
In silico identification of the
anticataract target of
βB2-crystallin from Phaseolus
vulgaris: a new insight into
cataract treatment

Sunday Amos Onikanni1,2†, Adewale Oluwaseun Fadaka3,
Tran Nhat Phong Dao4,5, Valens Munyembaraga6,7,
Vincent Nyau8, Nicole Remaliah Samantha Sibuyi9,
Morenike Grace Ajayi10, Nguyen Thi Ai Nhung11,
Emmanuel Ejiofor12, Basiru Olaitan Ajiboye13,14, Minh Hoang Le5

and Hen-Hong Chang4,15,16*
1College of Medicine, Graduate Institute of Biomedical Sciences, China Medical University, Taichung,
Taiwan, 2Department of Chemical Sciences, Biochemistry Unit, Afe-Babalola University, Ado-Ekiti,
Nigeria, 3Department of Biotechnology, University of theWestern Cape, Bellville, South Africa, 4Graduate
Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung,
Taiwan, 5Faculty of Traditional Medicine, Can Tho University of Medicine and Pharmacy, Can Tho,
Vietnam, 6Institute of Translational Medicine and New Drug Development, College of Medicine, China
Medical University, Taichung, Taiwan, 7University Teaching Hospital of Butare, Huye, Rwanda,
8Department of Food Science and Nutrition, School of Agricultural Sciences, University of Zambia,
Lusaka, Zambia, 9Department of Science and Innovation/Mintek Nanotechnology Innovation Centre,
Biolabels Node, University of the Western Cape, Bellville, South Africa, 10Department of Chemical
Sciences, Bamidele Olumilua University of Education, Science and Technology, Ikere, Nigeria,
11Department of Chemistry, University of Sciences, Hue University, Hue, Vietnam, 12Department of
Chemical Sciences, Faculty of Science, Clifford University, Owerrinta, Nigeria, 13Phytomedicine and
Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University Oye Ekiti,
Oye Ekiti, Nigeria, 14Institute of Drug Research and Development, SE Bogoro Center, Afe Babalola
University, PMB5454, Ado-Ekiti, Nigeria, 15Chinese Medicine Research Centre, China Medical University,
Taichung, Taiwan, 16Department of Chinese Medicine, China Medical University Hospital, Taichung,
Taiwan

Introduction: Severe protein clumping in the lens can block light and lead to
vision issues in cataract patients. Recent studies have linked β-crystallins, which
are key proteins in the lens, to the development of cataracts. Specifically, the
S175G/H181Q mutation in the βB2-crystallin gene plays a major role in
cataract formation.

Methods: To understand how this mutation can be activated, we utilized
computational methods to predict activators from Phaseolus vulgaris. The
Schrödinger platform was employed to screen bioactive compounds and
simulate molecular interactions in order to analyze binding and
structural changes.

Results: Our results indicated that these phytochemicals are stable near
S175G/H181Q.
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Discussion: These findings suggest novel approaches that could potentially be
developed into effective anticataract medications through further refinement and
additional testing, ultimately resulting in the creation of more potent agents for
cataract treatment.
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1 Introduction

Crystallins are essential proteins in the eye lens that play a vital role
in directing light to the retina (Qi et al., 2016; Song et al., 2020). They
constitute up to 90% of the water-soluble proteins in the human lens,
supporting the stable structure of lens fiber cells throughout an
individual’s life (Lou et al., 2009; Chen et al., 2018). Misfolded
crystallins can lead to correctable blindness by causing clouding and
blurring of the lens (Lee and Afshari, 2017). Research indicates that
cataracts resulting from misfolded crystallins contribute to 10.8 million
cases of blindness out of 32 million cases worldwide. There are three
types of crystallins, namely, α, β, and γ, which are categorized into two
families: α-crystallins and βγ-crystallins (Khairallah et al., 2015; Moreau
and King, 2012). α-Crystallins, the most abundant crystallins in the lens,
helpmaintain light refraction and act as chaperones in lens development
(Fujii et al., 2012; Robinson et al., 2006).Human β-crystallins and human
γ-crystallins share similar sequences, with β-crystallins further classified

into acidic and basic subtypes. The basic subtypes of β-crystallins include
βB-1, βB-2, and βB-3 crystallins, with βB-2 crystallins being the least
altered and most soluble protein (Evans et al., 2008; Srivastava and
Srivastava, 2003; Takata et al., 2018; Xu et al., 2012). A bioinformatics
study of a dataset of cataract patients identified major nuclear cataract-
associated mutants from βB-2 crystallins. The study revealed the impact
of S175G/H181Qmutation on βB-2 crystallins, affecting the largest loop
that links the β-sheet in the key Greek motif (Song et al., 2020).
Furthermore, significant structural changes were observed in the βB-2
crystallin S175G/H181Q mutant, along with an increase in cataract-
related modifications, such as oxidation (Song et al., 2020).

Various risk factors, such as diabetes, hypertension, smoking, and
tobacco use, are linked to nuclear and cortical cataracts, which cause the
degradation of crucial proteins (Mamatha et al., 2015). Recent studies
have identified inhibitors such as closantel and gambogic acid that aid in
preventing protein unfolding and aggregation and enhancing tetramer
stability at low concentrations (Islam et al., 2022; Mishra et al., 2012). In

FIGURE 1
The workflow representation from the research study.
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recent years, thousands of medicinal plants have been explored for their
pharmacological value, with many showing medicinal benefits (Ajiboye
et al., 2022; Onikanni et al., 2022). One such plant is Dregea volubilis,

which produces drevogenin D, a plant-derived compound used for
various conditions, such as asthma, dyspepsia, and inflammation
(Anjaria et al., 2002). Plant-derived compounds and herbal extracts

FIGURE 2
(A-C) Structural composition of the molecules previously identified and characterized in our study of Phaseolus vulgaris, along with
reference molecules.
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play a crucial role in supporting the anticancer potential of medicinal
plants. This evidence is backed by mechanistic approaches that highlight
the antioxidant properties of these plant-based compounds. Quercetin, a
flavonoid found in various fruits, vegetables, and grains, is known for its
antioxidant and anticancer properties. It has been shown to prevent
cataract progression and the formation of glucose-induced cataracts in
the artificial aqueous humor by reducing lipid peroxidation and
increasing the Na + -K + -ATPase activity (Mullins and Arjmandi,
2021;Moreno-Valdespino et al., 2020;Wang et al., 2010; Chaudhary and

Sharma, 2013). Another flavone-based natural dietary polyphenol,
chrysin, found in flowers and honeycombs, has been shown to
prevent selenite-induced cataract formation in cultured animal lenses.
Chrysin achieves this by modulating genes responsible for calcium
transport, calpain formation, and apoptosis (Bellucci et al., 2014).

Additionally, legume plants such as Phaseolus vulgaris are rich in
protein, vitamins, and phytochemicals (Papa and Gepts, 2003; Papa
et al., 2005). The pharmacological significance of Phaseolus vulgaris in
diabetes has been extensively studied, with bioactive components

TABLE 1 Bioabsorbability and pharmacokinetic analyses of the molecules of interest were performed with SWISSADME, while the medicinal chemical
effects were evaluated using admetSAR online servers.

Water solubility Pharmacokinetics Drug-likeness

ID Log S (ESOL) Log S (Ali) GI absorption BBB permeant P-gp substrate Lipinski Bioavailability

QUI Highly soluble Highly soluble Low No No 0 violation 0.56

GAL Very soluble Soluble High No No 0 violation 0.56

CATG Very soluble Soluble Low No No 2 violations 0.17

SYR Very soluble Soluble High No No 0 violation 0.56

CAT Soluble Soluble High No No 0 violation 0.55

FER Soluble Soluble High Yes No 0 violation 0.85

MED Soluble Soluble High No Yes 0 violation 0.55

PCO Soluble Soluble High Yes No 0 violation 0.85

SAL Soluble Soluble High Yes No 0 violation 0.85

KAE Soluble Moderately soluble Low No No 2 violations 0.17

CAR Moderately soluble Moderately soluble High Yes Yes 0 violation 0.55

DRE Soluble Soluble High No Yes 0 violation 0.55

AMI Highly soluble Highly soluble High No No 0 violation 0.55

Keywords: QUI, quinic acid; GAL, gallic acid; CATG, catechin glucoside; SYR, syringic acid; CIA, cianidanol; FER, ferulic acid; MED, medioresinol; PCO, p-coumaric acid; SAL, salicylic acid;

AST, astragalin; CAR, carnosol; DRE, drevogenin D; AMI, amifostine.

TABLE 2 Docking results of the complexes with the receptors.

TR LGs D-Score MMGBSA # H-bond Pi-cat Others

8FZM Catechin glucoside -7.14 -50.29 2(ASP261), 2(ASP271) ARG229, TYR268, and ASN310 ARG229 TRP264 and TYR268

Garlic acid -4.70 -8.86 2(HIS134), GLU122, and LYS120 0 0

Astragalin -4.50 -32.77 2(ILE124), 2(HIS134), and GLU122 0 0

Medioresinol -3.13 -37.81 GLU122 and ILE124 0 0

Drevogenin D -4.54 -30.01 2(ASN257), ASN219, and ASP261 0 0

Amifostine -4.04 -16.51 2(ASP126), 2(ASP125) GLU122, and ILE124 0 ASP126

7K7U Catechin glucoside -7.68 -54.98 2(ILE199), 2(PRO11) LYS75, and GLY56 LYS75 0

Garlic acid -6.22 -22.18 GLU105 0 0

Astragalin -5.62 -0.32.69 ILE99 and LYS75 0 0

Medioresinol -4.24 -35.19 GLN146 0 0

Drevogenin D -3.97 -32.65 GLY36 and GLN12 0 0

Amifostine -3.42 -12.61 GLN146, GLU105, SER103, and SER147 0 0

Note: 8FZM, crystal structure of human importin alpha 3 in complex with the Bimax2 peptide; 7K7U, crystal structure of βB2-crystallin.
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identified for their diabetes-regulating benefits. The consumption of
Phaseolus vulgaris has been linked to reducing the need for cataract
surgery (E et al., 2022; Pascale et al., 2018). This plant, mostly
domesticated in the U.S., contains components such as stigmasterol,
sitosterol, and campesterol, which contribute to its benefits (Dueñas
et al., 2015; Oomah et al., 2005; Parmar et al., 2016; Ocho-Anin et al.,
2010). It is also rich in bioactive chemicals and essential nutrients such
as proteins, carbohydrates, dietary fiber, and fat, as well as antidiabetic
polyphenol compounds and saponins (Nyau et al., 2015; Ekins et al.,
2007; Onikanni et al., 2023; Umar et al., 2021; Schrödinger LLC, 2018).

Computational techniques play a crucial role in drug discovery by
accelerating the process and cutting costs. Researchers have investigated
various molecular targets to develop new drugs for different conditions,
such as cataracts (Anjaria et al., 2002; Papa and Gepts, 2003; Papa et al.,
2005). Our study aimed to understand the mechanism of action
through ADMET drug-likeness analysis, molecular dynamics (MD)
simulations, and principal component analysis (PCA). Specifically, we
focused on identifying potential phytochemicals that could act as
anticataract agents by targeting S175G/H181Q in combination with
βB2-crystallin inhibition in Phaseolus vulgaris.

FIGURE 3
The green stickmodel illustrates the interaction between themolecular complexes of the crystal structure of BetaB2-crystallin andDrevogenin D, as
well as the crystal structure of BetaB2-crystallin and Catechin glucoside at the active site. The model uses colors to represent negative, positive, and
neutral charges for the corresponding binding site residues.
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2 Materials and methods used for
the study

2.1 Recovery of molecules and receptors

The library consists of 15 bioactive compounds (phytochemicals)
extracted from Phaseolus vulgaris in a previous study by Johnson et al.
(2021). The 2D structures of the ligands and reference compounds were
retrieved from the database (https://pubchem.ncbi.nlm.nih.gov/).
Similarly, the three-dimensional structures of the target proteins
(PDB: human importin alpha 3 complex with bimax2 peptide and
βB2-crystallin) were obtained from the protein library of the Scientific
Collaboratory for Molecular Bioinformatics (RCSB) online (https://
www.rcsb.org/).

2.2 Preparation of protein and grid
generation

The crystal structures of the proteins of interest were generated
using Schrödinger Suite version 21.3 of Maestro Wizard. This process
involved minimizing the configuration using the OPLS3 force field,
adding any missing hydrogen atoms, optimizing hydrogen bonds,
removing water molecules, and establishing necessary disulfide
bridges. Grid folders were also created to define the receptor
binding sites by selecting the co-crystal ligand located within the
pocket (Adekiya et al., 2022; Saeb, 2018; Lawal et al., 2023).

2.3 Ligand preparation

Comprehensive preparation of ligands was carried out via the latest
module in Schrödinger Suite version 21.3 of Maestro, followed by
OPLS3 optimization at a physiologically relevant pH range of 7.2 ± 0.2.
Based on each structural molecule, potential ionization states were
generated, and stereoisomers were generated by modifying the specific
chiralitywhile keeping the other stereoisomers constant (Lawal et al., 2023).

2.4 Toxicological prediction and ADME
properties of the identified molecules

QikProp Schrödinger Suite version 21.3 of Maestro tools was
used to analyze the ADME properties and toxicological potency of
the lead molecules (Anand et al., 2019).

2.5 Free binding energy determination

Schrödinger Suite version 21.3 of Maestro was utilized to explore
the use of Prime MM-GBSA software in calculating the binding energy
potential of receptor–ligand complexes. This was done to determine the
stability of these complexes. The OPLS3 force field and VSGB solvent
model were chosen as the default force field and solvent model for free
energy binding calculations, respectively (Johnson et al., 2021). The
OPLS3 force field and VSGB continuum solvent model were selected,

FIGURE 4
The green stick model illustrates the interaction between the molecular complexes of human importin alpha 3 activator and catechin glucoside at
the active site. 2D visualization uses red, blue, and white colors to represent the corresponding binding site residues.
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with default settings for other options (Tewari et al., 2019). The formula
used to determine the binding energy (ΔGbind) of each ligand with
LASV nucleic acids is as follows: ΔE + ΔGsolv + ΔGSA = ΔGbind. The
expression ΔE = Ecomplex − Eprotein − Eligand represents the reduced
energies of the protein–inhibitor complex, protein, and inhibitor,
respectively. Furthermore, Gsolv (complex) = ΔGsolv – Gsolv

(complex) – Gsolv (protein) – Gsolv (ligand), where Gsolv (complex), Gsolv
(protein), and Gsolv (ligand), represent the solvation free energies of the
complex, protein, and inhibitor, respectively. ΔGSA = GSA
(complex) – GSA (protein) – GSA (ligand), which represents the surface
area energies of the complex, protein, and inhibitor, respectively
(Tewari et al., 2019).

FIGURE 5
The green stick model illustrates the interaction between the molecular complexes of human importin alpha 3-activator and Drevogenin D, as well
as the crystal structure of human importin alpha 3-activator and Catechin glucoside at the active site. The 3D representation shows negative, positive, and
neutral charges for the binding site residues.
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2.6 Trajectory point analysis and molecular
dynamics simulations

The molecular mechanism of the target protein was investigated
on the Windows-x64 platform using Schrödinger Suite 21.3,
Maestro version 12.5.137, and MM share version 5.7.137.
Techniques for trajectory analysis and MD preparation had been
previously developed (Jeevanandam et al., 2021). The docked
complexes underwent molecular modeling with an OPLS
2005 force field and the Desmond module of Schrödinger
software. The receptor–ligand complex was placed in an
orthorhombic box using a transferable intermolecular potential

and a 3-point water model. Salt and chloride ions were added to
mimic physiological conditions and neutralize the overall charge.
Temperature and pressure were maintained at 310°C and
1.01325 bar, respectively, using an American-made
Martyna–Tobias–Klein barostat and Nose–Hoover thermostat.
Simulated relaxation was carried out in an NPT ensemble,
considering the number of atoms, pressure, and timescale. Long-
range electrostatic interactions were calculated using the particle
mesh Ewald approach during the MD simulation. A 100-ns MD
simulation study was conducted with a 1000-frame trajectory
sampling interval. MS-MD trajectory analysis and a simulation
interaction diagram were used to assess and present the

FIGURE 6
The green stickmodel shows the interaction between the βB2-crystallin activator and catechin glucosidemolecular complexes at the active site. 2D
visualization uses red, blue, and white colors to represent the corresponding binding site residues.

TABLE 3 Molecular dynamics simulation properties of native proteins and molecules of interest.

Receptor Name RSMF RSM D rGyr SASA MolSA PSA

8FZM Catechin glucoside 1.496±0.67 2.013±0.25 4.884±0.14 276.40±39.10 377.11±2.92 363.75±711

Drevogenin D 1.397±0.51 0.761±0.18 3.805±0.02 283.57±1.92 315.57±1.92 171.18±6.64

8FZM-alone 1.441±0.51 2.861±0.47

7K7U Catechin glucoside 2.336±0.81 1.330±0.24 5.141±0.07 257.82±38.06 381.25±2.15 371.54±6.07

Drevogenin D 4.868±1.41 0.635±0.12 3.769±0.02 438.25±117.3 314.38±1.80 161.52±3.71

7K7U-alone 3.215±1.39 10.14±1.60

Note: the Angstrom unit (Å) was used to measure the mean ± SEM of the values. rGyr, radius of gyration; RMSD, root mean square deviation; RMSF, root mean square fluctuation; PSA,

pressure swing adsorption; SASA, solvent-accessibility surface area; MolSA, molecular surface area.
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simulation results. To ensure consistency, the MD analysis was
performed in duplicate. Data were plotted using Origin
Pro version 9.

3 Results

The graphical chart of the in silico study is presented in Figure 1
to provide an overview of the research study. Physicochemical
properties such as alogP, atomic number, ring number, H-bond
acceptors, and H-bond donors are crucial functions in the
applicability domain. We analyzed the distribution of these
properties in all the training sets of the predictive models, and
the structural compositions of the compounds of interest are
depicted in Figures 2A–C. Furthermore, the importance of
pharmacokinetics in predicting the absorptivity, distribution,
metabolism, and excretion of any drug is essential for its safety
and therapeutic effectiveness. Therefore, the therapeutic agent
requires the presence of H-bond acceptors and H-bond donors
for membrane transport, and the interactions of drug proteins,

rotatable bonds, and aqueous solubility are consistent among the
compounds of interest compared with the reference molecules, as
shown in Table 1. Moreover, one of the most critical properties in
drug discovery is the compound’s solubility as it significantly
impacts various drug properties, such as biological activity,
toxicity, pharmacokinetic potential, and in vivo potency. These
parameters are determined during different stages of drug
discovery and development. Therefore, the preclinical stage of
any drug discovery requires solubility, especially during the
structural optimization process. Our study revealed that the
molecules of interest are more soluble than the reference ligands,
as shown in Table 1.

Furthermore, our findings revealed the hit molecules
compared with reference compounds (Drevogenin D and
Amifostine), an inhibitor of the Pgp substrate, the Pgp
substrate had no inhibitory effect on any of the molecules of
interest. Surprisingly, few of the bioactive compounds extracted
from Phaseolus vulgaris showed little intestinal absorption, in
contrast to the reference agonists, suggesting that most of these
compounds demonstrated significant potency as ATP-

FIGURE 7
Analysis of the molecular dynamics (MD) simulations of both the human importin alpha 3 activator complex and βB2-crystallin activator. P-RMSF
graphical illustration and RMSD diagram. The structural dynamics (MD) data were analyzed using Schrödinger version 2021_1 software.
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dependent drug efflux pumps for ADME drugs through
substrate specificity.

The utilization of lead-extracted bioactive compounds from
Phaseolus vulgaris yielded similar results, with the crystal
structure domains of the two receptors of interest (human
importin alpha 3 and βB2-crystallin) producing comparable
docking scores of 7.14 kcal/mol and −7.67 kcal/mol, respectively,
compared to the standard docking scores of −4.54 kcal/mol and
3.97 kcal/mol, respectively. The related molecules were identified as
targets of interest through docking analysis, as presented in Table 2.
Additionally, one of the lead compounds demonstrated favorable
interactions with ASP271, ARG229, and TYR268 in the N-terminal
domain receptor of human importin alpha 3. This compound
engaged in hydrogen bonding with the atoms, exhibited a π–π
cation interaction with ARG229, and formed a salt bridge
between TRP264 and TYR268 within the domain receptor of the
human importin alpha 3 activator complex. Conversely, ILE199,
PRO11, LYS75, and GLY56 participated in hydrogen bonding in the
N-terminal domain receptor βB2-crystallin with the same
compound, with LYS75 forming π–π cation interactions, as
detailed in Table 2. Overall, the interactions indicated that the

ligands influenced the flexibility of the target, while the receptor
residues of the target displayed strong, detectable binding affinities.
The intermolecular potential output shows quantitative affinities for
binding substances that support the target’s flexibility and receptor
residues. Consequently, the target proteins were analyzed through
3D and 2D molecular docking to identify the compound that
occupies the enzyme’s active site. This is illustrated in Figures 3–6.

4 Discussion

Understanding the interaction between receptors and their
ligands is crucial for the pharmaceutical and functional food
industries, as well as for scientific research aiming to uncover the
root causes of many diseases worldwide. The emergence of
bioinformatics has provided a platform for investigating disease
mechanisms at the molecular level using computational methods
(Saeb, 2018; Gogoi et al., 2016). The interaction between a protein
and its ligand is essential for developing structure-based drugs, and
there is a growing interest in small molecules as alternative
treatments for cataracts. However, the current clinical pipeline

FIGURE 8
Analysis of themolecular dynamics (MD) simulations of both the human importin alpha 3 activator complex and βB2-crystallin activator. rGyr (radius
of gyration) graphical illustration and SASA diagram. The structural dynamics (MD) data were analyzed using Schrödinger version 2021_1 software.
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may not be adequate to prevent disease recurrence, transmission, or
resistance to existing treatments (Rampogu et al., 2018; Lamichhane
et al., 2023; Lim et al., 2018; Gopal et al., 2016). Therefore, the search
for new and effective anticataract medication is imperative. This
study utilized a computational approach to evaluate the therapeutic
potential of phytochemicals from Phaseolus vulgaris in reducing
cataracts. Interestingly, the ADMET potential estimation of the
identified phytochemicals from Phaseolus vulgaris revealed their

characteristics compared to reference molecules in terms of heavy
atoms, aromatic heavy atoms, rotatable bonds, H-bond acceptors,
and H-bond donors, as shown in Table 1.

The docking score can indicate the ability of a protein–ligand
complex for activation or suppression Zheng et al., 2022; Agu et al.,
2023. Table 2 presents significant results with no breaches of
Lipinski’s rule of five in the categories of compound-screened
phytochemicals from Phaseolus vulgaris. This suggests that the

FIGURE 9
Molecular dynamics (MD) analysis of both the human importin alpha 3 activator complex and βB2-crystallin activator. Molecular surface area (MolSA)
graphical illustration and PSA diagram. The structural dynamics (MD) data were analyzed using Schrödinger version 2021_1 software.

TABLE 4 Principal component analysis of the native proteins and molecules of interest.

Receptor Name EV-cumulative % Variance % Cumulative Coefficient PC1 Coefficient PC2

8FZM Catechin glucoside 2.841 94.0 94.73 0.5777 -0.5308

Drevogenin D 0.091 3.04 97.76 0.5793 -0.2684

8FZM-alone 0.067 2.24 100 0.5750 +0.8038

7K7U Catechin glucoside 1.859 61.98 61.98 0.6265 -0.3089

Drevogenin D 0.753 25.12 87 0.4725 +0.8806

7K7U-alone 0.387 12.91 100 0.6198 -0.3591

Keywords: EV, eigenvalue; PC, principal component; %, percentage.
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identified ligands show therapeutic potential due to their binding
pockets and rift domains in the state 1 receptor complex of human
importin alpha 3 and βB2-crystallin with most compounds. By
comparing the intermolecular interaction profile of the higher
binding molecules to that of reference molecules, a deeper
understanding of the mechanistic relationships was obtained.
Catechin glucoside, with a higher docking score, emerged as one
of the top contenders. Furthermore, gastrointestinal absorption of a
drug is crucial for its possible delivery to the target site [Hua, 2020;
Han et al., 2024; Stillhart et al., 2020]. Therefore, during
gastrointestinal absorption, most of the ligands of interest from
Phaseolus vulgaris compound-screened phytochemicals compete
with reference molecules. As shown in Table 2, the
gastrointestinal absorption of the ligands was comparable to that
of the reference molecules.

Additionally, Table 1 shows that the target ligands inhibited the
Pgp substrate in a manner similar to that of the reference
compounds, which were hypothesized to be Pgp substrate
inhibitors. This helps clarify why the chemical found in Table 1
can act as an ATP-dependent drug efflux pump for ADME drugs
with strong potency through substrate specificity. In a similar
manner, the critical ligands were docked with receptors to

elucidate the therapeutic efficacy of phytochemicals screened
from Phaseolus vulgaris. Table 2 demonstrates the validation of
interactions with the majority of critical amino acid residues,
suggesting that these amino acids engage with the ligands at the
binding site, which may indicate that the selected hit molecule is
potentially safe for use as an anticataract drug. In comparison with
the reference molecules, which exhibited docking scores
of −4.54 kcal/mol and 3.97 kcal/mol, the crystal structure
domains of the two receptors of interest (human importin alpha
3 and betaB2-crystallin) yielded docking scores of −7.14 kcal/mol
and −7.67 kcal/mol respectively, suggesting a comparable influence
on the efficacy of compound-screened phytochemicals from
Phaseolus vulgaris.

Moreover, one of the lead compounds interacts well with the
human importin alpha 3 N-terminal domain receptors ASP271,
ARG229, and TYR268. The H-bond with the atoms revealed a π–π
cation interaction with ARG229 and a salt bridge between
TRP264 and TYR268 with the human importin alpha 3 activator
complex domain receptor. Conversely, the N-terminal domain
receptor βB2-crystallin involved ILE199, PRO11, LYS75, and
GLY56 in hydrogen bonding with the same molecule, indicating
that LYS75 produced a π–π cation connection, as shown in Table 2.

FIGURE 10
Principal component analysis of the native proteins (the human importin alpha 3 activator complex and βB2-crystallin activator) and the compound
of interest based on the root mean square fluctuations.
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The intermolecular potential exhibits quantifiable affinities for
both receptor residues and drugs that augment the adaptive ability of
the target. The target proteins were subjected to three-dimensional
and two-dimensional molecular docking experiments with the
relevant compounds to discover the compounds of interest
positioned in the enzyme’s active region, as depicted in Figures
3–6. Analyzing the atomistic level changes in receptor binding
pockets over time is another critical aspect of molecular
simulation analysis. The MD simulations were performed on
important receptors and complexes with molecules to investigate
the effect of phytochemicals screened from Phaseolus vulgaris on
their effectiveness as activators of the mutant gene. The active site of
the protein was balanced using Schrödinger Suite Maestro v21.3.
Several molecular dynamics characteristics were investigated,
including root mean square deviation (RMSD), root mean square
fluctuation (RMSF), radius of gyration (rGyr), molecular surface
area (MolSA), pressure swing adsorption (PSA), and solvent-
accessible surface area (SASA). Table 3 shows the mean ± SEM
of the protein binding complex and the interpreted values of the
deviation plots. Throughout the 100-ns simulation period, the
deviation patterns of the two receptor complexes (human

importin alpha 3 activator complex and with βB2-crystallin
activator) show similar movement, with catechin glucoside
emerging as the dominant component, as shown in Table 3.
Similarly, Figure 7 reveals that the root mean square deviation
alterations were observed in all the patterns of the human
importin alpha 3 activator complex at 10–85 ns. Additionally, the
unraveling processes in the structure are revealed by the receptor’s
compactness, perturbations, and folding status in gyration (rGyr)
values that indicate changes in compactness. The average plot in
Figure 8, which converges and demonstrates strong system stability,
illustrates a consistently stable system over a simulation time of
23–100 ns. Table 3 presents the deviation plots and means ± SEMs
for the receptor binding complex. The SASA values remain stable
despite a conformational change in the target protein. However, the
major suggestion from this research revealed that the increased
surface area was probably exposed to the solvent due to the
unfolding of the receptor, which suggests whether the SASA was
folded or unfolded at the specific site of interest. Additionally, the
change in the solvent-accessibility surface area from 5 ns to the end
of the simulation period was demonstrated by the crystal structure of
human importin alpha 3. This structure was used to analyze the

FIGURE 11
Principal component analysis of the native proteins (the human importin alpha 3 activator complex and βB2-crystallin activator) and the compound
of interest based on the root mean square deviations.
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protein surface’s interactions with the surrounding solvent
molecules, as shown in Figure 8.

The majority of MolSA alterations involve the reorganization of
amino acid residues in their accessible or buried areas, which
modifies the modeling of protein-ligand structures. Our
investigation demonstrated the consistency of amino acid residue
reorganization at both buried and accessible sites throughout the
simulated period. Table 3 shows the deviations and aggressive
actions, which were 377.11 ± 2.92, 381.25 ± 2.15, 315.57 ± 1.92,
and 314.38 ± 1.80. A PSA study shows commensurable outcomes for
almost all the molecules. Table 3 and Figure 9 provide deviation
plots and mean ± SEMs for the receptor binding complex. The
pattern decreases from the start to the end of the simulation. Because
of the well-built synergy between human importin alpha 3 and the
βB2-crystallin activator, along with atoms linked to amino acid
residues in the receptor’s pose, conformational difference may
increase, influencing the pose and potentially inhibiting receptors.
In addition, one of the mechanics studied to better determine the
major component is the stable structure of the residues in relation to
a combination of linearly and uncorrelated parameters, which
investigates the covariance matrix of the coordinate fluctuations
in the protein simulation. Consequently, as Table 4 demonstrates,
there is a considerable difference between the ligands and receptors
in the scatter plot shown in Figures 10, 11. Furthermore, the
eigenvalues are revealed through the diagonalization of the
covariance model and the application of the OriginPro interface,
as shown in both Figures 10, 11, thereby providing important
information on the coordinated movements among the receptors.
Finally, our study provides insights into the potential use of catechin
glucoside in the treatment of cataracts. Thus, further clinical
investigation is necessary to unravel the mechanistic involved
and corroborate its therapeutic importance in the treatment of
cataracts and associated problems.

5 Conclusion

The global focus on cataracts and their associated challenges
necessitates a multi-faceted approach to mitigate their impact.
Utilizing bioactive compounds derived from medicinal plants has
emerged as a promising solution. In our study, we identified a new
phytonutrient from Phaseolus vulgaris with significant inhibitory
potential against cataract-related targets. Computational analysis
confirmed its binding affinity without violating key drug
development guidelines. This discovery holds promise for
addressing inhibitory factors in disease management. However,
challenges remain, particularly in optimizing docking computations
and integrating biological network-based approaches. Further
experimental research is needed to explore the compound’s therapeutic
potential and develop effective strategies for cataract treatment.

6 Future directions

The findings from this study provide a computational basis for
identifying bioactive compounds from Phaseolus vulgaris with
potential anticataract properties, specifically targeting the S175G/
H181Q mutation in the βB2-crystallin gene. Future research should

prioritize experimental validation of these results through in vitro
and in vivo studies to confirm the binding interactions and
stability of the identified compounds. Biochemical assays can
be employed to assess their inhibitory effects on protein
aggregation and lens opacity, offering direct evidence of their
therapeutic potential. Additionally, exploring the downstream
molecular pathways affected by the S175G/H181Q mutation and
understanding how these compounds modulate oxidative stress
and protein misfolding could provide deeper mechanistic
insights.

The evaluation of the biological activity of these compounds in
targeted assays is crucial to strengthen the computational predictions and
identify themost promising candidates for further development. This will
also provide the foundation for exploring their pharmacokinetics and
safety profiles in preclinical models. Subsequent clinical trials would be
essential to determine their therapeutic efficacy and applicability in
preventing or treating cataracts.

To broaden the scope of this research, future investigations could
focus on other mutations in the βB2-crystallin gene associated with
cataract formation, thereby expanding the potential targets for these
bioactive compounds. Moreover, extending the analysis to compounds
from related medicinal plants known for their anticataract properties
might uncover additional therapeutic options. Integrating these findings
with network-based approaches and clinical research will ultimately pave
the way for developing effective strategies to mitigate cataracts and
improve patient outcomes.
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