real corn oil samples (Liu M.
et al., 2022).

Fluorescent aptasensors have shown advantages of facile
signal transduction, fast response, and high sensitivity, but
they suffer from poor signal stability. In these designs, Förster
resonance energy transfer (FRET) and the time-resolved
fluorescent manner could overcome these shortcomings; thus,
they have been widely utilized in the analysis of mycotoxins.
Wang et al. designed a label-free aptasensor for FRET detection
of trichothecenes A (T-2) toxin as low as 0.93 pg/mL. In this
assay, T-2-specific aptamer functionalized using silver
nanoclusters (apt-AgNCs) was synthesized as the fluorescent
probe, whose fluorescence was initially quenched by MoS2
nanosheets (NSs). The presence of T-2 biotoxin led to the
desorption of Apt-AgNCs from MoS2 NSs, which caused the
fluorescence recovery in a target amount-dependent manner.
This method showed good utility in risk assessment of T-2
toxin (Khan et al., 2018). Using a similar design, Wang et al.
further synthesized a green-emitting gold nanocluster (Arg@
ATT-AuNCs) as signal reporting element for the fluorescent
sensing of T-2. The bioassay showed an LOD of 0.57 pg/mL
with a linear range of 0.001–100 ng/mL (Khan et al., 2020).

Moreover, advanced nanomaterials have gained much attention
for constructing sensors with enhanced performance that detect
multiple mycotoxins simultaneously due to their creditable optical
properties. Niazi et al. proposed a rapid time-resolved fluorescence
(TRF)-based aptasensor for simultaneous recognition of ochratoxin
A (OTA) and fumonisin B1 (FB1) using a multi-color, Ln-doped
NPs (TRF-NPs) group. After method optimization, LODs of
0.019 pg/mL and 0.015 pg/mL for FB1 and OTA were achieved,
respectively (Niazi et al., 2019a). In another case, a turn-on time-
resolved fluorometric aptasensor is described for the simultaneous
detection of ZEN, T-2, and AFB-1 in maize samples based on the
multi-color, TRF-NP group, and tungsten disulfide nanosheets
(WS2 NSs) are used as a quencher of time-resolved fluorescence.
These methods showed great potentials in food safety fields (Niazi
et al., 2019b). Based on a similar design, Khan et al. (2019) proposed
a multicolored nanomaterial-based FRET sensing platform for the
simultaneous detection of mycotoxins. The assay combined the
dual-color gold nanoclusters (AuNCs) as fluorescence donors
with WS2 NSs as a fluorescence quencher, which achieved
simultaneous recognition of AFB1 and ZEN with a detection
limit of 0.34 pg/mL and 0.53 pg/mL, respectively.

Hitabatuma et al. (2021) developed an aptasensor for OTA with
an LOD of 0.247 pg mL−1. The aptamer binding to OTA induced the

FIGURE 2
Schematic illustration of (A) the label-free, rapid, and sensitive detection of ochratoxin A in colorimetric and fluorescent modes by engineering DNA
G-quadruplex (Balbinot et al., 2021). (B) FL-SERS dual-mode detection of OTA (Zhang N. et al., 2022). (C) Engineered bifunctional aptamer and the MST
assay (Tang and Li, 2017). (D) Detection mechanism based on a toehold-mediated cascade catalytic assembly and supramolecular DNAzyme
nanostructures ([B/C/DNA1/DNA2]n) for mycotoxin detection (Tang et al., 2024).
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cDNA to hybridize with molecular beacon (MB). Following the MB
stem unwinding, the FAM labeled on the MB would be far from the
DABCYL. The fluorescence “turn-on” sensing mechanism is simple
and fast, which exhibited specificity and sensitivity (LOD of
0.247 pg/mL) to OTA in a wheat sample. Fan et al. (2021)
reported a dual-emission aptasensor based on the two fluorescent
dyes: thioflavin T (ThT) and trans-2-[4’-(dimethylamino)styryl]-3-
ethyl-1,3-benzothiazole (DMASEBT). The fluorescence of ThT was
quenched after being inserted into DNA strands. In the working
state, AFB1 would displace the bound ThT to the solution. The
aptasensor was applied to the analysis of AFB1 with an LOD of
0.01 ng/mL in food samples successfully. Attributing to the
development of novel nanomaterials, cobalt oxyhydroxide
(CoOOH) nanosheets and graphitic carbon nitride quantum dots
(gCNQDs) were used to fabricate a FRET-based aptasensor for OTA
detection. This method was featured with ultra-sensitivity with an
LOD as low as 201.9 pg/mL and was successfully applied to corn and
barley flour (Bi et al., 2020). A sensitive fluorescent aptasensor for
AFM-1 was proposed based on the time-resolved fluorescent NP as a
signal probe and RCA to improve the sensitivity of the assay. The
assay showed a lower detection limit (0.0194 pg/mL) than the
previously reported assays (Niazi et al., 2020). In addition,
CRISPR-Cas-assisted fluorescent aptasensors were constructed to
analyze mycotoxins. Mao et al. (2022) applied CRISPR/Cas12a in
designing an aptasensor for OTA detection. In the sensing process,
an activated cDNA strand was first released from the sensors in the
presence of OTA. The cDNA was subsequently hybridized with
crRNA to cut UCNP-DNA linked on the Fe3O4 NPs, and then the
fluorescence signal was turned on. This method was very sensitive,
with an LOD of 0.83 ng/mL. The CRISPR/Cas12a-based sensing
strategy had a great practical application prospect for various targets

(Mao et al., 2022). SERS are well known as an attractive analytical
tool with advantages of rapid and on-site ultrasensitive detection.
SERS-based aptasensors are well developed as a promising tool for
biotoxins. Constructing outstanding SERS substrates and SERS tags
with superior properties is the key technology in this field. Chen
et al. (2021) proposed a universal aptasensor for the analysis of ZEN
based on Fe3O4@Au NPs and Au@Ag core-shell NPs, which could
perform well in food samples with an LOD of 1.0 ng/L. A ratiometric
SERS aptasensor for AFB1 was constructed based on hybrid
nanomaterial, that is, Ti3C2Tx MXene-loaded AuNP dimers.
Assembled AuNP dimers contained a rich SERS “hot spot,”
which provided a strong SERS signal. MXenes nanosheet
functioned as a support to the aptamer-modified AuNP dimers
for achieving steady Raman signal. The presence of AFB1 could
competitively bind to the aptamer, thus pushing AuNP dimers to be
separated fromMXenes NSs. This recognition processing causes the
SERS intensity to decay with the increase of AFB1. The aptasensor
showed an LOD as low as 0.6 pg/mL and could be well used in
peanut samples (Wu et al., 2022).

To further improve the sensing reliability, dual-mode optical
aptasensors have been developed for mycotoxin detection. Based on
the feature of the G-quadruplex structure, He et al. (2022) developed
a label-free and dual-mode aptasensor for OT, which contained both
G-quadruplex/hemin DNAzym as the catalytic colorimetric unit
and G-quadruplex ThT as the fluorescence reporting unit. Following
the colorimetric manner, a DNA triplehelix switch was composed of
aptamer and G-rich sequences. The binding of OTA resulted in the
separation of the triple-helix, which subsequently released the
ssDNA to bind hemin and stimulate color change. Under the
fluorescent mode, the aptamer would combine with ThT to
produce a strong signal. Beneficially from the structure flexibility

FIGURE 3
Schematic illustration of (A) the competitive colorimetric aptasensor transduced by hybridization chain reaction-facilitated catalysis of AuNP
nanozyme for highly sensitive detection of saxitoxin (Gu et al., 2021). (B)Duplexed aptamer-isothermal amplification-based nucleic acid CuNP sensor for
the detection of OA (Ali et al., 2014). (C) Fluorescence/SERS dual-mode aptasensor for analysis of TTX (Liu et al., 2019).
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of ssDNA, the G-quadruplex DNA assembly was rationally
engineered to achieve dual-mode sensing for biotoxins. For
instance, two kinds of NPs including AuNSs and AuNPs were
modified with the aptamer and Cy3-modified cDNA, respectively.
In the presence of OTA, the hybridization of aptamer and cDNA
was broken, causing the disassembly of AuNSs and AuNPs. This
process turned on the fluorescenc Cy3, but the SERS signal from
Cy3 was decreased, achieving a dual-mode OTA ratio analysis. The
aptasensor had good practicality in the analysis of coffee and wine
samples (Wang et al., 2022).

Moreover, simultaneously detecting aptasensors have also been
developed due to their outstanding time- and cost-saving features as
well as fast and high-throughput testing. Optical aptasensors can also be
constructed to simultaneouslymonitormultiple mycotoxins. Yang et al.
(2021) designed a dual-targeted aptamer, which is the tandem of ZEN
aptamer and OTA aptamer via a poly-T linker. Using this novel
aptamer, simultaneous determination of ZEN and OTA as low as
0.12 nM was achieved based on the microscale thermophoresis in corn
oil samples. Xiong et al. (2021) designed a dual DNA tweezer
nanomachine that was originally inhibited by the anti-AFB1
aptamer and anti-OTA aptamer; both of them were labeled FAM
and Cy5 fluorophores, respectively. The fluorescence was turned on in
the presence of targets. The methods also showed good performance in
cereals with LODs of 0.035 ng/mL for AFB1 and 0.1 ng/mL for OTA.
Signal amplification based on CHA- and DNAzyme-cascaded
hydrolysis reaction has also been applied for simultaneously sensing
multiple mycotoxins. Several concatenated logic gates were used in the
biosensors due to the versatility of these methods (Pan et al., 2022),
which demonstrated that the multifunctional logic system had great
potential for constructing biosensors for multiple mycotoxins. SERS
aptasensors can also be designed to analyze multiple mycotoxins in one
test. Song et al. (2022) developed an aptasensor based on diverse SERS
tags and AuNP-modified 3D silica photonic crystal microsphere
(SPCM) array with low LODs of 0.36 pg/mL for AFB1 and
0.034 pg/mL for OTA. Dual-mode aptasensors can also be
developed for the simultaneous detection of multiple mycotoxins.
For instance, based on the FRET and SERS manners, Wu et al.
(2020) proposed an aptasensor for the simultaneous analysis of
ZEN, FB1, and OTA. A long cDNA-labeled AuNP was designed to
hybridize with the ZEN aptamer-labeled UCNP, the FB1 aptamer-
labeled AuNP, and the OTA aptamer-labeled Cy5 simultaneously. In
the presence of targets, the fluorescence signal of the UCNP or
Cy5 increased, whereas the SERS signal of the AuNP decreased. Au
nano-hybrid structures have emerged as important sensing materials,
which could be synthesized to improve sensitivity and specificity. In
Khan’s work, a fluorescence-labeled silica shell with Au NPs as the core
was synthesized as a FL/SERS dual-mode nanoprobe for T-2 toxin.
When exposed to T-2 toxin, the sensing system showed the
concentration-dependent restoration of FL with the reduction of the
SERS signal with the LOD of 85 p.m. Compared with ELISA, this
method presented superior performance in wheat and maize (Khan
et al., 2023b).

3.2 Optical aptasensor for marine toxins

Marine toxins, mainly generated by algae or phytoplankton
during harmful algal blooms, are generally highly toxic. As they

are continuously released in the environment, marine toxins are
easily accumulated in aquatic and marine organisms such as
mollusks and fishes through the food chain, finally posing a
serious health threat to humans via consuming toxin-
contaminated seafood (Wang et al., 2024). Thousands of
marine toxins poisoning cases have been reported in the 21st
century (Qiang et al., 2020). Marine toxin-contaminated food
could lead to foodborne diseases such as food poisoning,
diarrhea, indigestion, and neurotoxicity, even at low doses. In
the United States, more than 3,000 people die owing to foodborne
diseases annually. Therefore, it is highly necessary to design
rapid, high-throughput, and cost-effective methods for the
detection of multiple food contaminants. Thus, rapid detection
of marine toxins in food is also an urgent task for health and
safety. In this part, we summed up the optical aptasensors for
typical marine toxins such as STX, OA, TTX, PTX, BTX, and DA
(Nicolas et al., 2017).

Qiang et al. (2020) reported a colorimetric aptasensor based
on salt-induced AuNP aggregation for quantitative analysis of
STX at a concentration as low as 10 fM. By combining Au
nanozymes and aptamer-triggered HCR, Li et al. proposed a
colorimetric aptasensor for STX. By catalyzing the oxidation
reaction of TMB-H2O2, an aptasensor with an LOD of
42.46 p.m. was achieved in real scallop samples (Zhao Y.
et al., 2021). Fluorescent aptasensors have also been well
developed for recognizing highly sensitive marine toxins. Xie
et al. (2021) created an aptasensor for MC-LR analysis using
FAM-labeled aptamers/AuNPs and DNase I, thus realizing
fluorescence signal amplification. Shan et al. (2022) proposed
a highly sensitive aptasensor for OA in seafood. In the presence of
OA, they could bind with aptamers and produce long sequences
with a poly(thymine) tail. The poly(thymine) tail becomes the
copper nucleation sit. The fluorescence intensity derived from Cu
nanoclusters could be in line with the OA concentrations. The
aptasensor could achieve ultra-high sensitive detection of OA
with an LOD of 1.1 pg/mL. Cheng reported an SERS-based
aptasensor for STX for the first time. In the presence of STX,
the STX would bind with aptamer, thus inducing tag molecules
far from SERS substrate and the consequent SERS signal
attenuation. This SERS aptasensor could be applied in shellfish
samples with an LOD of 3.51 ng/mL (Cheng et al., 2019).

Introducing dual-mode sensing could improve the sensing
performance of marine toxins in foods. Liu S. et al. (2022)
demonstrated a fluorescence/SERS dual-mode aptasensor for the
analysis of TTX. The Cy3 labeled aptamers were bound on the
surface of novel AuNPs/MOF nanohybrids (MIL-101), which
demonstrated fluorescence quenching and SERS enhancement.
The presence of TTX would result in the fluorescence signal
“turn on” and the SERS signal damping. This method showed
distinguished sensitivity with an LOD of 6 pg/mL and
demonstrated excellent practicability for screening TTX in puffer
fish and clam. There were also novel aptasensors fabricated for
sensing multiple typical marine toxins in one test. For example, Li
et al. (2022) constructed a novel aptasensor for achieving
simultaneous detection of three diarrheic shellfish toxins,
including OA, DTX-1, and DTX-2. By integrating the TF-DSP
aptamer with AuNPs@Fe2+ nanozyme activity, the assay showed
good performance in real seafood samples.
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3.3 Optical aptasensor of phytotoxins and
bacterial toxins

Phytotoxins are naturally toxic plant-derived chemicals or
proteins including siteloids, pyrrolizidine alkaloids, and lectins,
and they could internalize into human cells and cause serious
harm by inhibiting protein synthesis. Some of them are highly
toxic to animals and humans if they contaminate food. Recent
advancements in optical aptasensors have shown the availability
for detection and monitoring (Günthardt et al., 2018). The
reported aptamers for phytotoxins are mainly in ricin and
abrin. Based on the unique peroxidase-like activity of
aptamer-modified AuNPs, Hu et al. (2015) developed a simple
colorimetric aptasensor for abrin (Figure 4). This method showed
an LOD as low as 0.05 nM. Li et al. (2017) developed a novel
strategy for analysis of ricin B-chain (RTB) based on isothermal
strand-displacement polymerase reaction (ISDPR). In this
design, a short blocker ssDNA was originally hybridized with
the aptamer. In the presence of ricin, the blocker ssDNA was
released and then hybridized with florescence-labeled hairpin
probes to activate strong fluorescence. This technique could be
applied to detect the RTB as well as the entire ricin toxin in the
juice with an LOD of 0.6 mg/mL. To improve the performance of
the “kinetic competition” aptasensor in complex matrices, Qi
et al. proposed a ratiometric “kinetic competition” aptasensor
using a dual fluorescence-labeled probe for RTA detection (Qi
et al., 2020). The method was verified as a feasible method for
RTA in sucrose, yeast, and baking soda powder samples.

Bacterial toxins are a type of chemical derived from
Clostridium, Salmonella, Staphylococcus, and Listeria pathogens
that can invade host cells to cause foodborne infections in humans
(Braun et al., 1994). Bacterial contamination has shown diverse
causes, such as through unwashed hands, being present in raw
milk or meat, and through contaminated water. By utilizing a
similar aptamer-mediated gold nanoparticle aggregation

mechanism, a rapid and easy colorimetric sensing was achieved
for SEB using its aptamer and AuNPs in milk samples with LODs
of 50 ng/mL visually and 0.5 ng/mL (Mondal et al., 2018). In
addition, Wu et al. developed a fluorescent aptasensor for the
analysis of SEB based on the aptamer-functionalized AuNR@Pt
module and the cDNA-immobilized UCNP module. In another
case, a fluorescent aptasensor for the analysis of SEA was designed
by combining the aptamer functionalized AgNCs unit with the
polypyrrole nanoparticles (PPyNPs). Aptamers could non-
covalently bind onto the PPyNP, making the fluorescence of
AgNCs turn on. The binding of SEA with the aptamer resulted
in the release of AgNCs from the PPyNPs; therefore, the
fluorescence was turned on under the stimulus of the target. In
this method, an LOD of 0.3393 ng/mL was achieved in milk
samples (Zhang et al., 2020).

3.4 Current challenges of optical
aptasensors for biotoxins

In the past 3 decades, we have witnessed significant
advancements in analytical techniques to manage the food safety
problem of biotoxin contamination. UPLC–MS-based biotoxin
analysis, including facilities, sophisticated analytical instruments,
reagents, and logistics, made them unsuitable for daily monitoring.
Currently, rich kinds of optical aptasensors were designed and they
further demonstrated their real applications for biotoxins, including
a variety of advanced analytical techniques and ideas, which could
reduce the time and cost requirements. However, there are still some
challenges that should be considered, such as authority, stability, and
reliability, which make on-field rapid detection difficult. Here, we
listed some significant challenges for rapid screening of biotoxins
that are commonly encountered:

First, sample preparation in optical sensing is the inescapable
critical step in real application. It was revealed that nearly 30% of the

FIGURE 4
(A) Mechanism of the aptamer-based colorimetric biosensor for abrin (Ren et al., 2022). (B) Proposed ricin B-chain detection strategy (Chen et al.,
2022). (C) Aptasensor based on AuNR@Pt-UCNPs for sensitive detection of SEB (Chen et al., 2016).
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method variability originated from sample preparation. By paying
attention to the key factors of sample preparation (size reduction,
sampling size, and uniformity), the quality of rapid sensing results
could be improved significantly. Considering the highly harmful
nature of the biotoxins, the acceptable concentration range of
different toxins varied in the same samples. Therefore, the
sensing method should fully consider real needs. Third, food
matrices are highly complex, which go through different
processing processes, thus posing huge interferences for
precise detection.

Rapid screening of biotoxins in foods shows huge market
prospects in the future. Taking the mycotoxin testing market as
an example, the testing market is set to reach a cumulative annual
growth rate (CAGR) of 7.8%, which corresponds to a market of
$1.4 billion by 2026 (EMR, 2022). As it indicates, food safety testing
is an accelerated social need. In the light of this situation, the optical
aptasensor should be further modified for higher precision while
achieving the detection of multiple toxins simultaneously with high
sensitivity and cost efficiency.
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