
Editorial: Structure and function
of trans-membrane proteins

Irena Roterman1*†, Michal Brylinski2*†, Fabio Polticelli3*† and
Alexandre G. de Brevern4*†

1Department of Bioinformatics and Telemedicine, Jagiellonian University-Medical College, Krakow,
Poland, 2Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States,
3Department of Sciences, University Roma Tre, Rome, Italy, 4Universite Paris Cite, Universite des Antilles,
Universite de la Réunion, Biologie Integree du Globule Rouge, UMR_S1134, BIGR, INSERM, Paris, France

KEYWORDS

membrane proteins, protein structure prediction, molecular dynamics, coarsegrained,
membranes, hydrophobic mismatch, synchrotron radiation circular dichroïsm,
experimental techniques in membrane proteins

Editorial on the Research Topic
Structure and function of trans-membrane proteins

Proteins perform the majority of essential biological functions. They can be simplified
into 3 main structural classes: globular (i.e., cytosolic), trans-membrane (i.e., embedded in
lipid membranes) and fibrous (long and of particular composition, mainly in cytosol). As
trans-membrane proteins are embedded in lipid membranes, they are associated with
crucial functions such as the passage of essential solutes (ions, carbohydrates, nucleotides,
ionic concentration control, etc.) and signaling. The simple support of channel function and
the very complex functions of receptors, which control the transport of information signals
between the external environment and all the processes taking place inside the cell, make
membrane and transmembrane proteins particularly critical for the majority of cellular
processes (Pasquadibisceglie et al., 2023a). They are therefore implicated in a large number
of pathologies, including many cancers (Pasquadibisceglie et al., 2023b). This explains why
2/3 of drugs target them.

Despite their therapeutic importance, transmembrane proteins remain very
mysterious because of their peculiar macromolecular environment, which makes it
difficult to obtain experimental data (White, 2023). For example, despite its rapid
growth, the protein database currently contains just over 10,000 membrane proteins
structures, 20 times fewer than for globular proteins (Kozma et al., 2013). One of the
peculiarities of these proteins is the problem of the influence of the external force field
on the folding process. Indeed, the polar environment of water pushes hydrophobic
residues towards the central zone of the protein, forming a hydrophobic core
(Roterman et al., 2023). In contrast, the membrane environment pushes
hydrophobic residues towards the protein surface (White and von Heijne, 2004).
When membrane proteins are designed to act as transmembrane channels or
transporters, the central part of these proteins becomes aqueous, which greatly
complicates our understanding (Killian and von Heijne, 2000). Hence, any attempt
to elucidate the details of their folding, localization and function is highly anticipated
(Gadzała et al., 2019). In this area of modeling, transmembrane proteins have presented
particular difficulties (de Brevern, 2010). The advent of deep learning approaches, such
as AlphaFold (Jumper et al., 2021), has changed the situation and led to specific
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developments (Pei and Cong, 2023). In this context, specific
dedicated simulation approaches make it possible to generate
hypotheses that cannot be obtained experimentally, e.g.,
(Dabrowska and Brylinski, 2006; Rao et al., 2024). This is why
we, Irena Roterman (Poland), Michal Brylinski (United States),
Fabio Polticelli (Italy) and Alexandre G. de Brevern (France),
decided to launch this Research Topic dedicated to this very
passionate class of proteins.

This Research Topic collects scientific contributions concerning
the study of trans-membrane proteins, with a specific focus on the
use of combined experimental and computational approaches to
provide new description of various protein systems.

It seems obvious that transmembrane helices often tend to
interact with each other. However, measuring the propensity of
transmembrane helices to oligomerise in the plasma membrane is
a more complex challenge. Hellmann and Schneider (Hellmann
and Schneider) focused on genetic assays that can measure the
propensity of transmembrane helices to oligomerise in the
plasma membrane of Escherichia coli bacteria. They used the
dimerisation of the transmembrane helix of human Glycophorin
A and its classical mutant (G83I) as a model system. They
observed that the addition of leucine residues to the
C-terminal helix resulted in pronounced changes in
dimerisation propensity using the TOXCAT assay. These
results show that topological and structural effects caused by
hydrophobic mismatch could further modulate the level of
interaction. This point is important because it highlights that
the hydrophobic mismatch between the hydrophobic core of a
transmembrane helix studied and the membrane of E. coli can
have an impact on the oligomerization propensity of a
transmembrane helix. Thus these TOXCAT calculations
should be performed extensively in many more systems.

Bardelang et al. analyzed the expression of virulence genes in the
human pathogen Staphylococcus aureus. In this system, the quorum-
sensing signal molecule agr is an autoinducing peptide generated by
initial processing of the pro-peptide AgrD by the transmembrane
peptidase AgrB. Little is known about the active form, so the authors
used homology modeling and molecular dynamics (MD) annealing
to characterize the conformations of AgrB and AgrD in model
membranes and in solution. Their analyses reveal a six-helical
transmembrane domain (6TMD) topology for AgrB. In solution,
AgrD behaves as a disordered peptide that binds N-terminally to
membranes in the absence and presence of AgrB. In silico,
membrane complexes of AgrD and dimeric AgrB display non-
equivalent AgrB monomers responsible for initial binding and
processing, respectively. Experimental analyses (fractionated
luciferase assay) confirm these results. AgrB and AgrD formed
stable complexes in detergent micelles as revealed by circular
dichroïsm radiation and Landau analysis. An increased thermal
stability of AgrB in the presence of AgrD was evidenced. A
conformational change of AgrB upon addition of AgrD was also
detected by small-angle X-ray scattering of proteo-detergent
micelles. For the first time, an atomistic description of AgrB and
AgrD was obtained, as well as confirmation of the topology of the
AgrB 6TMD and the existence of AgrBD molecular complexes
in vitro and in vivo.

Floch and collaborators (Floch et al.) have focused on the blood
group antigens of the RH system (commonly known as “rhesus”)

that have enormous importance in transfusion medicine. They are
associated with severe haemolytic consequences of antibodies
directed against these antigens, making them the second most
important blood group after AB0. A crystal structure of the RhD
proteins with their RhAG partner is not available and the exact
stoichiometry of the trimeric complex remains unknown. To
analyze their structural properties, all combinations of trimers
formed by the RhD and/or RhAG subunits were generated by
comparative modeling. The conformation of the subunits was
relatively constant in the molecular dynamics simulations, with
the exception of three large disordered loops. Although only a
few differences are observed, this work makes it possible to
determine the most likely stoichiometry.

Pasquadibisceglie and collaborators (Pasquadibisceglie et al.)
were interested in the ZIP family of proteins (Zrt and Irt-like
proteins), which includes transporters responsible for the
translocation of zinc and transition metals, such as iron and
cadmium between the extracellular space and the cytoplasm, as
well as between the cytoplasm and the lumen of organelles. This
family of proteins is ubiquitous and ZIP proteins are responsible for
the homeostasis of metals essential for cellular physiology. The
human ZIP family consists of fourteen members (hZIP1 to
hZIP14) divided into four subfamilies. There are common
structural features [extracellular domain, the highly conserved
transmembrane domain with the binuclear metal center (BMC)
and the Histidine-rich intracellular loop], but no comprehensive
structural analysis has been performed. Using the AlphaFold2 tool,
several structural models were obtained for the 14 hZIP members. It
should be noted that specific work on multiple sequence alignments
was carried out to refine the quality of these models and to obtain
alternative, physiologically-relevant, conformations. A complete
three-dimensional model of the hZIP4 homodimer complex was
also generated. The inward- and outward-facing conformations
obtained suggest that hZIP proteins function by an “elevator-
type” mechanism.

Rodríguez-Moraga and collaborators (Rodríguez-Moraga et al.)
have analyzed the effect of Rhamnolipids (RLs) on fungal membrane
models as described by their interactions with phospholipids and
sterols. RLs are secondary metabolites naturally produced by
bacteria of the genera Pseudomonas and Burkholderia; they have
biosurfactant properties. They may be of interest for crop protection
due to their direct antifungal and eliciting activities. Because they
have amphiphilic moieties, it has been hypothesized that they
interact directly with membrane lipids and that this may even
control the subsequent activity of the RLs. To evaluate this
hypothesis, molecular dynamics simulations were carried out.
The results suggest direct insertion of RLs into bilayers just
below the lipid phosphate groups. This arrangement leads to
membrane fluidization. In addition, the acyl chains involved in
the interactions may be essential for the membranotropic biological
actions of RLs, adhering to the ergosterol structure and forming a
significantly higher number of van der Waals contacts than is
observed for the acyl chains of phospholipids. All of these
interactions may be critical for the biological actions of RLs in
this context.

In conclusion, contributions included in this Research Topic
highlight the complexity of the structures, interactions and
physiological actions of transmembrane proteins, and how a
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combination of advanced computational simulations and
experimental studies can help elucidate this complexity.
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