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A new bidentate Schiff base ligand (C16H16Cl2N4), condensation product of
ethylene diamine and 4-chloro N-phenyl formamide, and its metal complexes
[M(C16H16Cl2N4)2(OAc)2] (where M = Mn(II) and Zn(II)) were synthesized and
characterized using various analytical and spectral techniques, including
high-resolution mass spectrometry (HRMS), elemental analysis,
ultraviolet–visible (UV–vis), Fourier-transform infrared (FTIR) spectroscopy,
AAS, molar conductance, 1H NMR, and powder XRD. All the compounds were
non-electrolytes and nanocrystalline. The synthesized compounds were
assessed for antioxidant potential by DPPH radical scavenging and FRAP
assay, with BHT serving as the positive control. Inhibitory concentration at
50% inhibition (IC50) values were calculated and used for comparative analysis.
Furthermore, the prepared compounds were screened for antibacterial
activity against two Gram-negative bacteria (Staphylococcus aureus and
Bacillus subtilis) and two Gram-positive bacteria (Escherichia coli and
Salmonella typhi) using disk-diffusion methods, with amikacin employed as
the standard reference. The comparison of inhibition zones revealed that the
complexes showed better antibacterial activity than the ligand. To gain
insights into the molecular interactions underlying the antibacterial activity,
the ligand and complexes were analyzed for their binding affinity with S.
aureus tyrosyl–tRNA synthetase (PDB ID: 1JIL) and S. typhi cell membrane
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protein OmpF complex (PDB ID: 4KR4). These analyses revealed robust
interactions, validating the observed antibacterial effects against the tested
bacterial strains.
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1 Introduction

Schiff bases, also referred to as azomethines (>C=N-) or imines,
are compounds synthesized through the reaction of primary amines
with ketones or aldehydes under specific conditions (Kanwal et al.,
2022). These compounds are extensively studied because of their
sigma donor tendency toward metal and π acceptor properties in
imine nitrogen atoms. This distinctive property renders it a valuable
donating ligand in coordination chemistry (Bruns et al., 2010; Abd
El-Lateef et al., 2018). Schiff base ligands containing nitrogen, along
with other donor atoms such as oxygen and sulfur in their molecular
structures, serve as chelating agents and easily form complexes with
various metal ions (Abd El Wahed et al., 2004; Mishra et al., 2005;
El-Sherif and Eldebss, 2011). In recent years, these complexes gained
significant attention due to their diverse use in biology (Ghanghas
et al., 2021), as models for metal-containing sites in metalloproteins
(Ueno et al., 2004; Shahraki, 2022), catalysts for some organic
reactions (Juyal et al., 2023a), and complexing ability toward
some toxic metals (Vaghasiya et al., 2004) encompassing
antibacterial (Kargar et al., 2021; Muthukumar et al., 2022),
antifungal (Joshi et al., 2020; Shiryaev et al., 2021; Borrego-
Muñoz et al., 2022), anticancer (Tadele and Tsega, 2019; Aslan
et al., 2020; Alorini et al., 2022), antioxidant (Buldurun et al., 2019;
Bingöl and Turan, 2020; Yadav et al., 2021), anti-inflammatory
(Devi et al., 2019; Krishna et al., 2023), and antiviral activities (Abd
El-Hamid et al., 2023; Bhandarkar et al., 2023).

The formylation-driven amination process, typically achieved by
combining amines with formic acids, results in the formation of
formamide. These compounds hold significant importance in both
organic and industrial chemistry (Liang et al., 2023).
N-Alkylformamides, polar solvents, like diethylformamide and
dimethylformamide, are extensively utilized in both chemical
laboratories and industrial settings for the synthesis of films, artificial
fibers, and leather products (Amato et al., 2001). Formamides exhibit
dual reactivity as both electrophilic and nucleophilic agents (Muzart,
2009), serving as a versatile source of key intermediates that mediate
various reactions. Their structural flexibility allows engagement in
diverse reactions functioning as building blocks for diverse units like
-CHO, -O, -CONMe2, -NMe2, - CO, and -Me (Ding and Jiao, 2012).
Formamides serve as intermediates in the synthesis of pharmaceutically
active molecules including fluoroquinolones like 1,2-dihydroquinolines
(Kobayashi et al., 1995), norfloxacin, and ciprofloxacin (Jackson and
Meth-Cohn, 1995) and nitrogen-bridged heterocycles such as
oxazolidinones (Lohray et al., 1999) and benzimidazole (Mohanty
et al., 2018). However, metal complexes of formamide-based
moieties are not widely studied, so there is untapped potential for
discovery and advancement in the understanding of metal complexes
with formamide-based moieties.

The overproduction of reactive oxygen species, like OH. and
superoxide anions, is recognized for inducing oxidative harm to

DNA, lipids, and proteins. This contributes significantly to cancer,
aging, inflammation, cardiovascular diseases, and
neurodegenerative disorders (Beyazit et al., 2020). To counteract
these harmful effects, antioxidants are crucial. Various studies have
indicated the potential of Schiff base metal complexes as efficient
scavengers of these free radicals (Sharma et al., 2015; Mumtaz et al.,
2020). Furthermore, pathogenic microorganisms pose a substantial
threat through life-threatening bacterial infections (Xu et al., 2020).
Although antibiotics and antibacterial agents have been the
traditional means to combat harmful bacterial growth, their
prolonged use has raised concerns about bacterial resistance
(Kaya et al., 2021). Consequently, there is an ongoing demand
for novel antibacterial agents. Antioxidants can modulate the
redox balance within microbial cells by scavenging free radicals
and maintaining cellular redox homeostasis. Disruption of the redox
balance can interfere with essential metabolic processes in microbes,
leading to growth inhibition or cell death (Zandi and Schnug, 2022).
In the given context, metal complexes of Schiff bases have emerged
as promising candidates (Chen et al., 2017; El-Gammal et al., 2021).

Molecular docking techniques are instrumental in drug design
andmechanistic studies, enabling the precise positioning of molecules
within the binding sites of target macromolecules without forming
chemical bonds (Juyal et al., 2023b). The process of docking utilizes
computer simulations to predict how small compounds or
macromolecules will interact with receptors at a molecular level,
utilizing specialized docking software such as DOCK (Ismael et al.,
2018) and AutoDock (Cheng et al., 2009; Junaid et al., 2018). These
techniques offer accurate and efficient predictions of favorable
interactions between proteins and ligands. These programs
function as powerful computational filters, streamlining the search
for potential bioactive compounds before experimental screening,
thus reducing both costs and labor. Additionally, they contribute
significantly to the understanding of molecular mechanisms post-
experimental screening (Pagadala et al., 2017).

The present study aims to create potent antioxidant and
antibacterial compounds with metal complexes of formamide-
based Schiff base moieties due to their unique structural
framework. The inclusion of the imine group enhances
biological activity through hydrogen bonding, thus motivating
the synthesis of the targeted molecules. The ligand precursor
formamide was synthesized through chloroanilines and formic
acid, utilizing NH2OH.HCl as the catalyst. The ligand was then
synthesized by a reaction of the ligand precursor with
ethylene diamine.

Manganese (Mn) and zinc (Zn) are essential trace elements
crucial for numerous biological functions. Mn supports the activities
of enzymes like arginase and manganese superoxide dismutase,
aiding the urea cycle and oxidative stress protection (Bowman
et al., 2011). Zn is integral to over 300 enzymes, including
DNA polymerase, and is vital for DNA replication and
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repair, protein integrity, and immune signaling (Chasapis et al.,
2020). Their unique properties of Mn(II) and Zn(II) make them
indispensable in cellular roles and drives the synthesis of
complexes. The incorporation of Mn(II) and Zn(II) into the
ligand was achieved by chelation of the synthesized ligand to
different metal salts at a 2:1 M ratio. The synthesized
compounds were subjected to biological assessments,
including assessment of antioxidant and antibacterial
activities, to evaluate the responsiveness of compounds to
various microorganisms. Additionally, a molecular docking
study was conducted to gain insights into the bioactive
mechanisms of these compounds.

2 Materials and methods

2.1 Reagents

The reagents Mn(OAc)2.4H2O (Sigma-Aldrich),
Zn(OAc)2.2H2O (Sigma-Aldrich), ethylene diamine (Sigma-
Aldrich), formic acid (HiMedia), methanol (Molychem), 4-
chloroaniline (Molychem), ethanol (Molychem), and

hydroxylamine hydrochloride (Sigma-Aldrich) were utilized
in their highest degree of purity (AR grade). The bacterial
culture was collected from the Department of Microbiology,
CVAS, GB Pant University of Agriculture and
Technology, Pantnagar.

2.2 Instruments

Molar conductivity of all compounds was determined using
the Systronics conductivity TDS meter 308, while the melting
point was determined using the Decibel DB-3135H MP
apparatus. Elemental analysis was carried out using the vario
MICRO cube (Elementar Analysensysteme, Germany).
Moreover, the metal analysis was performed using the AAS
instrument Element AS AAS 4141, and 1H NMR was carried
out using the JEOL JNM ECS400 (400 MHz, dimethyl sulfoxide
(DMSO)-d6). The magnetic molar susceptibilities (χM) were
gauged using Quincke’s tube in conjunction with the Digital
Gauss Meter, DGM-102, and µeff was then calculated using the
expression µeff = 2.828 (χM.T)1/2 B.M. (Abou-Hussein and Linert,
2015). Powder XRD (PXRD) was conducted using the Bruker

SCHEME 1
Synthesis of 4-chloro-(N-phenyl)formamide (Schiff base ligand precursors).

SCHEME 2
Synthetic route diagram of the Schiff base ligand.
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D8 ADVANCE diffractometer, while the Fourier-transform
infrared (FTIR) spectroscopy data were collected by using the
PerkinElmer FTIR spectrophotometer (350–4,000 cm−1). The
ultraviolet–visible (UV–vis) spectra were measured (0.05 g/L)
using the US GENESYS 10S spectrophotometer (Thermo
Fisher Scientific).

2.3 Synthesis

2.3.1 Preparation of the ligand
The preparation of the ligand involves two steps. First, the precursor

formamide was synthesized and then ethylene diamine was attached to
the formamide structure to attain the Schiff base ligand moiety.

SCHEME 3
Synthesis of metal complexes of Mn(II) and Zn(II).

TABLE 1 Physical and analytical data of synthesized compounds.

Compound Color Yield
(%)

Molecular
weight (g
mol-1)

Magnetic
moment
(BM)

Molar
conductivity
(mho
cm2 mol-1)

λmax

(nm)
MP % elemental analysis

calculated (found)

(°C) C H N Metal

Ligand precursor White 84 155 – 10.1 238 53 54.04
(54.66)

3.89
(3.85)

9
(9.12)

-

Schiff base ligand Light
yellow

84 335 – 9.54 288 94 57.33
(57.45)

4.81
(4.92)

16.71
(16.56)

-

Mn(II) complex Light
pink

78 845 5.83 12.84 372 281
(decomposition
temperature)

51.26
(51.56)

4.54
(4.48)

13.28
(13.56)

6.51
(6.32)

Zn(II) complex Yellow 75 856 – 9.67 283 277
(decomposition
temperature)

50.63
(50.72)

4.49
(4.52)

13.12
(12.98)

7.66
(7.86)
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2.3.1.1 Synthesis of ligand precursors 4-chloro-
(N-phenyl)formamide

Formic acid (2 mmol) and 4-chloroaniline (1 mmol) were
refluxed together at 80°C with the catalyst NH2OH.HCl (Scheme
1). The reaction progress was monitored through thin-layer
chromatography (TLC.), and once the reaction was concluded,
EtOAc was poured into the mixture. Subsequently, the reaction
mixture was washed with H2O and 5% HCl solution (three times).
The mixture was then dried with anhydrous Na2SO4, and the solvent
was removed by vacuum distillation. A white powder product was
obtained with good yield.

Ligand precursor [C7H6ClNO]:White; yield: 84%;MP 53°C; 1H
NMR (400MHz, DMSO-d6, TMS) δ (ppm): 3.8 (s, 1H, NH), 7.1–7.6
(m, 4H, C6H6), and 7.8 (s, 1H, CHO); and FTIR (KBr, cm−1): 3,515
(N-H), 3,052 (-CH), and 1,715 (C=O).

2.3.1.2 Synthesis of the Schiff base ligand
A methanolic solution of ethylene diamine (1 mmol) was

added dropwise to a methanolic solution of 4-chloro-
(N-phenyl)formamide (2 mmol) in the presence of
NH2OH.HCl at 72°C (Scheme 2). Once the reaction was
concluded, EtOAc was introduced to the reaction mixture.
Subsequently, the reaction mixture underwent successive washes
with H2O and a 5% HCl solution (three times). Subsequently, the
mixture was dried using anhydrous Na2SO4, and the solvent was
removed through vacuum distillation. A light-yellow crude
product was obtained, which was dried, washed, and
recrystallized with C2H5OH.

Schiff base ligand [C16H16Cl2N4]: Light yellow; yield: 84%; MP
94°C; 1H NMR (400 MHz, DMSO-d6, TMS) δ (ppm): 1.5 (t, 2H,
CH2), 4.2 (s, 1H, NH), 6.6–7.5 (m, 4H, C6H6), and 7.8 (s, 1H, CH);
FTIR (KBr, cm−1): 3,536 (N-H), 2,972 (C-H), and 1,621 (C=N).

2.3.2 General methods for the preparation of
metal complexes

The Schiff base ligand (2 mmol methanolic solution) was added
dropwise to the 1 mmol methanolic solution of metal salts
(Mn(OAc)2.4H2O and Zn(OAc)2.2H2O). The resulting mixture
was stirred for 8 h at a temperature range of 70°C–80°C (Scheme
3). Following this, the mixture was allowed to stand overnight,
resulting in the precipitation of colored crystals with a yield of
72%–78%.

Mn(II) complex [(C16H16Cl2N4)2Mn(OAc)2]: Light pink; yield:
78%; decomposition temperature: 281°C; FTIR (KBr, cm−1): 3,547
(N-H), 2,971 (=CH), 1,713 (C=O), 1,675 (C=N), 1,521 (COO)asymm.,
1,325 (COO)symm., 468 (Mn-N), and 378 (Mn-O).

Zn(II) complex [(C16H16Cl2N4)2Zn(OAc)2]: Yellow; yield:
75%; decomposition temperature: 277°C; 1H NMR (400 MHz,
DMSO-d6, TMS) δ (ppm): 1.2 (t, 2H, CH2), 2.6 (s, 3H,
COCH3), 3.4 (s, 2H, NH), 6.6–7.6 (m, 4H, C6H6), and 7.8 (s, 2H,
CH); FTIR (KBr, cm−1): 3,568 (N-H), 2,972 (=C-H), 1,711 (C=O),
1,625 (C=N), 1,508 (COO)asymm., 1,334 (COO)symm., 456 (Zn-O),
and 396 (Zn-N).

2.4 Biological activities

2.4.1 Antioxidant activity
To assess the antioxidant potential of the compounds, ferric

reducing antioxidant power (FRAP) methods and 1,1-
diphenylpicrylhydrazyl (DPPH) radical scavenging methods were
utilized. The samples were tested at varying concentrations
(250–1,000 μg/mL).

2.4.1.1 FRAP assay
The FRAP method (Benzie and Strain, 1996) was employed to

examine the reduction capacity of the compounds. To prepare the
FRAP assay, a 10:1:1 solution of phosphate buffer (pH, 7.6), TPTZ,
and FeCl3 was heated at 70°C for 10 min and then added to the
compounds. The reduction potential was determined by measuring
the conversion of Fe(III) to Fe(II). The amount of Fe(II) complex in
the solution was quantified by the intensity of blue color at 593 nm.
A higher increase in absorbance was related to the greater reduction
potential of the compounds. The FRAP was determined utilizing the
standard curve of ferrous sulfate with butylated hydroxytoluene
(BHT) used as a reference standard.

FIGURE 1
UV–vis spectra of the prepared compounds.

TABLE 2 FTIR stretching frequencies (cm-1) of synthesized compounds.

Compound ʋ(N-H) ʋ(C=O) ʋ(C=N) ʋ(COO)asymm ʋ(COO)symm ʋ(M-N) ʋ(M-O)

Ligand precursor 3,515 1,715 – – – – –

Schiff base ligand 3,536 – 1,621 – – – –

Mn(II) complex 3,547 1,713 1,675 1,521 1,325 468 378

Zn(II) complex 3,568 1,711 1,625 1,508 1,334 456 396

Frontiers in Chemistry frontiersin.org05

Juyal et al. 10.3389/fchem.2024.1414646

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2024.1414646


2.4.1.2 DPPH radical scavenging assay
To evaluate the antioxidant affinity, the DPPH radical

scavenging procedure was conducted as detailed by Brand-
Williams et al. (1995) and Aljohani et al. (2023). Here, 1 mL
of the test solution was added to 0.004% methanolic solution of
DPPH (4 mL) at varying concentrations (250–1,000 μg/mL).
The solution was incubated in the dark for 30 min, and
absorbance at 517 nm was recorded using a UV–vis
spectrophotometer. BHT served as the standard here. Higher
reductions in absorbance are associated with higher antioxidant
activity. The following expression was used to calculate DPPH
scavenging affinity %:

DPPH scavenging affinity % � AC − AS( )/AC[ ] x 100,

where AC and AS denote the absorbance of the control and
sample, respectively. A comparative analysis was conducted by
determining the inhibitory concentration at 50% inhibition (IC50)
values using the graph between the concentration and DPPH
scavenging affinity %.

2.4.2 Antibacterial activity
Theminimum inhibitory concentration (MIC), quantified as the

minimal concentration that inhibits bacterial growth post-overnight
incubation, was ascertained utilizing the protocol followed by Devi
and Batra (2015). Evaluations were executed on a pair of Gram-
positive microorganisms, Bacillus subtilis and Staphylococcus
aureus, alongside Gram-negative species, Salmonella typhi and
Escherichia coli. Initially, a stock solution of the synthesized

compounds was prepared in DMSO at a concentration of
100 μg/mL. This stock solution was then serially diluted to
achieve concentrations of 50, 25, 12.5, 6.25, and 3.125 μg/mL.
Hinton–Muller agar was prepared and uniformly spread across
sterilized Petri dishes, which were subsequently incubated to
achieve solidification. Thereafter, bacterial strains were inoculated
on these plates, and aliquots spanning concentrations of
3.125–100 μg/mL were administered via 5-mm paper disks. The
MIC values were recorded after an overnight incubation period.

2.5 Molecular docking study

A molecular docking study was performed to observe the
molecular interactions between the prepared compounds and the
protein receptors of S. aureus and S. typhi. The cell membrane
protein OmpF complex of S. typhi (PDB ID: 4KR4) and S. aureus
tyrosyl–tRNA synthetase (PDB ID: 1JIL) was used as the protein for
the study (Sanner, 1999; De et al., 2020). The 3D structure of the
protein in PDB file format was obtained from the PDB database
(https://www.rcsb.org), and the ligand molecule in PDB file format
was obtained from PubChem (https://pubchem.ncbi.nlm.nih.gov/).
The grid and docking parameter files (GPFs and DPFs, respectively)
were prepared by using AutoDock tools. The GPF defines the size
and location of the grid that will be used to search for potential
binding sites on the protein, while the DPF specifies the parameters
for the genetic algorithm that will be used to dock the ligand to the
protein. AutoGrid is used to generate a grid map of the protein based
on the GPF. Blind docking was conducted to study the

FIGURE 2
1H NMR spectra of the Schiff base ligand precursor where (a), (b), (c) and (d) represent -NH, -CH, -CH and aldehydic H respectively.
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protein–ligand interactions. For each docking simulation, a grid box
of dimensions 126 × 126 × 126 Å was used to encompass the entire
protein structure, with the center coordinates set differently for each
molecule and given in Table 3. The DPF was generated using the
Lamarckian genetic algorithm (LGA), with a maximum of
2,500,000 energy evaluations. All other values were used as
default. This will help identify the most favorable binding sites
for the ligand. The docking simulation was performed using the
AutoDock genetic algorithm. The docking results were analyzed
using AutoDock 4.2 and BIOVIA Discovery Studio.

3 Results and discussion

Various methods such as magnetic, analytical, and spectral
methods were used to characterize the synthesized compounds.
Table 1 summarizes the yields, colors, magnetic moments,
melting points, molar conductivity, and elemental compositions
of the ligand and complexes. The molar conductivity of all
compounds was low, indicating that they were non-electrolytic
(Geary, 1971). The ligand precursor and ligand were soluble in
CH3OH and DMSO, while the metal complexes were
soluble in DMSO.

3.1 Characterization

3.1.1 Ultraviolet–visible spectroscopy and
magnetic properties

The ligand precursor exhibited a λmax at 238 nm, likely
associated with a π–π* transition. Additionally, a band at
484 nm can be ascribed to an n–π* transition, indicative of
bonding with a system possessing a lone pair of electrons. In

FIGURE 4
Demonstration of FRAP of the prepared compounds compared to BHT.

FIGURE 3
PXRD spectra of the prepared compounds.
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the case of the ligand, λmax appears at 288 nm (π–π* transition),
and the other band appears at 356 nm (n–π* transition). The
emergence of a distinct shoulder band in all complexes signifies
the occurrence of charge transfer bands, providing conclusive
evidence for the formation of a complex between the ligand and
metal ions (Damiche and Chafaa, 2017). The Mn(II) complex was
found to be paramagnetic, having a magnetic moment of
5.83 BM, suggesting the octahedral nature of the complex. The
Mn(II) complex exhibited λmax at 372 nm and an LMCT band at
413 nm. Owing to the d-d transition bands being spin-forbidden
and Laporte-forbidden, they are either absent or possess such
minimal intensity that they are not observed. The same types of
results were also reported by Devi et al. (2012) and Keypour et al.
(2013). The Zn(II) complex was diamagnetic, and no d-d
transition was observed for the complex. λmax and a charge

transfer band were observed at 283 and 387 nm, respectively
(Figure 1). The maximum molar absorption coefficients of the
ligand precursor, Schiff base ligand, Mn(II) complex, and Zn(II)
complex were 84,267, 75,976, 83,560, and 75,977 Lmol−1cm−1,
respectively.

3.1.2 Infrared spectroscopy
FTIR spectroscopy serves as a pivotal tool for elucidating the

structural intricacies of Schiff base ligands and their complexes. The
infrared (IR) spectral analysis of the ligand precursor unveiled
characteristic absorptions, notably the C=N stretching vibration
at 1,621 cm−1, indicative of imine formation, and the N-H
stretching at 3,515 cm−1, associated with amine functionalities.
Notably, the C=O stretch, initially present at 1,715 cm−1,
vanishes upon Schiff base formation, affirming the condensation
of the carbonyl group with a primary amine to yield the imine
linkage. Upon metal coordination, these bands undergo a
discernible shift to lower wavenumbers, a phenomenon attributed
to bond length augmentation. Concurrently, a new band emerges in
the vicinity of 1,711–1,735 cm−1, ascribed to the carbonyl stretch
within the acetate moiety, a common feature observed in
metal–acetate complexes (Supplementary Figure S1).

Further scrutiny of the metal complexes through FT-IR
spectroscopy reveals the presence of metal–ligand vibrational
modes in the far-infrared region. For the Mn(II) complex, the
emergence of bands at 468 cm−1 and 378 cm−1 corresponds to
the Mn-N and Mn-O stretches, respectively. Similarly, the Zn(II)
complex exhibits bands at 396 cm−1 for Zn-O and 456 cm−1 for Zn-N
vibrations (Table 2). These bands are quintessential indicators of
metal–nitrogen and metal–oxygen coordination, providing
empirical evidence for the successful synthesis of the respective
metal complexes.

The carboxylate group (from acetate) in the complexes shows
two stretching bands: asymmetrical and symmetrical. The
asymmetric stretching band typically appears at a higher

FIGURE 5
IC50 values of DPPH radical scavenging activity of Ligand precursor, Schiff base Ligand, Mn(II) Complex, Zn(II) Complex and Standard (BHT).

FIGURE 6
Antibacterial activity against Gram-negative bacteria (S. aureus
and B. subtilis) and Gram-positive bacteria (E. coli and S. typhi).
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wavenumber than the symmetric stretching band due to differences
in bond strengths and the molecular vibrations associated with these
modes. For the Mn(II) complex, the asymmetric stretching band is
observed at 1,521 cm−1, while the symmetric stretching band is
observed at 1,325 cm−1 (Abdallah et al., 2010). In contrast, for the
Zn(II) complex, the asymmetric stretching band appears at
1,508 cm−1, and the symmetric stretching band appears at
1,334 cm−1 (Soliman and Mohamed, 2004); the M-O band is
present in both complexes, suggesting the acetate coordination
mode. The difference between the asymmetric and symmetric
frequency Λ[ʋasymm (COO)- ʋsymm (COO)] is large
(175–200 cm−1), which suggests monodentate legation (Belal
et al., 2015).

3.1.3 1H NMR spectroscopy
1H NMR spectra of the prepared compounds confirm the

proposed structure (Scheme 3). For the ligand precursor, the
-NH bond appears at 3.8 ppm, the aldehydic proton appears at
7.8 ppm, and signals from 7.1 ppm to 7.4 ppm represent the
aromatic region (Figure 2). In the case of the Schiff base
ligand, the existing band of -NH shifted toward lower chemical

shift, and a new band of -CH2 (ethylene diamine) appeared at
1.5 ppm (Supplementary Figure S2). The Mn(II) complex did not
show the NMR signals, which may be attributed to the
paramagnetism of the Mn(II) complex. For the Zn(II) complex,
the band due to -NH shifted toward lower chemical shifts due to
chelation of the ligand to the metal, and a new band appeared at
approximately 2.4 ppm due to the -OCOCH3 group. NMR of the
ligand precursor and Zn(II) complex is given in Supplementary
Material (Supplementary Figure S3).

3.1.4 Powder XRD study
Powder X-ray diffraction was performed in the 10 < 2θ <

80 range to study their lattice dynamics (Figure 3). The particle
size (D) was obtained using the Debye–Scherrer expression:

D � Kλ/βCosθ,

where K is a constant of the Cu grid (0.94), λ denotes the wavelength
of the X-ray, θ denotes the Bragg diffraction angle, and β is the
integral peak width (Sundararajan et al., 2014).

The sizes of the ligand precursor, ligand, and Mn(II) and Zn(II)
metal complexes were identified as nanocrystalline with 41.07, 96.6,

FIGURE 7
Docking interaction diagrams of the (A) Schiff base ligand, (B) manganese(II) complex, (C) zinc(II) complex, and (D) amikacin against S. aureus
tyrosyl–tRNA synthetase.
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40.21, and 122.20 nm, respectively. The degree of crystallinity for the
ligand precursor, Schiff base ligand, and Mn(II) and Zn(II) metal
complexes was found to be 46.07, 30.09, 35.10, and 21.07%, respectively.

The XRD pattern reveals distinct crystalline patterns for both the
ligand and its complexes, exhibiting different degrees of crystallinity.
The complexes exhibit extra peaks compared to the ligand,
confirming metal ion chelation and signaling complex formation
(El-Megharbel and Hamza, 2022).

3.2 Biological activities

3.2.1 Antioxidant activities
3.2.1.1 FRAP assay

The ability to reduce ferric ions was evaluated through the FRAP
assay. The standard curve of FeSO4.7H2O was utilized for obtaining
FRAP values (Supplementary Figure S4). The findings indicated that

all tested compounds possessed ferric-reducing antioxidant
potential, with the ligand showing the highest reducing potential
among all the compounds. The Zn(II) complex showed the highest
FRAP among the metal complexes, and the activity follows the order
BHT > Schiff base ligand > Zn(II) complex > Mn(II) complex >
ligand precursor (Figure 4).

3.2.1.2 DPPH radical scavenging activity
Figure 5 demonstrates the DPPH radical scavenging potential of

the examined compounds. Antioxidant activity was determined by
evaluating the hydrogen-donating capacity or radical scavenging
potential against the stable radical DPPH. Upon hydrogen radical
abstraction, a color transition from dark purple to pale yellow was
noted in the DPPH solution, and this change was quantified by
assessing the reduction in the absorbance at 517 nm. The results
indicated that the Zn(II) complex exhibited the highest scavenging
potential among the examined compounds. The general order of

FIGURE 8
Docking interaction diagrams of the (A) Schiff base ligand, (B) manganese(II) complex, (C) zinc(II) complex, and (D) amikacin against the S. typhi
protein OmpF complex.
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DPPH radical scavenging potential was as follows: BHT > Zn(II)
complex > ligand > Mn(II) complex > ligand precursor.

3.2.2 Antibacterial activity
Figure 6 illustrates the antibacterial screening results of all the

tested compounds. Good antibacterial activity was observed for all
the tested compounds. The metal complexes showed higher
antibacterial activity than the ligand precursor and ligand. This
could be attributed to Tweedy’s chelation theory, which proposes
that chelation increases the bactericidal power of metal complexes as
the metals share their positive charge with ligands, leading to

p-electron delocalization throughout the compound. Thus, the
complexes acquired a lipophilic nature, making it easier for them
to permeate through membranes (Tweedy, 1964; Abu-Dief et al.,
2019). Both Gram-positive and Gram-negative bacteria were tested,
and the results showed that the tested compounds were more active
for Gram-positive bacteria. Gram-positive bacteria are often
considered to have a somewhat more permeable cell membrane
because of the absence of an outer membrane, which simplifies their
structure, allowing for potentially easier diffusion of molecules
(Malanovic and Lohner, 2016). The highest activity was observed
for S. typhi, although the activity of the examined compounds was

TABLE 3 Molecular docking results of docked compounds against the S. typhi cell membrane protein OmpF complex and S. aureus tyrosyl–tRNA
synthetase.

Compound
(ligand)

Target
receptor

Binding
energy
(ΛG)

Inhibition
constant
(ki) µM

Interactive
amino acids

Grid
point
spacing
(Å)

Center
coordinate

Size
coordinate

x y z x y z

Schiff base ligand S. typhi cell
membrane
protein OmpF
complex

−4.47 528.16 Glu231, Ala188,
Ala189, Ala213,
Ala230, Tyr190,
Tyr229, Leu255,
Gln253, Asn254,
Val214, and Arg212

0.558 −24.247 12.382 −8.438 126 126 126

Mn(II) complex S. typhi cell
membrane
protein OmpF
complex

−7.34 4.14 Tyr137, Tyr155,
Thr136, Leu135,
Ile91, Ile153, Leu83,
Val88, Gly89, Phe151,
and Phe143

0.536 −22.824 10.357 −8.438 126 126 126

Zn(II) complex S. typhi cell
membrane
protein OmpF
complex

−4.97 226.06 Ser129, Gly120,
Arg77, Arg130,
Asp108, Tyr14,
Tyr97, Tyr101,
Ala110, Gln38,
Thr299, Met109,
Glu58, and Lys16

0.547 −21.827 10.834 −8.438 126 126 126

Amikacin S. typhi cell
membrane
protein OmpF
complex

−5.56 84.15 Asp318, Leu317,
Asp331
Leu316, Asn315, and
Phe314

0.553 −24.158 9.112 −8.438 126 126 126

Schiff base ligand S. aureus
tyrosyl–tRNA
synthetase

−3.68 2.01 Gly74, Gly129,
Leu128, Leu133,
Leu173, Phe136,
Arg125, Ile131, and
Thr75

1.000 34.913 6.348 54.727 126 126 126

Mn(II) complex S. aureus
tyrosyl–tRNA
synthetase

−4.43 565.39 Glu93, Arg125,
Thr166, Thr169,
Leu128, Leu133,
Leu173, Ile78, Ile131,
Gly129, and Phe136

1.000 34.913 1.013 55.424 126 126 126

Zn(II) complex S. aureus
tyrosyl–tRNA
synthetase

−3.28 3.93 Glu93, Arg125,
Leu90, Leu128,
Leu173, Thr166,
Ile78, Gln91, Gly74,
and Met77

1.000 34.913 11.323 55.742 126 126 126

Amikacin S. aureus
tyrosyl–tRNA
synthetase

−4.36 3.41 Asp116, Glu184,
Lys30, Asp97,
Thr115, Gly23.
Glu101, Glu184,
Asp20, Glu93, Glu94,
and Asp126

1.000 32.577 11.102 56.671 126 126 126
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lower than that of amikacin (standard). Among the complexes, the
Mn(II) complex showed higher activities than the Zn(II) complex.

3.3 Molecular docking study

The best 3D binding interaction of test compounds with the S.
aureus tyrosyl–tRNA synthetase (Figure 7) and S. typhi cell
membrane protein OmpF complex (Figure 8) is demonstrated.
The binding energy represents the thermodynamic stability of the
ligand–receptor complex. In molecular docking studies, a lower
(more negative) binding energy is generally considered indicative of
a more favorable and stronger interaction between a ligand (docked
compound) and its target receptor (Wolohan and Reichert, 2004).
These observations indicate substantial binding between the ligand
and its complexes with the protein receptor, resulting in a favorable
free binding energy.

In the case of the S. typhi protein OmpF complex, the best
activity was shown by the Mn(II) complex (binding
energy, −7.34 kcal/mol), followed by the Zn(II) complex (binding
energy, −4.97 kcal/mol) and the ligand (binding energy, −4.47 kcal/
mol). However, in the case of S. aureus tyrosyl–tRNA synthetase, the
Mn (II)complex (binding energy, −4.43 kcal/mol) showed the
highest activity, followed by the ligand (binding
energy, −3.68 kcal/mol) and Zn(II) complex (binding
energy, −3.28 kcal/mol) (Table 3).

4 Conclusion

In summary, Mn(II) and Zn(II) complexes of the formamide
Schiff base ligand, derived from ethylene diamine and 4-chloro
(N-phenyl)formamide, were synthesized and characterized by
various analytical, spectral, and magnetic methods. The
antioxidant potential of the prepared compounds was
evaluated through DPPH radical scavenging activity assay and
the FRAP method, and the following general trend was found:
BHT > ligand ~ Zn(II) complex > Mn(II) complex > ligand
precursor. Afterward, all the synthesized compounds underwent
assessment for their antibacterial efficacy against two Gram-
negative bacteria (S. aureus and B. subtilis) and two Gram-
positive bacteria (E. coli and S. typhi). The Mn(II) complex
exhibited better bactericidal capacity than other compounds,
which was validated by molecular docking interaction study.
In studies involving the S. typhi cell membrane protein OmpF
complex and S. aureus tyrosyl–tRNA synthetase, the Mn(II)
complex demonstrated the highest binding affinity, followed
by the ligand and Zn(II) complex.
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