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Stacking engineering is a popular method to tune the performance of two-
dimensional materials for advanced applications. In this work, Jansu MoSSe and
WSSe monolayers are constructed as a van der Waals (vdWs) heterostructure by
different stacking configurations. Using first-principle calculations, all the relaxed
stacking configurations of the MoSSe/WSSe heterostructure present
semiconductor properties while the direct type-II band structure can be
obtained. Importantly, the Z-scheme charge transfer mode also can be
addressed by band alignment, which shows the MoSSe/WSSe heterostructure
is an efficient potential photocatalyst for water splitting. In addition, the built-in
electric field of the MoSSe/WSSe vdWs heterostructure can be enhanced by the
S–Se interface due to further asymmetric structures, which also results in
considerable charge transfer comparing with the MoSSe/WSSe vdWs
heterostructure built by the S–S interface. Furthermore, the excellent optical
performances of the MoSSe/WSSe heterostructure with different stacking
configurations are obtained. Our results provide a theoretical guidance for the
design and control of the two-dimensional heterostructure as photocatalysts
through structural stacking.
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Introduction

Recently, hydrogen has been considered the most environmental friendly energy source
because the products of combustion are mainly water. At the same time, two-dimensional
(2D) materials have also been widely investigated, after the development of graphene (Geim
and Novoselov, 2007). Graphene shows ultrahigh electrical and thermal conductivity
attributed from the unique electronic properties (Miro et al., 2014). In order to make
up for the application limitations by zero bandgap in graphene, other 2D materials are also
gradually reported. Phosphorene can be prepared by electrochemical exfoliation (Ambrosi
et al., 2017), which is a promising field-effect transistor (Li et al., 2014), showing charge-
carrier mobility as high as 1,000 cm−2V−1s−1. Blue phosphorus can be obtained by the
epitaxial growth method, and the bandgap is measured as 1.10 eV using the scanning
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tunneling spectroscopy method (Zhang et al., 2016). The transition
metal dichalcogenides (TMDs) are also popular that the excellent
optical, electronic, and catalytic performances present the potential
applications as a photocatalyst (Ren et al., 2019a; Rao et al., 2021)
and nanodevice (Cui et al., 2015). In particular, Janus TMDs are
famous for the interesting properties brought about by asymmetric
structures, which can be prepared based on chemical vapor
deposition (Lu et al., 2017). Such structural symmetry-breaking
results in a built-in electric field and obtained ultrafast charge
separation (Liang et al., 2018). The Janus MoSSe presents
excellent thermal performances, which can also be tuned by the
defect (Qin et al., 2022). The novel optical and electronic properties
of the Janus MoSSe show the potential applications as photocatalytic
and photovoltaic devices (Li et al., 2017; Ren et al., 2020a; Liu et al.,
2021; Sun et al., 2022).

To explore more 2D materials as photocatalyst for water
splitting, the methods based on large-scale searches of material
structures and elements are developed (Tang et al., 2019; Sun
et al., 2021; Xu et al., 2021; Ren et al., 2022a; Ren et al., 2022b).
For example, the Janus B2P6 monolayer is proposed as an excellent
photocatalyst by novel built-in electric field and the solar-to-
hydrogen efficiency (Sun and Schwingenschlögl, 2020); the B2P6
monolayer also presents tunable electronic properties under the
external strain (Ren et al., 2021a) and atomic adsorption (Ren et al.,
2022c). XN (X = C, Si, Ge, and Sn) monolayers are predicted
possessing decent mechanical and catalytic properties, in
particular, the SnN monolayer shows ultrahigh carrier mobility
as large as 1.55 × 104 cm2·V−1·s−1 (Ren et al., 2023a). Using the
2D van der Waals (vdWs) heterostructure as a photocatalyst to
decompose water is more advantageous than the monolayer because
the photogenerated electrons and holes can be separated into
different layers for H2 (reduction reaction) and O2 (oxidation
reaction) (Zhang et al., 2023). Furthermore, the catalytic
performance and optical properties of the vdWs heterostructure
obviously depends on the external strain (Guo et al., 2020) and
stacking configurations (He et al., 2014; Ren et al., 2022d). In
particular, a heterostructure with a Z-scheme photocatalytic
mechanism has received some attention because of its unique
photogenerated charge transport pathways (Xu et al., 2018; Tang
et al., 2022). For example, the C3N4/W18O49 heterostructure was
prepared, which presents a switch from the type-II to Z-scheme
photocatalyst with a H2 evolution rate of 8,597 μmolh−1g−1 (Huang
et al., 2017). The black phosphorus/BiVO4 heterostructure also
possesses an artificial Z-scheme photocatalytic system with an H2

rate of approximately 160 μmolh−1g−1 (Zhu et al., 2018).
Theoretically, some promising 2D Z-scheme heterostructures
used as the photocatalyst are proposed, such as PtS2/arsenene
(Ren et al., 2020b), CdO/HfS2 (Zhang Q. et al., 2022), C7N6/
Sc2CCl2 (Meng et al., 2022), and BCN/C2N (Zhang et al., 2018)
etc. For a heterostructure based on Janus TMDs, the asymmetric
structure also induces the uneven force in the Janus heterostructure
(Ren et al., 2023b), and a naturally curved interface enhances tensile
strength because the external strain first needs to overcome intrinsic
deformation. In addition, such an intrinsic curved interface also
suppressed the heat transport capacity (Ren et al., 2022e), which
explains the MoSSe/WSSe heterostructure can be used as thermal
management in nanodevice. Therefore, the MoSSe/WSSe vdWs
heterostructure tuned by stacking means as a photocatalyst is

meaningful for further exploration. In addition, stacking
engineering is feasible in experiments for the Janus TMD
heterostructure (Zhang et al., 2020), and some investigations also
show the tunable electronic and optical properties by the stacking
method (Xu et al., 2013; He et al., 2014; Shu et al., 2016).

In this investigation, the heterostructure is constructed by
MoSSe and WSSe monolayers. The S–Se and S–S interfaces are
fully considered to investigate the structural and electronic
properties using the first-principles method. The band energy
and the flow path of photogenerated charges of the MoSSe/WSSe
vdWs heterostructure with different stacking styles are addressed in
detail. Then, the dependence on the stacking configuration for the
MoSSe/WSSe vdWs heterostructure of light absorption is
also obtained.

Calculation models and methods

In this simulations, all the first-principle calculations are
considered by density functional theory (DFT) (Kresse and
Furthmüller, 1996a; Grimme et al., 2010), using the Vienna ab
initio simulation package (VASP) (Kresse and Furthmüller, 1996b)
and the Device Studio [Hongzhiwei Technology, Device Studio,
Version 2021A, China, 2021, available online at: https://iresearch.
net.cn/cloudSoftware, accessed on 2 June 2023] program, which
provides a number of functions for performing visualization,
modeling, and simulation. DS-PAW software is integrated into
the Device Studio program to calculate the electronic properties
of the studied system (Blöchl, 1994). The projector augmented wave
(PAW) potentials (Kresse and Furthmüller, 1996b) were employed
by the generalized gradient approximation (GGA) to describe the
core electrons (Perdew et al., 1996). The Perdew–Burke–Ernzerhof
(PBE) functional was also conducted to express the exchange
correlation functional. The DFT-D3 method was utilized to
describe the weak dispersion forces in the vdWs heterostructure
by Grimme (Grimme et al., 2010). To obtain decent optical and
electronic properties, the Heyd–Scuseria–Ernzerhof hybrid method
is addressed (Heyd et al., 2005). In the first Brillouin zone, 17 × 17 ×
1 Monkhorst-Pack k-point grids were explored with the energy cut-
off of 550 eV. The vacuum thickness is set as 25 Å to minimize
the interaction between nearby layers. The convergence for
force is controlled in 0.01 eV Å−1. The energy of the system is
chosen by 0.01 meV.

Results and discussion

The MoSSe andWSSe monolayers are optimized with the lattice
constant of approximately 3.228 Å and 3.269 Å, respectively. The
band structure of the MoSSe and WSSe monolayers are also
obtained in Supplementary Figure S1 using HSE06 calculations.
The MoSSe and WSSe monolayers present a semiconductor
property and a direct bandgap of approximately 2.100 eV and
2.077 eV, which is in agreement with the reported investigation
(Lou et al., 2021). Then, the MoSSe/WSSe heterostructure can be
obtained by a lattice mismatch as small as about 1.26%. The MoSSe/
WSSe heterostructure is constructed by considering the high
symmetry, which can be summarized as six different
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configurations with the interface formed by S and S atoms. As shown
in Figure 1, all the different stacking configurations are maned as SS-
1 to SS-6. Similarly, these six stacking configurations can also be
reserved while the interface is constructed by S and Se atoms,
namely, SSe-1 to SSe-6. All the binding energy (Ebinding) is
calculated as Eq. 1:

Ebinding � EHeterostructure –EMoSSe –EWSSe( )/S, (1)

where the EHeterostructure, EMoSSe, EWSSe, and S represent the total
energy of the MoSSe/WSSe heterostructure, pure MoSSe, WSSe
monolayers, and the area of the system, respectively. All the binding
energy of the MoSSe/WSSe heterostructure is summarized in
Table 1; one can see that all the lowest binding energy of these

12 MoSSe/WSSe heterostructures is calculated as −34.788 meV/Å2

for the SSe-2 stacking configuration. In addition, others are ranging
from −25.395 to −34.788 meV/Å2, which is also lower than that of
graphene (Chen et al., 2013), explaining all these MoSSe/WSSe
heterostructures are formed by vdWs forces. Furthermore, the
phonon dispersions of the MoSSe/WSSe vdWs heterostructure
are calculated as Supplementary Figure S2. One can see that no
imaginary frequency exists in the phonon dispersions of the MoSSe/
WSSe vdWs heterostructure with SS-1 and SSe-1 stacking
configurations, suggesting a dynamic stability of the MoSSe/
WSSe vdWs heterostructure.

The original bond lengths of Mo-S, Mo-Se, and W-S, W-Se are
obtained by 2.415 Å, 2.531 Å and 2.428 Å, and 2.543 Å, respectively,
in MoSSe and WSSe monolayers. When MoSSe and WSSe are built

FIGURE 1
MoSSe/WSSe vdWs heterostructure with (A) SS-1, (B) SS-2, (C) SS-3, (D) SS-4, (E) SS-5, and (F) SS-6 stacking configuration.

TABLE 1 Calculated binding energy (Ebinding, meV/Å2), the bond length (L, Å), the distance of interface (D, Å), and the bandgap (Eg, eV) of the MoSSe/WSSe
heterostructure constructed by different stacking configurations.

Ebinding LMo-S LMo-Se LW-S LW-Se D Eg

MoSSe 2.415 2.531 2.100

WSSe 2.428 2.543 2.130

SS-1 −33.034 2.411 2.529 2.416 2.534 3.017 1.461

SS-2 −25.395 2.412 2.529 2.417 2.534 3.569 1.693

SS-3 −33.321 2.411 2.529 2.416 2.534 2.971 1.434

SS-4 −31.896 2.411 2.529 2.416 2.534 3.050 1.459

SS-5 −33.091 2.411 2.528 2.416 2.534 2.977 1.390

SS-6 −25.790 2.412 2.529 2.417 2.534 3.581 1.696

SSe-1 −26.439 2.412 2.529 2.418 2.533 3.684 1.474

SSe-2 −34.788 2.411 2.529 2.418 2.532 3.034 1.390

SSe-3 −32.637 2.411 2.529 2.418 2.532 3.178 1.383

SSe-4 −33.966 2.411 2.528 2.418 2.532 3.080 1.319

SSe-5 −34.753 2.412 2.528 2.418 2.533 3.078 1.365

SSe-6 −26.861 2.411 2.529 2.418 2.533 3.608 1.448
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as an heterostructure, all the Mo-S, Mo-Se, andW-S, W-Se bonds in
MoSSe and WSSe can be compressed induced by the vdWs
interactions, shown as Table. 1. In addition, the distance of the
interface of the MoSSe/WSSe vdWs heterostructures is optimized at
approximately 2.971–3.684 Å, which is comparable with the
reported vdWs heterostructure, such as CdO/HfS2 (Zhang Q.
et al., 2022) and MoTe2/PtS2 (Zhang L. et al., 2022).

The projected band structure of the MoSSe/WSSe vdWs
heterostructure different stacking styles are calculated as Figure 2.
One can see that all these heterostructures present semiconductor

characteristics, and the bandgaps are obtained as Table. 1. It is worth
noting that the MoSSe/WSSe vdWs heterostructure constructed by
the S–S interface show an indirect bandgap with the conduction
band minimum (CBM) located at the K point and the valence band
maximum (VBM) at Γ point. Differently, the MoSSe/WSSe vdWs
heterostructure with an S–Se interface presents almost a direct
bandgap with the CBM and the VBM near the K point, which is
more beneficial to exciton transition. Importantly, all these MoSSe/
WSSe vdWs heterostructures show a type-II band structure with the
CBM and VBM resulting from the MoSSe and WSSe monolayers,

FIGURE 2
Projected band structure of the MoSSe/WSSe vdWs heterostructure with (A) SS-1, (B) SS-2, (C) SS-3, (D) SS-4, (E) SS-5, (F) SS-6, (G) SSe-1, (H) SSe-2,
(I) SSe-3, (J) SSe-4, (K) SSe-5, and (L) SSe-6 stacking configurations. Fermi level is 0; black and red marks are MoSSe and WSSe monolayers, respectively,
calculated by DS-PAW.

FIGURE 3
Band edge energy positions of the MoSSe/WSSe vdWs heterostructure with different stacking energy. The energy is comparedwith the potentials of
O2/H2O and H+/H2 for water splitting at pH values of 0 and 7 by dash black and gray lines, respectively.
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which can separate the photogenerated electrons and hole. Thus, the
lifetime of the photogenerated charges can be prolonged (Zhang
et al., 2023).

The type-II band structure of the MoSSe/WSSe vdWs
heterostructure implies the oxidation and reduction reactions can
be carried out separately at different layers. Figure 3 presents the
band energy of the MoSSe/WSSe vdWs heterostructure with the S–S
and S–Se interface comparing with the potentials of O2/H2O and
H+/H2 for water splitting. One can see that the band energy of the
MoSSe/WSSe vdWs heterostructure with the S–S interface is higher
than that of the S–Se interface. Therefore, the MoSSe/WSSe vdWs
heterostructure with the S–S and S–Se interface can be used as a
photocatalyst at pH 7 and pH 0, respectively. Here, the potential of
reduction and oxidation is calculated by the pH level using
Ered = −4.44 eV + pH × 0.059 eV and Eoxd = −5.67 eV + pH ×
0.059 eV, respectively (Ren et al., 2019b). Therefore, the reduction
energy is obtained as −4.44 (−4.03) and the oxidation potential
is −5.67 (−5.26) eV at pH 0 (7) for water splitting, respectively. In
detail, the MoSSe/WSSe vdWs heterostructure with the SS-2 and SS-
6 stacking configuration explains the traditional type-II band
alignment; thus, the photogenerated electrons are excited to CBM
at the MoSSe and WSSe monolayers. Then, the photogenerated
electrons at the CBM of the WSSe layer further move to the CBM of
the MoSSe layer by the conduction band offset (CBO). At the same
time, the holes are induced at the VBM of the MoSSe and WSSe
monolayers. Similarly, the photogenerated holes at the VBM of the
MoSSe layer further migrate to the VBM of theWSSe layer under the
valence band offset (VBO). Therefore, the oxidation and reduction
reactions are induced at the WSSe and MoSSe monolayers,
respectively, for water splitting at pH 7. In particular, other
MoSSe/WSSe vdWs heterostructures with the S–S interface
exhibit a Z-scheme photocatalyst characteristic. Because the
potential of the WSSe layer is not enough to induce an oxidation
reaction, the photogenerated holes at the VBM of theWSSe are more
inclined to recombine with electrons in the CBM of MoSSe layer.
Thus, O2/H2O and H+/H2 are conducted at CBM of the WSSe and
VBM of the MoSSe layers, respectively, for water splitting as pH 7,

which demonstrates an obvious photocatalytic mechanism of the
Z-scheme (Ren et al., 2020b). Similarly, all the MoSSe/WSSe vdWs
heterostructures with the S–Se interface present a Z-type
photocatalyst for water splitting at pH 0. The oxidation and
reduction reactions are explored at the MoSSe and the WSSe
layers, respectively, for water splitting at pH 0, shown as in Figure 3.

The charge density difference (Δρ) of these MoSSe/WSSe vdWs
heterostructures is investigated, which is calculated by Eq. 2 as:

Δρ � ρHeterostructure – ρMoSSe – ρWSSe, (2)
where ρHeterostructure, ρMoSSe, and ρWSSe represent the total charge of
the MoSSe/WSSe heterostructure and MoSSe and WSSe
monolayers, respectively. The results are demonstrated in Figures
4A–L, which explains the WSSe layer is always acting as the electron
contributor, especially for the S atoms, in the MoSSe/WSSe
heterostructure. Using the Bader charge-population analysis
method (Sanville et al., 2007), the charge transfer in the MoSSe/
WSSe vdWs heterostructure is quantified, as shown in Figure 4M.
One can see that the obtained electrons of MoSSe from the WSSe
layer in the MoSSe/WSSe vdWs heterostructure with the S–Se
interface are higher than that of the MoSSe/WSSe vdWs
heterostructure with the S–S interface, suggesting this asymmetric
vdWs interface is more conducive to charge transfer.

Furthermore, the potential drop of the MoSSe/WSSe vdWs
heterostructure with the S–S and S–Se interface is obtained in
Figures 5A, B, respectively. One can see that the interlayer
potential drop is almost 0 eV. Thus, the intralayer potential drop
is the key to promote the separation of the photogenerated charge. In
addition, the built-in electric field (E) of MoSSe and WSSe is also
demonstrated in Figure 5. Interestingly, the direction of the built-in
electric field in MoSSe and WSSe is conversely formed as the
heterostructure with the S–S and S–Se interface. Thus, the overall
built-in electric field is weakened in the MoSSe/WSSe vdWs
heterostructure with the S–S interface, while that is enhanced in
the S–Se one, which also explains the more charge transfer in the
MoSSe/WSSe vdWs heterostructure with the S–Se interface.
Furthermore, the potential drop of MoSSe (or WSSe) in the SS

FIGURE 4
Charge density difference of theMoSSe/WSSe vdWs heterostructurewith (A) SS-1, (B) SS-2, (C) SS-3, (D) SS-4, (E) SS-5, (F) SS-6, (G) SSe-1, (H) SSe-2,
(I) SSe-3, (J) SSe-4, (K) SSe-5, and (L) SSe-6 stacking configurations obtained by using DS-PAW. The yellow and cyanmarks demonstrate the gain and the
loss of the electrons. (M) Calculated charge transfer from the WSSe layer to the MoSSe layer, the isosurface layer is set as 0.001 |e| for charge difference.
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MoSSe/WSSe vdWs heterostructure is approximately 3.01 eV (or
2.815 eV), while that in the SSe MoSSe/WSSe vdWs heterostructure
is calculated as approximately 2.908 eV (or 2.875 eV). One can see
that the vdWs forces in the MoSSe/WSSe vdWs heterostructure
almost do not change the potential difference of the original
monolayers. In addition, the intrinsic dipole moment of the
MoSe/WSSe system with the S–S and S–Se interface is calculated
as 0.0003 |e|·Å and 0.0714 |e|·Å, respectively. Obviously, great
interface asymmetry makes the material more polar, which also
plays an important role in the built-in electric field to rearrange the
charge in the heterostructure.

Even if the MoSSe/WSSe vdWs heterostructure shows the
excellent charge transfer characteristic as a Z-scheme
photocatalyst, the absorption coefficient ability is also critical to
be investigated. The absorption coefficient (α) of the MoSSe/WSSe
vdWs heterostructure is obtained as Eq. 3 (Zhang et al., 2008):

α ω( ) �
�
2

√
ω

c
ε21 ω( ) + ε22 ω( )[ ]1/2 − ε1 ω( ){ }

1/2
, (3)

where ε1(ω) and ε2(ω) are used by representing the real and
imaginary parts in the dielectric constant, respectively. In
addition, c is the speed of the light. ω is demonstrated by the

angular frequency. In addition, ε2(ω) can be obtained by Eq. 4
(Zhang et al., 2008)

ε2 q → Oû, Zω( ) � 2e2π
Ωε0

∑
k,v,c

| 〈Ψc
k

∣∣∣∣ û · r Ψv
k

∣∣∣∣ 〉
∣∣∣∣2 × δ Ec

k − Ev
k − E( ),

(4)
where Ψk, Ek, and û are selected to present the wave function,
energy, and unit vector of the electric field of the incident light,
respectively. Ψk and Ek mark the conduction bands and valence
bands demonstrated by superscripts (v and c), respectively. The
complex dielectric function is ε(ω) = ε1(ω) + iε2(ω), and the real
part ε1 can be obtained from ε2 by using the Kramers–Kronig
relation. Then, the calculated HSE06 optical absorption coefficient
in the visible light range is suggested in Figures 6A, B for the
MoSSe/WSSe vdWs heterostructure with S–S and S–Se interface,
respectively. Obviously, all these MoSSe/WSSe vdWs
heterostructures possess novel optical performance. For the
MoSSe/WSSe vdWs heterostructure with the S–S interface, the
SS-6 heterostructure shows an absorption peak at approximately
8.42 × 105 cm−1 at the wavelength of 320 nm. The SS-5 MoSSe/
WSSe vdWs heterostructures present an absorption peak at
approximately 6.51 × 105 cm−1 at the wavelength of 372 nm,

FIGURE 5
Calculated potential drop of the MoSSe/WSSe vdWs heterostructure with (A) S–S and (B) S–Se interfaces along the z direction.

FIGURE 6
The DS-PAW obtained optical absorption spectrum potential of the MoSSe/WSSe vdWs heterostructure with (A) S–S and (B) S–Se interfaces.
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and the absorption peak also exists near the wavelength of
approximately 490 nm and 543 nm, as shown in Figure 6A. For
the MoSSe/WSSe vdWs heterostructure with the S–Se interface,
more excellent light absorption properties are demonstrated. The
SSe-6 MoSSe/WSSe vdWs heterostructures possess an absorption
peak at approximately 8.96 × 105 cm−1 with the wavelength of
323 nm. Then, the SSe-2MoSSe/WSSe vdWs heterostructures have
superior absorption properties in the visible range of
approximately 5.46 × 105 cm−1 with the wavelength of 378 nm.
An additional absorption peak of the MoSSe/WSSe vdWs
heterostructures with the S–Se interface was also obtained near
the wavelength of 490 nm and 543 nm, as shown in Figure 6B. The
obtained light absorption properties of the MoSSe/WSSe vdWs
heterostructures with different stacking configurations are higher
than that of the reported 2D heterostructure using as a
photocatalyst for water splitting, such as AlN/Zr2CO2 (about
3.97 × 105 cm−1) (Ren et al., 2021b), CdO/Arsenene (about
8.47 × 104 cm−1) (Ren et al., 2021c), and MoSSe/Mg(OH)2
(about 1.43 × 105 cm−1) (Lou et al., 2021).

Conclusion

In this work, the MoSSe/WSSe heterostructure is constructed by
the S–S and S–Se interface; the band structure and the optical
performances are then systematically investigated by density
functional theory. Interestingly, all these MoSSe/WSSe
heterostructures are formed by vdWs interactions, and the
structural parameters also show significant differences. The
electronic performance of the MoSSe/WSSe vdWs heterostructure
explains the intrinsic semiconductor properties which are not
changed by the stacking configuration. Although the band
alignment presents obvious dependence that both traditional
type-II band and Z-scheme structures can be tuned.
Furthermore, the more charge transfer is addressed in the
MoSSe/WSSe vdWs heterostructure with the S–Se interface
comparing with the S–S interface is contributed from the
enhanced built-in electric field, and all the stacked MoSSe/WSSe
vdWs heterostructures possess excellent light absorption capacity.
The results show the MoSSe/WSSe vdWs heterostructure can be
used as a tunable photocatalyst for water splitting, and the stacking
method is an efficient method to induce the Z-type
photocatalytic mechanism.
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