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Domination is an important factor in determining the robustness of a graph
structure. A thorough examination of the graph’s topological structure is
necessary for analyzing and examining it for various aspects. Understanding
the stability of a chemical compound is a significant criterion in chemistry,
which necessitates conducting numerous experimental tests. The domination
number and power domination number are pivotal in defining a wide range of
physical properties, which include physiochemical properties, thermodynamic
properties, chemical activities, and biological activities. The one-pentagonal
carbon nanocone (1-PCNC) is a member of the carbon nanocone family and
has a structure similar to that of honeycomb networks, which are renowned for
their robustness. In this paper, we find the domination number and power
domination number of 1-PCNC by considering it as an (m-1)-layered
infinite graph.
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1 Introduction

In the field of nanotechnology, the study of carbon-based nanomaterials like fullerenes,
carbon nanotubes, carbon nanohorns, carbon nanowires, and carbon nanocones using a
graph theoretical approach is becoming very intense and popular because of its application
in the real world. Carbon nanocones (CNCs) are gaining priority in the field of research
because of their applications in multidisciplinary areas. The study and practical application
of domination and its variants have attracted significant attention, particularly in the realm
of neural networks (Prabhu et al., 2022) and in the family of chemical graphs (Vukičević and
Klobučar, 2007; Quadras et al., 2015; Gao et al., 2018; Hutchinson et al., 2018; Chithra and
Menon, 2020; Iqbal et al., 2020; Prabhu et al., 2021). Researchers have discovered that
chemical graphs offer significant insights into molecular structure, reactivity, and other
characteristics, which allow for the prediction of molecular behavior and facilitate the
creation of new compounds with specific properties. The application of the domination
number in the analysis of secondary RNA structure (Haynes et al., 2006) and the encryption
of bit strings into a DNA sequence (Yamuna and Karthika, 2014) has given rise to numerous
research avenues within the domain of chemical graph theory. The chemical graph theory
involves analyzing chemical structures by representing them as graphs, in which vertices
correspond to the atoms of the chemical compound, while the edges represent the bonds
between the atoms. QSAR and QSPR investigations have consistently revealed the
significant association between graph theoretical invariants, commonly referred to as
topological indices or molecular descriptors, and a wide range of physical and chemical
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properties exhibited by molecules. To examine the physiochemical
characteristics of a molecule, it is crucial to conduct a comprehensive
analysis of its topological indices or molecular descriptors (Zaman
et al., 2023; Ullah et al., 2024; Zaman et al., 2024). TheWiener index,
classified as a topological index, for 1-PCNC was determined by
employing JAVA programming (Alipour and Ashrafi, 2009).
Recently, the topological properties of carbon nanocones,
employing the cut technique on strength-weighted graphs to
identify various topological indices, were investigated and
studied. Using this methodology, analytical formulations for
numerous distance-based topological indices of CNCs were
derived (Arockiaraj et al., 2018). To find the desired sizes and
chemical reactivity for 1-PCNC, topological modeling methods
have been used (Bultheel and Ori, 2018). In contrast to the
Weiner index, the edge-Wiener index plays a crucial role in
molecular analysis. The edge-Wiener and vertex-edge-Wiener
indices were specifically investigated in coronoid systems, carbon
nanocones, and SiO2 nanostructures. This examination included
breaking down the original graph into smaller strength-weighted
quotient graphs using the Djoković–Winkler relation (Arockiaraj
et al., 2019b). A computational method was employed to calculate
the Mostar, edge-Mostar, and total-Mostar indices by considering
the strength-weighted parameters. These techniques were then
applied to determine the three indices for various coronoid and
carbon nanocone structures (Arockiaraj et al., 2019a). Expanding
the study further on 1-PCNC, the edge metric dimension and the
bounds on the partition dimension of the 1-PCNC structure were
calculated (Sharma et al., 2021; Koam et al., 2022). Carbon-based
nanomaterials are characterized by their remarkable flexibility and
strength, making them well-suited for manipulating various
nanoscale structures. This unique property suggests that carbon
nanomaterials will be instrumental in advancing the field of
nanotechnology engineering. The development of 3D all-carbon
architectures has the potential to revolutionize power storage, field
emission transistors, photovoltaic systems, supercapacitors,
biomedical implants, and high-performance catalysts (Sharma
et al., 2021). We delve further into this research endeavor
because of its immense practicality and widespread implementation
in various areas. We explore the domination and power domination
of 1-PCNC by examining its brick diagram, akin to that of n-layered
honeycomb networks (HC(n)) (Stojmenovic, 1997). This paper
provides an overview of the intricate layout of the brick diagram
of 1-PCNC, along with the precise calculations of the domination
number, independent domination number, power domination
number, and k-power domination number.

2 Preliminaries

A graph G is represented as an ordered pair [V(G), E(G)], where
V(G) denotes a non-empty set of vertices and E(G) represents a set
of unordered pairs of distinct elements from V(G), which are known
as edges. A subgraph S of a graph G is essentially a graph where the
set of vertices V(S) is a subset of V(G) and the set of edges E(S) is a
subset of E(G). The order of the graph G is characterized by the total
count of vertices within G. Simultaneously, the size of the graph G is
determined by the total count of edges present in G. The count of
edges connected to a vertex x is termed the degree of the vertex,

represented by deg(x). The maximum degree within the graph is
symbolized as Δ. The distance between two vertices within a graph
refers to the count of edges present in the shortest path connecting
them. The collection of vertices adjacent to x is known as the
neighborhood of x, symbolized as N(x), and N[x] = N(x) ∪{x} is
called the closed neighborhood of vertex x. A cut vertex is a vertex
x ∈ V such that G \{x} disconnects the graph G. Assigning a
dominating vertex to each vertex in a graph such that every
vertex is dominated exactly once is called saturation. A vertex
with degree 1 is commonly referred to as a pendant vertex, and
if one of the vertices of an edge is a pendant vertex, then the edge is
called a pendant edge. A cut C denoted as (T, H) is a partition of the
vertex set V in a graph G into two subsets, T and H. The cut-set of a
cut C = (T,H) is represented by the set {(x, y) ∈ E|x ∈ T, y ∈H}, which
includes edges having one endpoint in the set T and the other
endpoint in the set H. A hexagonal system is a finitely connected
planar network with no cut vertices, where every inner area is a
regular hexagon that is mutually congruent. A hexagonal chain (HC)
is described as a hexagonal arrangement in which each hexagon is
adjacent to a maximum of two other hexagons, and if every shared
edge between two adjacent hexagons is parallel to the other, the HC
is said to be linear. A hexagon in an HC is a linear hexagon h if it has
two inner vertices in different lines. A unique vertex y that is situated
at a distance of 3 from the specified vertex x in a hexagon is called the
diagonally opposite vertex of x.

A dominating set for a graphG is a subsetD of vertices where each
vertex not in D is adjacent to at least one vertex in D. The domination
number γ(G) signifies the count of vertices in the smallest dominating
set for G. A dominating set is said to be an independent dominating
set when no two vertices within the set are adjacent, and the
independent domination number, γi(G), expresses the minimum
cardinality of such a set. A dominating set D is said to be a power
dominating set if every vertex in G is dominated by D concerning the
following domination rule: (a) every vertex incident on a dominated
edge is dominated. (b) Every edge joining two dominated vertices is
dominated. (c) If a vertex is connected to i > 1 edges and i − 1 of these
edges are dominated, then all i of these edges must be dominated, and
the power domination number, denoted by γp(G), indicates the
smallest cardinality of such a set. A dominating set D is said to be
a k-power dominating set if every vertex in G is dominated by D
concerning the following domination rule: (a) every vertex incident to
a dominated edge is dominated. (b) Every edge joining two dominated
vertices is dominated. (c) If a vertex is connected to i > k edges and
i − k of these edges are dominated, then all i of these edges must be
dominated, and the k-power domination number, γp,k(G), indicates
the smallest cardinality of such a set.

Theorem 1. (Berge, 1973) In a graph G with order m, m ≥ 1 and
maximum degree Δ, it is established that the domination number
γ(G) satisfies γ(G)≥ m

Δ+1.

Proposition 1. (Bermudo et al., 2020) If H is a hexagonal chain and
D is a minimum dominating set in H, then every linear hexagon in H
contains at least two vertices of D.

Theorem 2. (Bermudo et al., 2020) SupposeH is a hexagonal chain
comprising h hexagons where h≥ 1, then the domination number
γ(H) satisfies the inequality h + 1≤ γ(H)≤ h + �h3�.
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Proposition 2. (Bermudo et al., 2020) Suppose H is a hexagonal
chain comprising h hexagons where h≥ 1, then γ(H) = h + 1.

Theorem 3. (Alanko et al., 2011) For a grid graph G = (V, E), with
order m × n, suppose S1 ⊆ V and S2 ⊆ V with |S1| = |S2| and D(S1) ⊆
D(S2). To determine a minimum dominating set of G, it is sufficient
to exclude S1 and focus solely on dominating sets that extend S2.

Lemma 1. (Chang et al., 2012) Consider a connected graph G with a
maximum degree, Δ(G) ≤ k + 1, for k ≥ 1 then γp,k = 1.

3 Address of blocks in the brick diagram

CNCs consist of an interconnected arrangement of carbon
atoms in a hexagonal lattice structure. CNCs were first
synthesized in 1994 (Ge and Sattler, 1994), in which the distinct
hollow carbon structures, identified as carbon cones, were observed
on a flat graphite surface alongside tubules. The chemical graph of
CNCs denoted by CNCt[m] with m ≥ 2 exhibits a tapered structure
with edges and vertices arranged in a specific pattern, and at its core,
there is a cycle of size with the same order t. Surrounding this central
cycle, there are (m-1) hexagon layers forming the tapered surface.
CNCs are carbon frameworks that can be depicted as infinite cubic
plane graphs featuring 1 ≤ P ≤ 5 pentagons alongside hexagons
forming the rest of the faces (Brinkmann and Van Cleemput, 2011).
The 5-P seed (five pentagons at the apex) exhibits a shape that
closely resembles that of a sphere, making it the most similar to a
spherical shape among the five available seed options. Consequently,
the growth of a graphitic network can proceed smoothly from the 5-
P seed, as there is minimal strain in the transition region. On the
other hand, the 2-P, 3-P, and 4-P seeds possess non-spherical
shapes, which would result in higher strain when attempting to
match their corresponding cones. As a result, the formation of these
cones is unlikely. The 1-P seed showcases an intriguing
characteristic of effortlessly producing a cone, without
experiencing any strain (Ge and Sattler, 1994). Its resemblance to
honeycomb networks serves as a compelling motivation for further

exploration into its topological robustness. In this paper, we study
the case for t = 5, specifically the CNC5[m] with m ≥ 2, i.e., the 1-
PCNC structure which belongs to the family of CNCs and gained its
identity in the year 1994 (Ge and Sattler, 1994). The 1-PCNC is
produced by removing a 60° wedge from a graphene structure and
connecting the edges to create a nanocone featuring a singular
pentagonal defect at its apex. Inserting a pentagon into the
honeycomb layer introduces a disclination defect in the
graphenic plane, leading to the formation of a tapered-like
structure with a positive curvature. This structure encloses one
pentagon within the first belt of five hexagons, where the
pentagon is called the network basis (core). The chemical
structure of a 1-PCNC is depicted in Figure 1. Figures 3A, B
show a pentagon and CNC5[2], which is obtained by expanding
five hexagons to the outer borders of a pentagon. CNC5[m] is
generated recursively by inserting a layer of hexagons to the
outside edges of CNC5[m − 1].

Now, we model a brick diagram of CNC5[m], m ≥ 2, which
facilitates our understanding of the 1-PCNC structure. Initially, our
approach involves depicting a series of cuts on the graph, starting
from Region 1 and extending downward until all regions are
encompassed. These cuts are systematically labeled to denote
their origin and direction. For instance, in Figure 2A, we identify
the cut surrounding the core of CNC5 [4] within Region 1 as “cut 1.”
Moving onward, as we ascend into Region 2a, we establish a new cut
labeled “cut 2a.” This pattern continues as we progress through the
regions, with each successive cut being denoted by appending the
region identifier to the numeric label (e.g., “cut 4a” in Region 4a). As
we descend from Region 1, we continue the process of defining cuts,
assigning labels such as “cut 2b,” “cut 3b,” and “cut 4b” in a manner
consistent with our established pattern. Each cut serves to delineate a
boundary within the graph, segregating regions and defining the
interconnected structure. In the brick diagram representation, the
effect of these cuts becomes visually apparent. A straight horizontal
line emerges when extending the zigzag lines above and below each
cut. The edges intersecting with these cut lines correspond to the
vertical lines depicted in the brick diagram, while the regions
depicted by the cuts form distinct blocks within the diagram (as
illustrated in Figure 2B).

To simplify the visualization of a CNC5[2], we may identify it
using its brick diagram, as shown in Figure 3C. A higher-level 1-
PCNC network is generated by expanding a lower-level network
using a level numbering approach similar to the method that was
used to build honeycomb networks (Sharieh et al., 2008). In the
context of CNC5[m], where m ≥ 2, the quantity 5m2 denotes the
number of vertices, and 5(m2 + m(m−1)

2 ) represents the number of
edges. Additionally, there are 5m(m−1)

2 hexagons alongside one
pentagon within this structure. Each node in CNC5[m] can be
expressed in the form of (i, j), where i denotes the node’s
presence in line i and j denotes the node’s location in line i, as
depicted in Figure 4. The vertex (1, 1) serves as an example of how to
identify the first node in line 1. The vertices on line m are
represented by (m, 1), (m, 2), (m, 3),. . ., (m, 4m-5), (m, 4m-4),
(m, 4m-3), and (m, 4m-2). The vertices on linesm + 1 andm + 2may
be represented by (m + 1, 1), (m + 1, 2), (m + 1, 3),. . .(m + 1,
2m),. . .(m + 1, 4m − 4), (m + 1, 4m − 3), (m + 1, 4m − 2), (m + 1,
4m − 1) and (m + 2, 1), (m + 2, 2), (m + 2, 3),. . .(m + 2, 4m − 5), (m +
2, 4m − 4), (m + 2, 4m − 3). The graph CNC5[m] consists of 2m lines,

FIGURE 1
Pentagonal nanocone structure (Sharma et al., 2021).
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and the vertices in line 2m are represented by (2m, 1), (2m, 2), (2m,
3),. . ., (2m, 2m), (2m, 2m + 1), depicted in Figure 5. The Block i, 1 ≤
i ≤ m − 1, denotes the number of hexagons in each Block and
identifies the subgraph induced by line i and line i+1 and is defined

by Block i �
2i − 1, i � 1, 2, 3, . . . , m − 1
2i − 2, i � m,
2m − n − 1, 1≤ n≤m − 1, m + n≤ i≤ 2m − 1

⎧⎪⎨⎪⎩

4 Main result

In this section, we compute the domination number,
independent domination number, power domination number,
and k-power domination number for 1-PCNC. To streamline the
explanation of the lemmas, we introduce certain notations that
prove to be beneficial for the subsequent discussion.

FIGURE 2
(A) 3-Layered CNC5[4]; (B) brick diagram of 3-Layered 1-PCNC.

FIGURE 3
(A) One Pentagon; (B) 1-layered CNC5[2]; (C) brick diagram of 1-layered CNC5[2].

FIGURE 4
Positioning nodes in the brick diagram.
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• For any x ∈ D, A(x) denotes the collection of vertices
adjacent to x.

• For a set S ⊆ V, the collection of vertices adjacent to S is
denoted by A(S).

• In a brick diagram of CNC5[m], the Block m is called a 1-
pentagonal hexagonal chain and denoted by 1-PH.

• In a linear hexagonal chain, if there are exactly two pendant
edges attached to the first and last hexagon, we define it as a 2-
pendant linear hexagonal chain, denoted by 2P-HC.

Observation. Let G =CNC5[m] be a connected undirected graph,
m ≥ 2. Then, we have the following observations.

1. In the CNC5[m] graph, there are 5m vertices with degree 2,
while the remaining vertices have a degree 3.

2. The last Block, B2m−1, consists of exactly m number
of hexagons.

3. From line L1 to line Lm, the number of vertices is increased by 4;
from line Lm to line Lm+1, the number of vertices is increased by
1; and from line Lm+1 to line L2m, the number of vertices is
decreased by 2.

4. The diameter of CNC5[m] is 4m-2.

Proof: The first, second, and third observations can be easily
deduced from the structure of 1-PCNC. However, to establish the
validity of the fourth observation, we employ mathematical
induction. Within the core of 1-PCNC, there exists a pentagon
where the distance between any two nodes within the pentagon is
less than or equal to 2. Now, let us assume that the distance between
any two nodes in CNC5[m − 1] is less than or equal to 4(m − 1) − 2.
Each node situated on the boundary of CNC5[m] is at a distance of

either 1 or 2 from a node belonging to CNC5[m − 1]. Consider two
nodes, u and v, in CNC5[m], and let |uv| represent the distance
between nodes u and v. We can find two nodes, u′ and v′, from
CNC5[m − 1] such that |uu′| ≤ 2 and |vv′| ≤ 2. Consequently, we
have |uv| ≤ |uu′| + |u′v′| + |v′v| ≤ 4m − 2.

Lemma 2. In G = CNC5[m], every vertex v ∈ V(G) is dominated
exactly once when m is even.

Proof. By constructing an m-layered CNC5[m] graph
recursively, one may build hexagonal layers in a circular pattern
around a one pentagon. The number of vertices of degree 2 is 5m,
and the count of vertices with a degree of 3 is 5m(m − 1). Whenm is
even, one can symmetrically select exactly 5m2

4 vertices of order
3 such that all the graph’s vertices are dominated exactly once. This
is evident from the inherent structure of graph G. For instance, in
Figure 6, the vertices highlighted in red are the dominating set of the
graph, CNC5 [4].

Lemma 3. Let G=2P-HC. Then, γ(G) �
h + 2, h is odd number of hexagons,
h + 1, h is even number of hexagons

{
Proof. When h is odd: from proposition 2, we know that the

domination number for a linear HC is h+1. Now, in 2P-HC, we
begin by choosing the second vertex of line 1 and proceed by
selecting the diagonally opposite vertices such that all the vertices
of the hexagons are dominated (with exactly two vertices) except the
pendant vertex of the pendant edge attached to the last hexagon. We
must choose the second-last vertex from line 1 to dominate the
remaining pendent vertex. Hence, the number of vertices selected to
dominate the 2P-HC is h+2, which is depicted in Figure 7.

FIGURE 5
Addressing of Blocks in the brick diagram of CNC5[m].
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When h is even: we begin by choosing the second vertex of line
1 in 2P-HC and proceed by selecting the diagonally opposite vertices
from it, such that all the vertices of the hexagons are dominated.
Hence, the number of vertices selected to dominate the 2P-HC is
h+1, as represented in Figure 8.

Lemma 4. Consider H as a subgraph of G = CNC5[m],
which consists of lines up to (m − 1), where m is odd. Then,
γ(H) � 2(m−1

2 )2.
Proof. We subdivide the subgraphH as shown in Figure 9 into

two partitions by making a cut C = (S, T), where S contains 2i − 1
vertices from each line i, 1 ≤ i ≤ (m − 1). Two vertices vi and vj in S
are connected if and only if the edge vivj ∈ E(H). It is enough to
dominate S, as T is the mirror image of S and follows an equal
number of vertices to constitute the same dominating set as that
of S. To dominate S, we select vertices line-wise, dominating one
vertex of line 1 by choosing exactly one vertex with address (2, 2).
Proceeding by selecting the diagonally opposite vertices up to line
(m − 1) such that all the vertices are dominated exactly once, in
general, we get the following: γ(S) � γ(T) � (m−1

2 )2 as shown in
Table 1 which depicts the domination number of a partition H
upto line (m-1) where m is greater than or equal to 3. Hence, the
domination number of H is given by γ(H) � γ(S) +
γ(T) � 2(m−1

2 )2.

Lemma 5. Consider G = CNC5[m] as a connected undirected graph
m ≥ 2. Then, we have γ(1-PH) = 2m.

Proof. In 1-PH, the number of hexagons is 2m − 2, arranged with
the pentagon at the center, flanked by (m − 1) hexagons on each side.
By proposition 2 to dominate the hexagons on the left side, we
require m vertices. Similarly, to dominate the hexagons on the right
side, another set of m vertices is needed. Therefore, a total of 2m
vertices are required to dominate the entire 1-PH.

Theorem 4. Consider G = CNC5[m] as a connected undirected
graph m ≥ 2. Then, we have

γ(G) �
5m2

4
, m is even,

⌈5m2

4
⌉ + 1, m is odd

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Proof. Case (i) When m is even. By Lemma 2 and Theorem 1, it

is straightforward that γ(G)≥ p
Δ+1 � 5m2

4 , where p is the order of the
graph. Each vertex is dominated precisely once, starting from the
initial vertex with address (2,2) and proceeding by saturating a
sequence of diagonally opposite vertices of a hexagon till all the
vertices are dominated.

Case (ii) Whenm is odd. Them-layered CNC5[m] graph has 2m
lines and 2m − 1 blocks. We consider three subgraphs: H1, H2, and

FIGURE 6
γ(CNC5[4]) = 20.

FIGURE 7
Odd number of hexagons.

FIGURE 8
Even number of hexagons.
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H3. The subgraph H1 contains Block 1, Block 2, . . . Block (m − 2).
The subgraph H2 contains Blockm; the subgraph H3 contains Block
(m + 2), Block (m + 3),. . .Block (2m − 1). Let D ⊆ V be a dominating
set, and we select vertices from H1, H2, and H3 in a set D as follows:
H1 consists of (m-1) lines and (m-2) blocks. Using Lemma 4,
γ(H1) � 2((m−1)

2 )2.
The subgraphH2 consists of 1-PH, i.e., Blockm, using Lemma

5, γ(1-PH) = 2m. Now, we consider the subgraph H3, and to find

the dominating vertices of H3, we employ the depth-first search
(DFS) algorithm, known for its exhaustive search approach,
where |H3| is the input parameter, and it consists of lines m +
2 to 2m. To select vertices from |H3| in D, we first fix the root
vertex as (m + 2, 2), and we maintain two sets D1 and A (D1),
where D1 is the dominating set of H3. The algorithm gets
terminated once |A (D1)| = |H3 − D1|. We begin by dominating the
vertices of H3 in a sequential order of the index i, i.e., we proceed by
covering all the vertices (m + i, 1) where 1 ≤ i ≤m and continuing up to
all the vertices (m + i, j), where 1 ≤ j ≤ 4m − (2i − 1) are dominated.We
use Theorem 2, Theorem 3, Proposition 1, and Lemma 3 to select
vertices in set D1 such that |A (D1)| = |H3 − D1|. γ(H3) � |H3 |

4 + 1.
Hence, the total number of vertices in D is 5m

2

4 + 1, which implies
γ(G)≤ 5m2

4 + 1.

FIGURE 9
Subgraph H.

TABLE 1 Domination of a partition H.

m 3 5 7 . . . n

γ(S) 12 22 32 . . (n−12 )2

FIGURE 10
The brick diagram representation of CNC5[3].
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On the other hand, to prove γ(G)≥ 5m2

4 + 1, we use the
contradiction method. Let us assume that γ(G) � �5m2

4 �. Consider
the graph CNC5 [3] as shown in Figure 10. We divide the graph into
H1, H2, and H3. To dominate H1 in total, we need 2(m−1

2 )2 � 2
vertices. To dominate all the vertices of the hexagons in H2 by
Lemma 5, we need a minimum of 2m vertices, i.e., six vertices. To
dominateH3, we need h + 2 = 5 vertices, by Lemma 3. Hence, γ(G) =
13, but according to our assumption, γ(G) � �5m2

4 � � 12, which is a
contradiction to our assumption. Hence, γ(G)≥ �5m2

4 � + 1.
Theorem 4 establishes that the dominating set created by

choosing vertices coincides with an independent set, which leads
to the assertion of Theorem 5.

Theorem 5. Let G = CNC5 [m] as a connected undirected graph
m ≥ 2. Then, we have

γi(G) � γ(G) �
5m2

4
, m is even,

⌈5m2

4
⌉ + 1, m is odd

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Theorem 6. Let G = CNC5[m], m ≥ 2. Then, γp(G) � �2m3 �.

Proof. Consider D to be a minimum power dominating set and
D1 to be a power dominating set. When m = 2, it is easy to verify
from the brick diagram that D = {(2, 2), (3, 3)} is a minimum power
dominating set. Now, we prove for m ≥ 3. To prove |D|≤ �2m3 �, the
following cases are considered:

Case (i) whenm = 3i for all i ≥ 1, consider D1 = (3n − 1, 4n − 2) ∪
(3n, 4n + 1), 1 ≤ n ≤ i; this implies that |D1| � 2i � 2m

3 .
Case (ii) whenm = 3i + 1 for all i ≥ 1, consider D1 = (3n − 1, 4n −

2) ∪ (3n, 4n + 1) ∪ (3i + 2, 4i + 1), 1 ≤ n ≤ i; this implies that
|D1| � 2i + 1 � �2m3 �.

Case (iii) whenm = 3i + 2 for all i ≥ 1, considerD1 = (3n − 1, 4n −
2) ∪ (3n, 4n + 1) ∪ (3i + 2, 4i + 2) ∪ (3i + 3, 4i + 4), 1 ≤ n ≤ i;
this implies that |D1| � 2i + 2 � �2m3 �. Hence, |D|≤ �2m3 �.

To prove |D|≥ �2m3 �, we use the contradiction method. Let
us assume that |D| � �2m3 � − 1. Now, we know that when m = 2,
then |D| = 2, but according to our assumption |D| = 1. Hence, it is a
contradiction. Thus, |D|≥ �2m3 � which implies γp(G) � �2m3 �.

Theorem 7. Let G = CNC5 [m], m ≥ 2. Then, γp,k(G) = 1.
Proof. Since Δ(G) = 3 by Lemma 1, its straightforward.

5 Conclusion

In this research, we have conducted a thorough investigation of
the 1-PCNC graph by analyzing different domination parameters.
Modeling the brick diagram associated with 1-PCNC allowed us to
identify several crucial parameters, including the domination
number, independent domination number, power domination

number, and k-power domination number. We believe that these
findings will assist researchers in gaining insights into and predicting
the physiochemical properties associated with these chemical
structures. Moving forward, we aim to expand our work by
understanding in depth the physiochemical properties of
chemical structures using different variants of domination.
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