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Deep eutectic solvent (DES) has been considered as a useful catalyst and reaction
medium for various organic transformations. Herein, we report the catalytic
application of novel deep eutectic solvent- based surfactant (DES surfactant)
for the selective and fast oxidation of alcohols to aldehydes. The readily
accessible DES surfactants (FeCl3/BHDC) was prepared using inexpensive
ferric chloride (FeCl3) and benzyl hexadecyl dimethyl ammonium chloride in a
simple manner. The synthesized FeCl3/BHDC was characterized using various
techniques, including, FTIR spectroscopy, thermal gravimetric analysis (TGA),
scanning electron microscopy (SEM), and energy- dispersive X-ray spectroscopy
(EDS) to determine its structure. The catalytic activity of FeCl3/BHDC in the
selective oxidation of various alcohols to corresponding aldehyde derivative was
investigated. The results showed the reaction could be completed within very
short reaction times ranging from 2 to 15 min, while achieving good to excellent
yields. This protocol offers a facile strategy and excellent efficiency in selectively
oxidizing various alcohol derivatives to their respective aldehydes and ketones,
utilizing hydrogen peroxide in the presence of catalytic DES surfactant.
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Introduction

Carbonyl compounds, including aldehydes and ketones, are essential in various
chemical production processes in both laboratory and industrial settings (Abad et al.,
2005). They serve as versatile intermediates for synthesizing a wide range of compounds
with commercial applications (Gröbel and Seebach, 1977). Aldehydes, in particular, are
valuable precursors for many organic transformations and find extensive use in the
synthesis of agricultural and medicinal compounds (Michael and March 2007). They
play a crucial role in the production of consumable goods such as perfumes, beverages, and
medicinal intermediates (Patai’s Chemistry of Functional Groups, 1966). Benzaldehyde, an
aromatic aldehyde, holds significant importance due to its versatile applications in various
industries. Benzaldehyde serves as a primary ingredient in the production of perfumes,
where its distinct almond-like fragrance is highly valued. It is also utilized in the flavor
industry to provide almond or cherry-like flavors to food and beverages. Additionally,
benzaldehyde acts as a precursor in the synthesis of numerous pharmaceuticals and
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agrochemicals, contributing to the development of agricultural and
medicinal compounds (Aljaafari et al., 2022). Historically,
benzaldehydes were produced through the hydrolysis of benzyl
chloride or the oxidation of toluene, which had drawbacks such
as the generation of chlorinated by-products and hazardous acidic
compounds, as well as harsh reaction conditions and poor selectivity
(Artzi et al., 2009).

In recent years, the industrial synthesis of benzaldehydes by the
oxidation of benzyl alcohol has gained popularity due to its
advantages of easily controllable conditions and high yield
(Corey and Suggs, 1975). However, the oxidation of alcohols
typically involves the use of expensive oxidizing agents like
dichromate, chromic acid, or permanganate in stoichiometric
quantities (Shaabani et al., 2021). These oxidants, such as
potassium permanganate (KMnO4) and potassium dichromate
(K2Cr2O7), possess strong oxidizing properties but also come
with environmental challenges and high costs (Lou and Xu, 2002;
Xu et al., 2020). To address these concerns, a potential alternative is
the selective oxidation of alcohols using pure oxygen (O2) and
hydrogen peroxide (H2O2) as the oxidants (Nagy et al., 2020).
This substitution aims to minimize the environmental impact
associated with the use of inorganic oxidants like KMnO4 and
K2Cr2O7. Pure oxygen is readily available in the atmosphere, and
hydrogen peroxide can be produced from sustainable sources or
synthesized using greener methods (Nagy et al., 2020). By utilizing
pure oxygen and hydrogen peroxide, the oxidation of alcohols can be
performed under environmentally friendly reaction conditions,
leading to improved selectivity and reduced formation of
unwanted by-products (Crombie et al., 2021). Moreover, this
substitution has the potential to be more cost-effective in the
long run, considering the environmental and health-related costs
associated with traditional inorganic oxidants (Su et al., 2010).

In recent years, there has been growing interest in exploring
alternative and sustainable approaches to alcohol oxidation,
including the use of catalytic system, activated surfaces (Azizi
et al., 2014; Zhang et al., 2014; Liu et al., 2018; Zauche and
Espenson, 1998; Li et al., 2020) and ionic liquids (Fall et al.,
2010; Dai et al., 2017; Liang et al., 2010). One promising avenue
is the utilization of functionalized surfaces with catalytic properties,
which aligns with the principles of green chemistry (Yang et al.,
2013). These surfaces can provide an alternative to traditional
catalysts and offer advantages such as improved selectivity,
reduced waste generation, and the potential for recyclability.
Additionally, green oxidation of alcohols to aldehydes involves
the use of environmentally friendly methods that minimize the
use of hazardous reagents and generate less waste (Nørskov et al.,
2009; Zhang et al., 2018; Tan et al., 2024; Wei et al., 2019; Wang Y.
et al., 2020). These methods include aerobic oxidation using
molecular oxygen as the oxidizing agent in the presence of
catalysts, biocatalysis using enzymes to selectively oxidize
alcohols, oxidation with hydrogen peroxide as a non-toxic
oxidant, and the use of supported metal catalysts for efficient and
recyclable oxidation reactions (Wei et al., 2022; Wang J. et al., 2020;
Li et al., 2022; Wang F. et al., 2024).

DES are novel environmentally friendly solvents that have
gained noteworthy attention in recent years due to their various
applications in chemistry, materials science, and biotechnology
(Zhang et al., 2012). DES are formed by the mixing of two or more

components, which undergo a eutectic reaction to form a liquid
phase at relatively low temperatures (Dai et al., 2013). DES offer
several advantageous properties that make them appealing as
solvents and reaction media in various applications (Francisco
et al., 2013). These include their low volatility, resulting in
reduced release of volatile organic compounds and improved
safety during handling; low toxicity, making them
environmentally friendly alternatives to conventional solvents;
high thermal stability, enabling their use at elevated temperatures
without decomposition; wide liquid range, providing flexibility in
their application across different temperature ranges; and
versatility, as DES can be tailored by selecting different
combinations of starting materials, allowing for a wide range
of solvents with tunable properties (Wagle et al., 2013; Tang and
Row, 2013; Mbous et al., 2017; Abo-Hamad et al., 2015; Liu et al.,
2015). These characteristics make DES promising candidates for
sustainable and efficient solvent systems in fields such as
chemistry, materials science, and biotechnology (Li J. et al.,
2023; Procopio and Ramón, 2024; Paparella et al., 2024; Li X.
et al., 2023; Cicco et al., 2022). Furthermore, the versatility,
tunability, and environmentally friendly nature of metal salts
based DES make them valuable solvents and catalyst with diverse
applications across multiple fields (Latos et al., 2024; Zhang et al.,
2019; Rodríguez-Álvarez et al., 2023; Matuszek et al., 2016;
Estager et al., 2014).

Surfactants, on the other hand, are amphiphilic molecules that
contain both hydrophilic and hydrophobic sites. They are widely
used in various industries and applications, including emulsification,
detergency, and solubility. The combination of deep eutectic
solvents and surfactants has led to the development of deep
eutectic solvent surfactants (Basu et al., 2023). DES surfactants
are surfactants that incorporate DES as part of their molecular
structure or as the solvent medium in which they are dispersed
(Lakshmipraba et al., 2022). DES surfactants offer several advantages
compared to conventional surfactants. Firstly, the use of DESs as the
solvent medium provides enhanced solubility and stability for the
surfactant molecules. This leads to improved performance in
applications such as emulsification, dispersion, and solubility.
Secondly, DES surfactants exhibit unique properties based on the
specific combination of the DES and surfactant components
(Manasi et al., 2023). For example, the choice of HBA and HBD
in the deep eutectic solvent can influence the polarity and
hydrophilic-lipophilic balance of the DES surfactants. This allows
for the tailoring of surfactant properties to meet specific application
requirements (Munive-Olarte et al., 2022).Additionally, they
provide a greener alternative to conventional surfactants. The use

FIGURE 1
The selective oxidation of alcohols via FeCl3/BHDC system.
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of DESs as the solvent medium reduces the reliance on volatile
organic compounds and toxic solvents, contributing to improved
environmental sustainability (Sheikh Asadi et al., 2024).

As part of our ongoing research on developing efficient
homogeneous catalytic systems (Seyyed Shahabi et al., 2020; Azizi
and Edrisi, 2017; Mirmashhori et al., 2006) and enhancing the

properties of catalytic frameworks using DESs for various
transformations, we have developed a new DES surfactant that
was formed by chemically combining FeCl3 with BHDC
(Figure 1). In addition, their catalytic efficiency for selective
oxidation of alcohols to their corresponding carbonyl compounds
was also investigated.

FIGURE 2
FeCl3/BHDC preparation.

FIGURE 3
FT-IR spectra for DES, FeCl3, BHDC.

Frontiers in Chemistry frontiersin.org03

Shokr Chalaki et al. 10.3389/fchem.2024.1416825

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2024.1416825


Experimental section

Materials and methods

All chemicals used in the experiments were commercially
available and were obtained from chemical supplier without
further purification. Thin-layer chromatography (TLC) was
employed to monitor the reactions under UV light, utilizing
Merck 60 HF254 silica plates. The melting points were
determined using Büchi 535 melting point apparatus. SEM
images were captured using a ZEISS scanning electron
microscope. TGA was conducted on an STA-1500 instrument at
a heating rate of 10°C/min in air atmosphere. The FT-IR spectra was
recorded using a Bomem MB-Series FT-IR spectrometer.

Preparation of DES

FeCl3.6H2O (200 mmol) and BHDC (100 mmol) were mixed
together in a round-bottom flask. The resulting mixture was then
heated at 60 °C for a 20 min. After the heating process, a dark brown
liquid was obtained without undergoing any further purification
steps (Figure 2).

General procedure

An alcohol (1.00 mmol) and FeCl3/BHDC (10 mg) were mixed
in a test tube. Subsequently, H2O2 32% (3.00 mmol) was added
dropwise to the mixture. The reaction was observed to be
exothermic and completed within 2–15 min at room
temperature, as visually monitored. After the reaction was
completed, water (2 mL) and ethyl acetate (2 mL) was added,
and the ethyl acetate layer was separated and rapidly purified
with silica gel flash chromatography to get the desired aldehyde
product. The conversion and selectivity of the reaction were
determined by GC analysis. All compounds were known and
were characterized by melting and boiling points found to be
identical with the ones described in the literature.

Results and discussion

The FeCl3/BHDC was prepared using a simple and
straightforward method, as depicted in Figure 2. The prepared
FeCl3/BHDC was subsequently subjected to characterization
using various spectroscopic techniques. The spectroscopic
analysis provides valuable information about the composition,
bonding, and functional groups present in the FeCl3/BHDC,
enabling a comprehensive understanding of its molecular
structure and properties.

The FT-IR spectroscopy analysis of FeCl3/BHDC, FeCl3.6H2O
and BHDC were depicted in Figure 3 showed characteristic peaks
and changes in specific frequency regions. In the FT-IR spectrum of
FeCl3/BHDC, a broad peak was observed in the range of
3432–3352 cm−1, which can be attributed to the presence of
water in FeCl3.6H2O.The strong bands in the range of
2,852–2,922 cm−1 correspond to the C-H stretching vibrations of
the CH2 group. In the lower frequency region, two peaks were
observed around 1,473 cm−1, corresponding to stretching vibrations
of benzene rings, and a peak at 1,349 cm−1 was observed, which
corresponds to the stretching vibrations of the N–CH2 further
confirming the presence of alkyl chains in BHDC. In the region
of 609 cm−1 and 562 cm−1, peaks were observed that can be
attributed to the bending vibrations of Fe-Cl bonds. The main
changes were observed in the 350–700 cm−1 region, which is
associated with the interaction between FeCl3 and BHDC. These
peaks in this region can indicate the formation of coordination
complexes in the molecular structure.

Figure 4 showcases the SEM images of the FeCl3/BHDC. The
images reveal that the structure of the FeCl3/BHDC exhibits a
plate-like morphology. This observation suggests that the FeCl3/
BHDC possesses a layered or sheet-like structure, with distinct flat
or plate-like particles. The chemical composition of the FeCl3/

FIGURE 4
Sem, EDX and EDX-mapping of the FeCl3/BHDC. (A, B) SEM, (C)
EDX-Mapping, (D) EDX.
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BHDC was analyzed using EDS, and the corresponding results are
presented in Figure 4B. The EDS analysis revealed the presence of
carbon, iron, chlorine, and nitrogen in the structure of the FeCl3/
BHDC. These findings provide additional confirmation of the
successful reaction between FeCl3 and BHDC, as the detected
elements correspond to the components used in the synthesis of
the FeCl3/BHDC. In addition to the EDS analysis, EDS mapping
was also performed to investigate the elemental distribution within
the FeCl3/BHDC (Figure 4C). The results of the EDS mapping
analysis demonstrated a uniform distribution of elements
throughout the DES structure. This means that the elements
present in the DESS, such as carbon (C), iron (Fe), chlorine
(Cl), and nitrogen (N), were evenly dispersed and distributed
across the entire sample.

The thermal stability of FeCl3/BHDC was investigated using
thermogravimetric analysis under air conditions. The results of
the TGA analysis are depicted in Figure 5, which reveals four
distinct mass losses occurring at different temperature ranges.
The first mass loss occurs below 120 °C and is attributed to the
evaporation of water molecules weakly bound to FeCl3.6H2O
through hydration. The second mass loss takes place in the
temperature range of 120°C–180°C corresponds to the loss of
water molecules that are strongly linked (dehydrated water). The
third step, observed between 250°C and 350°C, corresponds to the
decomposition of BHDC. Finally, the fourth mass loss occurs
between 350°C and 500°C and corresponds to the complete
decomposition of anhydrous ferric chloride with the
detachment of HCl (g) and Cl2 (g) gases. This transformation

FIGURE 5
TGA curves of FeCl3/BHDC.

TABLE 1 Optimizing the amount of FeCl3/BHDC.

Entry Alcohol H2O2 DES (mg) Yield (%)

1 Benzyl Alcohol 1 mmol 3 mmol 5 42

2 Benzyl Alcohol 1 mmol 3 mmol 7 70

3 Benzyl Alcohol 1 mmol 3 mmol 10 98

4 Benzyl Alcohol 1 mmol 3 mmol 15 98

5 Benzyl Alcohol 1 mmol 3 mmol 20 98
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TABLE 2 Optimization parameters in the model reaction.

Entry FeCl3/BHDC Solvent H2O2 (mmol) Yield (%)a

1 FeCl3/BHDC — 0.50 45

2 FeCl3/BHDC — 1.00 70

3 FeCl3/BHDC — 1.50 85

4 FeCl3/BHDC — 2.00 90

5 FeCl3/BHDC — 2.50 95

6 FeCl3/BHDC — 3.00 98

7 FeCl3 — 3.00 60

8 BHDC — 3.00 10

9 — — 3.00 0

10 FeCl3/BHDC H2O 3.00 60

11 FeCl3/BHDC EtOAc 3.00 42

12 FeCl3/BHDC MeOH 3.00 45

13 FeCl3/BHDC Acetonitrile 3.00 50

aConversion determined by GC, analysis.

TABLE 3 Oxidation of alcohols with FeCl3/BHDC as a catalysta.

Entry Reagent Time (min) Conversionb(%)

1 Benzyl Alcohol 2 98

2 2-F-Benzyl Alcohol 2 92

3 3- NO2-Benzyl Alcohol 2 95

4 4- NO2-Benzyl Alcohol 2 97

5 2- NO2-Benzyl Alcohol 5 97

6 4-tert-Benzyl Alcohol 7 95

7 1-Phenylethanol 9 97

8 Benzhydrol 15 90

9 2-Cl-Benzyl Alcohol 10 91

10 4-Cl-Benzyl Alcohol 10 95

11 4-Br-Benzyl Alcohol 8 97

12 4-OMe-Benzyl Alcohol 15 92

13 4-Me-Benzyl Alcohol 15 90

14 2-Pyridinemethanol 2 97

15 4-Pyridinemethanol 2 97

aReaction condition: Alcohols (1.0 mmol), FeCl3/BHDC (10 mg), room temperature, H2O2 (3.0 mmol) and under solvent free condition.
bConversion determined by Gas chromatography analysis.
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leads to the formation of iron oxide. From the TGA analysis
presented in Figure 5, it is evident that the synthesized FeCl3/
BHDC exhibits higher thermal stability compared to the BHDC
surfactant (Müller et al., 2014; Ahmad Wagay et al., 2020).

After preparation and characterization of FeCl3/BHDC, their
catalytic activity in the oxidation process of benzyl alcohol was
evaluated. The efficiency of the catalyst, as well as the influence of
the oxidant, and reaction time, were optimized. Table 1 presents

TABLE 4 Comparison of the performance of various catalyst systems and methods in the synthesis of benzyl alcohol.

Entry Cat Oxidant Solvent Temp (°C) Time (h) Yield (%) Ref.

1 CoFe2O4 (2 mg) O2 DMA 150 24 96.7 Gao et al. (2023)

2 Au/Al2O3 (100 mg) O2 neat 130 5 44.8 Choudhary et al. (2005)

3 CeO2 (300 mg) H2O2 neat 50 6 68 Tamizhdurai et al. (2017)

4 Au/γ-Al2O3 (75 mg) TBHP neat 125 5 73.4 Ndolomingo and Meijboom (2017)

5 CrBO3 (500 mg) O2 neat 100 4 41 Ozturk et al. (2008)

6 NiFe2O4 NPs (10 mg) TBHP Acetonitrile 60 3 85 Iraqui et al. (2020)

7 CoAl2O4 (500 mg) H2O2 Acetonitrile 80 5 61.5 Ragupathi et al. (2015)

8 MgAl2O4@ SiO2–PTA (50 mg) H2O2 H2O 90 1.5 96 Heravi et al. (2020)

9 Au/γ-Al2O3 (300 mg) H2O2 H2O 80 2 98 Long and Quan (2015)

10 [C7H7N(CH3)3]9PW9O34 (100 mg) H2O2 DMAc 80 0.5 95 Weng et al. (2008)

11 Pd/Al-PILC (52 mg) H2O2 Acetonitrile 82 3 82 Trikittiwong et al. (2023)

12 CoFe2O4 (5 mg) O2 DMSO 25 14 95 Changwal and Ameta (2024)

13 Pd/CeO2 (20 mg) O2 neat 120 2 90 Wang et al. (2022)

14 Pd/eg-C3N4-AN (20 mg) O2 neat 90 8 81.8 Li et al. (2023c)

15 MnFe2O4 (20 mg) H2O2 Acetonitrile 80 3 73 Wang et al. (2024b)

16 FeCl3/BHDC (10 mg) H2O2 neat 25 2 min 98 This work

FIGURE 6
Hydroxyl radical capture in the presence of salicylic acid with UV-Vis detection.
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the results of the reaction conducted with varying amounts of
FeCl3/BHDC catalyst (5 mg, 7 mg, 10 mg, 15, and 20 mg). Based
on the results presented in Table 1, it was determined that the
optimal amount of FeCl3/BHDC catalyst for the alcohol
oxidation process was 10 mg as it gives higher yield (98%) of
the desired product and shorter reaction time compared to other
catalyst loadings tested.

Furthermore, as shown in Table 2, the catalytic activity of FeCl3/
BHDC was compared with FeCl3 (Entry 7) and BHDC (Entry 8)
alone to evaluate the efficiency of the desired FeCl3/BHDC in the
oxidation process. It was found that the combined FeCl3/BHDC
gives the highest value for yield (98%). Next, different quantities of
the oxidant were tested. Based on the results, it was determined that
3 mmol of H2O2 was the optimal quantity of oxidant for the
oxidation process. The effect of different solvents on the reaction
yields was also investigated (Table 2, entries 10–13). The tested
solvents were water, acetonitrile, ethyl acetate, and methanol. After
conducting these studies, it was determined that the solvent-free
condition was the most favorable condition for the reaction. Based
on the overall analysis, it was concluded that the most favorable
conditions for the model reaction were achieved by using 10 mg of
FeCl3/BHDC catalyst at room temperature, in the presence of
3 mmol of H2O2 as the oxidant, and under solvent-free
conditions. Based on entry 9, the reaction without catalyst and
solvent was failed.

Table 3 demonstrates the results of the oxidation of various
alcohols to their corresponding carbonyl compounds under the
optimized conditions. The findings indicate that all the products
were obtained in high yields, justifying the effectiveness of the
catalytic system. Table 3 displays using a range of benzylic
alcohol derivatives, including primary and secondary benzylic

FIGURE 7
Possible oxidation mechanisms of the reaction.

FIGURE 8
Reusability run of DES.
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alcohols, which were subjected to oxidation. Secondary benzylic
alcohols exhibited higher reactivity in this catalytic system, as
evidenced by shorter reaction times and higher yields compared
to other compounds. The reactivity of primary benzylic alcohols was
influenced by the nature of the substituent group; Primary benzylic
alcohols containing an electron-withdrawing group demonstrated
superior performance, achieving higher yields compared to those
containing an electron-donating group.

In comparison with other oxidation systems reported in the
literature, our proposed method is relatively more facile and
favorable having shorter reaction time and higher yield (Table 4).

To investigate the formation of hydroxyl radicals during the
reaction process, a verification experiment was conducted using
salicylic acid as a hydroxyl radical trap. The results, shown in
Figure 6, revealed a distinct adsorption peak in the UV-vis
spectra at approximately 290–590 nm, with a maximum
absorption at 470 nm. This peak corresponds to the
characteristic absorption of adducts formed between hydroxyl
radicals and salicylic acid. These findings strongly indicate the
presence of hydroxyl radicals during the oxidation, confirming
their involvement in the oxidation of alcohols to aldehydes
(Chen et al., 2023; Li W. et al., 2023).

The proposed reaction mechanism for the oxidation of alcohols
in the presence of DES is depicted in Figure 7. DES plays two main
roles in this system. Firstly, due to the water insolubility of benzyl
alcohols and the surface activity of DES, it enables successful
biphasic catalysis between the aqueous and alcohol phases for the
oxidation reaction. Secondly, iron salts in DES acts as a catalyst on
the interphase by coordinating with both the alcohols and H2O2 to
form an iron complex. The coordinated intermediate then
undergoes a reaction with the alcohol, leading to the oxidation of
the alcohol and the formation of the aldehyde product.

The recycling potential of the catalyst is crucial for industrial
applications as it can significantly reduce costs and waste generation.
The stability and reusability of the DES catalyst were investigated,
and the results are presented in Figure 8. The model reaction benzyl
alcohols in the presence of FeCl3/BHDC and H2O2 as the catalyst
system was employed. After the completion of the reaction, water
(2 mL) and ethyl acetate (2 mL) were added, and two phases were
separated. The water phase, containing the DES catalyst, was then
subjected to evaporation under reduced pressure. The remaining
DES was retained and utilized for subsequent consecutive runs. The
results indicated that the DES catalyst system exhibited reusability
for up to four consecutive runs without any significant decrease
in yields.

Conclusion

In our study, we have successfully synthesized and characterized
deep eutectic solvent surfactants (FeCl3/BHDC) using easily
accessible starting materials. This synthetic method offers
simplicity and accessibility, making it practical for large-scale
production. The applications of FeCl3/BHDC was investigated as
a catalyst for selective oxidation reactions using aqueous hydrogen
peroxide. FeCl3/BHDC exhibited excellent catalytic performance,
enabling the conversion of various primary and secondary alcohol

derivatives into their corresponding aldehydes and ketones with
higher yields and shorter reaction time. These approaches contribute
to sustainable and greener chemical synthesis by reducing
environmental impacts and promoting the use of renewable and
non-toxic reagents.
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