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β-secretase 1, one of the most important proteins, is an aspartate protease. This
membrane-associated protein is used for treating Alzheimer’s disease (AD).
Several inhibitors have been pursued against β-secretase 1, but they still have
not resulted effectively. Virtual screening based on pharmacophores has been
shown to be useful for lead optimization and hit identification in the preliminary
phase of developing a new drug. Here, we screen the commercially available
databases to find the hits against β-secretase 1 for drug discovery against AD.
Virtual screening for 200,000 compounds was done using the database from the
Vitas-M Laboratory. The phase screen score was utilized to assess the screened
hits. Molecular docking was performed on compounds with phase scores >1.9.
According to the study, the 66H ligand of the crystal structure has the maximum
performance against β-secretase 1. The redocking of the co-crystal ligand
showed that the docked ligand was seamlessly united with the crystal
structure. The reference complex had three hydrogen bonds with Asp93,
Asp289, and Gly291; one van der Waals interaction with Gly74; and three
hydrophobic interactions. After equilibration, the RMSD of the reference
compound sustained a value of ~1.5 Å until 30 ns and then boosted to 2.5 Å.
On comparison, the RMSD of the S1 complex steadily increased to ~2.5 Å at 15 ns,
displayed slight aberrations at approximately ~2.5–3 Å until 80 ns, and then
achieved steadiness toward the end of the simulation. The arrangements of
proteins stayed condensed during themockupwhen bonded to these complexes
as stable Rg values showed. Furthermore, the MM/GBSA technique was
employed to analyze both compounds’ total binding free energies (ΔGtotal).
Our research study provides a new understanding of using 66H as anti-β-
secretase 1 for drug development against AD.
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1 Introduction

Neurodegenerative disorders (NDDs) are characterized by the
gradual deterioration and loss of specific groups of neurons,
primarily those affiliated with the central nervous system (Behl
et al., 2021). Alzheimer’s disease (AD) causes neurodegenerative
changes characterized by an advanced, irreversible, and subtle
weakening of cognitive function, including memory loss and various
cognitive impairments (Yusufzai et al., 2018). AD is a widespread and
frequently encountered type of dementia (Bogdanovic et al., 2020),
associated with decreased memory and cognition (Marelli et al., 2020;
Wilson et al., 2012). A sixth leading cause of death is in the geriatric
population (Gaugler et al., 2019). The progression of AD comprises
three primary aspects. First, a lack of cholinergic transmission results
from losing cholinergic neurons. Second, the buildup of extracellular
residues of β-amyloid protein occurs, owing to the catalytic action of β-
secretase 1 (BACE1). Last, neurofibrillary bundles comprise a tau
protein in the phosphorylated form (Falco et al., 2016; Selkoe and
Hardy, 2016; Gaugler et al., 2019). The development of extracellular
residues of the β-amyloid peptide and the buildup of unsolvable plaques
in neurons are central to the amyloid hypothesis, which connects AD to
this pathophysiological process. This process starts the transmembrane
protein (amyloid precursor protein-APP) breakdown by the enzyme
BACE1. Another enzyme, γ-secretase, terminates this cleavage process
and generates the β-amyloid peptide (Aβ), aggregating into oligomers.
These oligomers form plaques that accumulate in many regions of the
brain, mainly in neurons located in the cortex entorhinal, hippocampus,
basal nucleus, and associative cortex (Sabbah and Zhong, 2016). A
recently FDA-approved drug called Aduhelm© (aducanumab) is among
the few medications utilized to address the amyloid hypothesis (FDA
Grants Accelerated Approval for Alzheimer’s Drug | FDA). This drug
functions as a monoclonal antibody specifically designed to target
combined forms of amyloid beta agglomerates, thereby reducing the
accumulation of extracellular deposits of the β-amyloid peptide.
BACE1 is one of the most essential membrane-associated aspartate
protease proteins focused on treating AD (Ghosh et al., 2012;
Kandalepas and Vassar, 2012; Yan and Vassar, 2014). Beta-amyloid
peptide (Aβ) development in AD can be terminated by inhibiting
BACE1 (Boutajangout et al., 2011; Kwak et al., 2011; Yan and Vassar,
2014). The formation of BACE1 inhibitors, which is followed for many
years, has still not been established as an effective treatment method.
However, constant improvement in this sphere has led to the formation
of inhibitors that display widespread activity, from nano tomicromolar.
Consequently, evolving inhibitors for BACE1 have been an effective
curative approach for AD drug discovery. A pharmacophore is an
organization of structural elements and molecular features related to
biological activity (Wermuth, 2006). Lately, this phrase has become one
of the most well-known icons in the discovery of drugs. As an esteemed
tool for drug planning, virtual pharmacophore screening has been
established as valuable for lead optimization and hit identification in the
preliminary phase of the novel drug development (Gautam et al., 2023).
The benefit of this method is that virtually, most compounds can be
screened for hit identification. Points in 3D space usually signify
pharmacophore features. A feature of pharmacophores could be
composed of functional groups, such as the hydrogen bond acceptor
(HBA), hydrogen bond donor (HBD), anions, cations, hydrophobic
area (Hyp), and aromatics (Dror et al., 2004; Hou et al., 2006).
Cautiousness should be employed while controlling the structural

flexibility for generating pharmacophores where the active
conformation of particles is hypothesized.

The study aimed to address the urgent need for effective
treatments for AD, characterized by the accumulation of amyloid-
beta plaques in the brain. BACE1, being a crucial protein involved in
the production of amyloid-beta, represents a promising therapeutic
target for AD. However, despite extensive efforts, existing
BACE1 inhibitors have not been sufficiently effective in clinical trials.

The method of receptor or ligand-based pharmacophore virtual
screening includes a diversity of chronological computational steps:
target identification, preparation of database, pharmacophore model
creation, 3D screening, and arrangement of complexes for the final
confirmation of biological activity (Köppen, 2009; Liu et al., 2023).
Virtual screening provides a profitable, time-savingmethod in the novel
lead compound search (Muhammed and Esin, 2021). Screening
virtually is an obligatory part of the drug discovery pipeline and a
vital procedure for finding hits or chemical probes (Kumar and Zhang,
2015; Leung and Ma, 2015). In this study, we have targeted the
commercially available databases to discover the pharmacophore-
based virtual screening against BACE1 for drug discovery against AD.

The study offers medicinal chemists, biochemists, and
pharmacologists a promising avenue for advancing AD
therapeutics through the identification and characterization of a
novel compound, 66H, targeting BACE1. Through virtual screening
and molecular docking, 66H emerged as a lead candidate, with
subsequent molecular dynamics simulations confirming its stable
binding to BACE1. The study also explored the key molecular
interactions and assessed the compound’s binding affinity using
MM/GBSA analysis, providing crucial insights for further medicinal
chemistry optimization and biochemical validation.

2 Methodology

2.1 Pharmacophore hypothesis
development

Protein Data Bank (https://www.rcsb.org/) was used for
retrieving the crystal structures of the BACE1 protein. One of the
studies suggested the co-crystal ligands’ activity against BACE1 was
taken into consideration (Stamford and Strickland, 2013; Egbertson
et al., 2015; Gupta et al., 2020). The pharmacophore model, which
was receptor–ligand-based, was developed according to the inhibitor
with the highest activity against BACE1. The Schrödinger phase tool
acquired the pharmacophore hypothesis (Dixon et al., 2006). The
protein-binding pocket and ligand sites were targeted for building
the hypothesis. Moreover, the receptor was prepared by following
the steps in Section 2.4 before the hypothesis was developed.

2.2 Preparation and virtual screening
of database

The VITAS-M Laboratory database comprised 1.4 million
compounds, from which 0.2 million complexes were selected.
(Dixon et al., 2006), transferred, and arranged through phases.
Ten conformers were produced for each ligand to expand the
search for chemical space. Epik generated diverse likely states at
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pH 7, while the tautomeric states (Shelley et al., 2007), having high-
energy, were eliminated from the database. Then, virtual screening
was initiated from the prepared database, agreeing to the developed
hypothesis. The phase screen score was used to assess the screened
hits according to the mixture of volume score, RMSD, and site
matching. Phase scores >1.9 were identified for the molecular
docking studies.

2.3 ADMET and drug-likeness

The selective commercial complexes were subjected to absorption,
metabolism, distribution, excretion, and toxicity (ADMET) in the
QikProp module of Maestro, and ADME (http://www.swissadme.ch)
and ADMETlab 2.0 (https://admetmesh.scbdd.com/) to evaluate
ADMET and drug-likeness parameters. Compounds which passed the
Lipinski’s rule of five and toxicity parameters were considered for further
analysis. Different software tools, such asQikProp, ADME, andADMET,
have been employed to comprehensively assess the pharmacokinetic and
pharmacodynamics properties (ADMET) of the identified compound.
QikProp is known for its ability to predict a wide range of
physicochemical properties. ADME specializes in offering insights into
the compound’s bioavailability and metabolic stability. ADMET mainly
focuses on predicting potential adverse effects and toxicity profiles.

2.4 Molecular docking

The β-secretase 1 (PDB ID: 5HU0) crystal structure was prepared in
Maestro (Madhavi Sastry et al., 2013). The receptor was preprocessed by
introducing hydrogens and charges, eliminating water and setting the
residue side-chain atoms. The redundant sequences were eliminated,
while the tautomeric states at pH 7 were produced (Sadeer et al., 2019),
employing PropKa. The protein receptor was further organized and
minimized by OPLS_2005 force field (Shivakumar et al., 2012). The
framework was created by choosing the site-specific crystal ligand to
complete docking. To unstiffen the activity of non-polarized receptor
slices, the radii of the receptor atom, i.e., the van der Waals, were
graduated to 1.0, with the partial charge limit set to 0.25. The
coordinates X, Y, and Z results were 23.55, 10.39, and 21.58,
respectively. After grid creation, the ligands were primed by the
LigPrep tool of Maestro before docking (Matsuoka et al., 2017).
Diverse ionization shapes were produced at pH 7 by employing
Epik (Shelley et al., 2007). The isomers of complexes with definite
chirality are produced using the OPLS_2005 force field. A glide docking
tool was used to stop ligands’ arrangement to the set protein receptor,
and the binding positions were evaluated according to the glide score.

2.5 Molecular dynamics (MD) simulation

The best binding poses of the particular hits and reference complex
with protein were subjected to 100 ns using NAMD (Phillips et al., 2020)
andVMD(Humphrey et al., 1996) to discover their strength. As an initial
phase, the preliminary records necessary to execute the simulation were
arranged through the elements (Case et al., 2021) of AmberTools 21. The
components of an antechamber created the parameters of the conjugate
solution, while the LEAP program (Case et al., 2005) added the lost

hydrogen atoms in the protein arrangements. TIP3P water particles were
introduced to the structures (Jorgensen and Chandrasekhar, 1983) in a
periodic box after the parameterization of 10 Å and then defused by
adding sodium cations. The energy conflicts were eliminated by
minimizing the technique using the ff14SB force field for GAFF
ligands and protein (Duan et al., 2003). After depreciation, solvation
was equilibrated for 10,000 steps, which was trailed by temperature
balancing at 200, 250, and 300K. The concluding equilibrated procedures
were then exposed to a 100-ns production run, and the trajectories were
saved at every 2 ps for the evaluation. The Bio3D package of R was used
to calculate the MD trajectories (Grant et al., 2021).

3 Results

3.1 Alignment of protein structures

Protein Data Bank was used to retrieve the crystal structures of
the BACE1 protein. The literature was searched for the IC50 cut-offs
of the co-crystal ligands. As evident, the ligand of co-crystal 66H has

TABLE 1 IDs of PDB, ligands, and the chemical mechanism of a co-crystal
ligand against the BACE1 protein.

PDB PDB ligand Resolution IC50

1TQF 32P 1.80 1,400 nM

5HU0 66H 1.83 1.7 nM

1W51 L01 2.55 200 nM

1XS7 MMI 2.80 3,900 nM

2B8L 5HA 1.70 35 nM

2FDP FRP 2.50 26 nM

2HIZ LIJ 2.50 67 nM

2HM1 LIQ 2.20 3 nM

2IQG F2I 1.70 130 nM

2IRZ I02 1.80 12 nM

2IS0 103 2.20 10 nM

2NTR L00 1.80 16,500 nM

2OAH QIN 1.80 34 nM

2P8H MY9 1.80 11 nM

2P83 MR0 2.50 11 M

TABLE 2 Coordinates and scores for the features within the hypothesis of
pharmacophores.

Rank Feature label X Y Z Score

1 R10 18.97 10.26 20.34 −1.08

2 R9 29.45 9.49 22.30 −0.89

3 R11 23.97 10.76 19.82 −0.84

4 D7 26.38 9.48 21.75 −0.51

5 D5 21.85 8.43 22.17 −0.32
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shown maximum performance against the protease protein between
the selected ligands; thus, it was chosen to study further. The IDs of
PDB crystals and the IC50 cut-offs are presented in Table 1.

3.2 Generation of the receptor-based
pharmacophore

A five-feature pharmacophore model was created by choosing
ligand sites and pocket residues with specific binding. The
pharmacophore hypothesis comprised features such as R9, R10,

R11, D9, and D7, along with their coordinates in the structure of
protein (Table 2; Figure 1A). The descriptions of the binding
pocket’s cavity are witnessed in Figure 2B.

3.3 Virtual screening

The database of Vitas-M Laboratory library was utilized to screen
the hypothesis of pharmacophores virtually. At least four features have
been selected to identify a complex as a hit. The final ranking of hits
from the screening, contributing to the phase fitness score, was
determined by comprising vector arrangements, volume scores, and
matching RMSD site. The range of vector scores is from −1 to 1, where
greater scores indicate improved alignment. On the other hand, the
volume scores ranging from 0 to 1 indicate a higher overlap among the
reference and aligned ligand levels with higher scores. It is determined
as the overlaying of both the volumes of the ligand divided by the total
volume of both ligands. The score is zero if no reference ligand is
present. A cutoff score of 1.9 during the phase screen was chosen to
identify the potential hits above this threshold (Table 3). The structures
of 84 hits have been provided in Supplementary Figures S1–S84.

3.4 β-secretase 1 structure and
sequence analysis

The sequence of the BACE1 precursor (P56817) was acquired
from UniProt.

Physiochemical features: The physiochemical features of the
sequences of the BACE1 precursor were determined by
ProtParam. The amino acid profile of the BACE1 precursor
showed 9.8% residues of leucine along with 8.6% and 7.4%

FIGURE 1
Pharmacophore: (A) characteristics of the binding pocket and (B) pharmacophore hypothesis and the binding pocket cavity.

FIGURE 2
Crystal structure of β-secretase 1.
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TABLE 3 Hit alignment and phase screen scores of a pharmacophore model.

S. No. Compound ID Vector score Volume score Align score Phase score

1 STK081237 0.892 0.691 0.31 2.08

2 STK280616 0.934 0.643 0.453 2.017

3 STK057995 0.934 0.618 0.453 1.992

4 STK408850 0.934 0.617 0.453 1.99

5 STK067256 0.932 0.629 0.482 1.988

6 STK100429 0.942 0.604 0.466 1.979

7 STK362117 0.863 0.606 0.275 1.977

8 STK387431 0.934 0.593 0.453 1.967

9 STK046443 0.735 0.555 0.392 1.963

10 STK136267 0.948 0.587 0.481 1.962

11 STK386021 0.934 0.589 0.466 1.958

12 STK137950 0.938 0.58 0.467 1.952

13 STK385466 0.941 0.575 0.466 1.95

14 STK385674 0.941 0.575 0.466 1.95

15 STK072483 0.941 0.572 0.466 1.947

16 STK154114 0.939 0.574 0.466 1.947

17 STK012551 0.941 0.572 0.466 1.947

18 STK131655 0.923 0.595 0.481 1.945

19 STK154089 0.935 0.576 0.467 1.944

20 STK129297 0.934 0.576 0.466 1.944

21 STK129615 0.938 0.572 0.467 1.944

22 STK090091 0.941 0.567 0.466 1.941

23 STK129509 0.923 0.588 0.482 1.938

24 STK129571 0.913 0.587 0.467 1.933

25 STK113693 0.883 0.571 0.365 1.931

26 STK222598 0.935 0.575 0.496 1.931

27 STK155936 0.941 0.611 0.58 1.93

28 STK222602 0.935 0.575 0.496 1.93

29 STK409019 0.939 0.592 0.54 1.93

30 STK137196 0.934 0.571 0.486 1.929

31 STK154090 0.938 0.558 0.467 1.929

32 STK130675 0.913 0.579 0.467 1.926

33 STK007472 0.923 0.569 0.469 1.925

34 STK068025 0.673 0.589 0.404 1.925

35 STK073398 0.93 0.559 0.463 1.924

36 STK075179 0.913 0.578 0.467 1.924

37 STK386018 0.913 0.578 0.467 1.924

38 STK130489 0.924 0.588 0.515 1.923

(Continued on following page)

Frontiers in Chemistry frontiersin.org05

Han and Guo 10.3389/fchem.2024.1412349

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2024.1412349


TABLE 3 (Continued) Hit alignment and phase screen scores of a pharmacophore model.

S. No. Compound ID Vector score Volume score Align score Phase score

39 STK132568 0.96 0.585 0.581 1.923

40 STK401920 0.934 0.59 0.54 1.923

41 STK135071 0.913 0.576 0.467 1.922

42 STK137123 0.913 0.575 0.467 1.922

43 STK048780 0.913 0.574 0.467 1.921

44 STK031760 0.913 0.574 0.467 1.921

45 STK039660 0.913 0.574 0.467 1.92

46 STK092252 0.93 0.556 0.466 1.92

47 STK121703 0.935 0.564 0.496 1.919

48 STK325732 0.913 0.573 0.467 1.919

49 STK386010 0.926 0.585 0.52 1.919

50 STK337539 0.934 0.587 0.54 1.919

51 STK324799 0.938 0.577 0.529 1.919

52 STK337540 0.924 0.583 0.515 1.917

53 STK408865 0.939 0.581 0.542 1.917

54 STK154061 0.913 0.57 0.467 1.917

55 STK409037 0.924 0.581 0.515 1.916

56 STK409038 0.924 0.581 0.515 1.916

57 STK000255 0.913 0.569 0.467 1.915

58 STK154110 0.938 0.543 0.467 1.914

59 STK020405 0.928 0.575 0.517 1.913

60 STK401922 0.924 0.577 0.515 1.912

61 STK386029 0.913 0.567 0.47 1.912

62 STK154130 0.923 0.555 0.466 1.912

63 STK036626 0.924 0.577 0.515 1.912

64 STK097228 0.858 0.584 0.386 1.91

65 STK100419 0.924 0.575 0.515 1.91

66 STK045387 0.913 0.563 0.467 1.91

67 STK075062 0.931 0.54 0.456 1.909

68 STK122203 0.92 0.578 0.515 1.909

69 STK013762 0.909 0.568 0.47 1.909

70 STK129898 0.913 0.562 0.467 1.909

71 STK053591 0.93 0.539 0.456 1.908

72 STK188417 0.913 0.561 0.467 1.907

73 STK085958 0.913 0.56 0.467 1.906

74 STK061013 0.923 0.55 0.469 1.905

75 STK062148 0.913 0.559 0.467 1.905

76 STK081664 0.913 0.558 0.467 1.905

(Continued on following page)
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residues of glycine and valine, respectively. The molecular weight
was approximately 55,763.79. There were 42 positively charged
arginine and lysine residues along with the 55 negatively charged
aspartate and glutamic acid residues. The isoelectric point (PI) value
of 5.31 specifies that the protein is slightly acidic, whereas the
instability index of 44.23 shows that it is somewhat unstable.
This instability was predicted due to the existence of certain
dipeptides that are lacking from steady proteins. A greater
aliphatic index (88.14) revealed that the protein was mildly
thermostable, while a lesser GRAVY score (−0.064) implied that
the protein may interact well with water. The extinction coefficient is
85,425 M-1cm-1 at 280 nm, similar to cysteine, tryptophan, and
tyrosine concentrations. To calculate protein–ligand and
protein–protein interactions in the solution, this coefficient
is valuable.

3.5 ADMET

The computational tools QikProp, SwissADME, and
ADMETlab 2.0 were used to make predictions for a variety of
physiochemical (Supplementary Table S1), medicinal chemistry
(Supplementary Table S2), absorption, distribution
(Supplementary Table S3), metabolism, excretion (Supplementary
Table S4), and toxicity parameters (Supplementary Table S5) for a
total of 84 distinct chemicals. As a result, ligands with significant
pharmacokinetic features fall within acceptable ranges when using
ADMET analysis. The ADMET properties show that all compounds
were found to have good pharmacokinetic characteristics and no
notable side effects. It was also thought that the potential for medical
use was positive.

3.6 Molecular docking

The BACE1 receptor was docked by the hits employing the
typical precise procedure of the glide tool. Before the docking of
screened hits with protein, the effectiveness of this procedure was
measured by the redocking of the co-crystal ligand. The redocking of
the co-crystal ligand showed that the docked ligand is aligned with
the crystal structure (Figure 3A). The docked hits were compared
with the reference ligand, and two hits were selected for further

analysis. The selected hits with the glide scores are specified in
Table 4. The connections of the molecules for the chosen hits were
analyzed and compared with the reference compound. The reference
complex made three hydrogen bonds with Gly291, Asp93, and
Asp289; one van der Waals interaction with Gly74; and three
hydrophobic interactions (Figure 3B).

In comparison, S1 made one hydrogen bond with Gly291 and
five van der Waals interactions with Gln73, Gly74, Leu91, Trp176,
and Ser290. Moreover, the reference complex had three
hydrophobic interfaces (Figure 3C). S2 also made one hydrogen
bond with Gly291; three van der Waals interactions with Gly74,
Asp93, and Ser290; and five hydrophobic interactions (Figure 3D).
The plausible binding modes of selected docked hits were also
analyzed (Figures 4A–C).

3.7 MD simulation

The docked poses of the selected hit ligands were superposed on
the co-crystal ligand, as shown in Figures 5A, B, and then subjected
to MD simulation for the protein–ligand stability analysis.

The significant molecules of the protein structure complexed
with the reference compound, and hit root mean square deviation
(RMSD) values were calculated from the trajectories to assess the
steadiness of the protein–ligand compound (Sargsyan et al., 2017). It
was witnessed that at 5 ns, all compounds were balanced
(Figure 6A). After balancing, the deviation of the reference
compound upheld a value of ~1.5 Å near 30 ns and then
enhanced to 2.5 Å. Passing the 30-ns milestone, the RMSD
stayed at approximately~ 1.75–2 Å until the end. On
comparison, the RMSD of the S1 complex slowly amplified to
~2.5 Å near 15 ns, showed slight deviations at approximately
~2.5–3 Å near 80 ns, and then achieved steadiness toward the
end of the simulation. The RMSD values of the S2 complex were
approximately ~1.25–1.5 Å during the simulation. The protein
structure’s physical density, when bound to hit and reference
complexes, was evaluated by analyzing the radius of gyration
(Lobanov et al.). Lesser values of Rg indicated structural solidity,
while greater Rg values meant structural deformities throughout the
simulation. The Rg profiles for the compounds indicated that Rg
values were kept within the range of approximately 20.75–21.5 Å
after a 5-ns equilibration period. The Rg value for the S1 complex

TABLE 3 (Continued) Hit alignment and phase screen scores of a pharmacophore model.

S. No. Compound ID Vector score Volume score Align score Phase score

77 STK324798 0.929 0.566 0.517 1.904

78 STK012081 0.913 0.558 0.467 1.904

79 STK346841 0.953 0.595 0.622 1.904

80 STK044786 0.924 0.569 0.515 1.904

81 STK138023 0.931 0.562 0.52 1.901

82 STK138208 0.931 0.562 0.52 1.901

83 STK386019 0.909 0.559 0.468 1.901

84 STK133249 0.96 0.563 0.58 1.9
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consistently remained near 21.5 Å during the simulation, whereas
the Rg values for the S2 complex remained at approximately 20.75 Å.
These stable Rg scores imply that the arrangements of proteins
stayed compressed throughout the simulation in the presence of
these compounds (refer to Figure 6B). When bound to these ligands,
the dynamic behavior of protein restudies was calculated by the root
mean square fluctuations (RMSFs) (Martínez, 2015). The RMSF
scores of protein deposits fluctuate less than 1 Å throughout the
simulation period, excluding the loop regions (Figure 6C). The
RMSF figure indicated that the protein residues were rigid and
did not show major fluctuations during simulation, suggesting the

steadiness of the protein–ligand complex. The RMSF value of the
loop residues extended to the highest value of ~5 Å in the reference
compound–complex.

The RMSF graph reveals some regions with high fluctuations
within the protein structure, indicating areas of increased flexibility.
Specifically, residues around index 100, between indices 200–210,
and near index 300 exhibit significant peaks, with the peak around
residue 300 being the most pronounced. Additionally, there is also a
noticeable flexibility near residue 390. These fluctuations suggest
that these particular residues are more dynamic, potentially due to
specific interactions in the protein’s structure.

FIGURE 3
(A) Redocking of the reference compound. Orange sticks show the reference pose, and cyan sticks show the docked pose. (B) Molecular
interactions of reference compounds. (C)Molecular interfaces of S1. (D)Molecular interactions of S2. Green lines display the hydrogen bonds; light green
shows the van der Waals interactions; magenta lines show hydrophobic interactions; purple lines show pi–sigma bonds, and pi–sulfur interactions are
shown by orange lines.
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3.8 Molecular mechanics/generalized born
surface area

The molecular mechanics/generalized born surface area (MM/
GBSA) system helped analyze both complexes’ total binding free
energy (ΔGtotal). The result is typically used to evaluate the strength

of the ligand–protein compound (Du et al., 2011). The lower ΔGtotal

values specify that the compound is steadier and conversed. It was
calculated as a sum of the ligand–protein compound and the
difference of protein and its ligands’ free energies. The total
binding free energy assessed utilizing the MM/GBSA method is
the result of the input of several protein–ligand interfaces such as
electrostatic energy (ΔEele), van der Waals energy (ΔEvdW), and
electrostatic contribution to solvation-free energy by generalized
born (ΔGGB). The total binding free energies are presented in
Table 5. The ΔEvdW role of the S1 compound was more than
that of the reference and S2 complexes. At the same time, the
electrostatic contribution was more in the reference complex. The
GB contribution showed that the reference has a higher GB value
than the hits. Both hits’ total binding free energies were more than

FIGURE 4
Reference’s plausible binding modes and selected compounds are represented with the sticks in the binding pocket of BACE1. (A) Reference
compounds: (B) S1 hit. (C) S2 hit.

TABLE 4 Docking details of the selected and reference complexes.

S No. Hit ID Compound ID Glide score

1 References 66H −7.019

2 S1 STK346841 −7.73

3 S2 STK122203 −7.67
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FIGURE 5
Potential binding configurations of the ligand with the crystal structure: (A) S1 is illustrated using blue sticks. (B) S2 is depicted using green sticks.

FIGURE 6
(A) RMSD profiles for protein and ligand simulation over 100 ns. (B) Analysis of Rg for the density of the protein structure. (C) Evaluating residual
variations in the protein structure during simulations by RMSF values.

Frontiers in Chemistry frontiersin.org10

Han and Guo 10.3389/fchem.2024.1412349

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2024.1412349


those of the reference compound, as shown in the table. The total
binding free energy and its influence on each energy module are
shown in Figure 7.

The structural assessment of STK346841 and STK122203 shows
that both have feature benzene rings as foundational elements,
characteristic of many aromatic compounds (Figure 8). Each
structure also incorporates a heterocyclic ring; specifically, a
pyridine ring is present in both, indicating a common structural
motif where a nitrogen atom is integrated into a six-membered
aromatic ring. This shared feature suggests a similarity in some
aspects of their chemical reactivity and possible applications.

The post-simulation interaction analysis was performed at 0 ns
and 100 ns (Figure 9). There was no significant difference at 0-ns and
100-ns snap shots. All three ligands (references: BACE1, S1-BACE1,
and S2-BACE1) show a pi–pi stacked interaction with Tyr75,
indicating a critical role of this residue in stabilizing the ligand
through aromatic interactions. Similarly, both references BAC1 and
S1-BAC1 exhibit pi–alkyl interactions with Leu34, suggesting that
hydrophobic interactions with this residue are also important.
Moreover, the reference BACE1 has conventional hydrogen

bonds with Asp36 and Aap232, which are not present in S2-
BACE1. S1-BACE1 retains the hydrogen bond with Asp36 and
exhibited one more with Trp80.

4 Discussion

The prevalence of neurodegenerative diseases has significantly
increased in the medical field over recent years, posing a significant
health concern. Various molecular targets are implicated in the
pathogenesis of these diseases. These clusters of diseases, including
AD and other related disorders such as spinal muscular atrophy
(SMA), Parkinson’s disease (PD), Huntington’s disease (HD),
spinocerebellar ataxia (SCA), prion disease, and motor neuron
diseases (MND), have been reported to affect millions of people
worldwide (Dugger and Dickson, 2017). BACE1 is an aspartate
protease. This membrane-associated protein treats AD (Ghosh et al.,
2012; Kandalepas and Vassar, 2012). The development of beta-
amyloid peptide (Aβ) in AD can be terminated by inhibiting BACE1
(Boutajangout et al., 2011; Kwak et al., 2011; Yan and Vassar, 2014).
The formation of BACE1 inhibitors, which is followed for many
years, has still not been established as an effective treatment.
However, constant improvement in this sphere has led to the
formation of inhibitors that display widespread activity, from
nano to micromolar. Consequently, evolving inhibitors for
BACE1 have been an effective curative approach for AD
drug discovery.

In this study, out of 1.4-M compounds in the database of Vitas-
M Laboratory, 0.2-M complexes were selected, transferred, and
arranged through phase (Dixon et al., 2006). Several groups of
researchers have performed similar studies, such as for the
discoveries of vaccines (Stokes et al., 2020), for in silico drug
repositioning for AD (Galeana-Ascencio et al., 2023), and some
other neurodegenerative diseases (Ishola et al., 2021). Others have

TABLE 5 MM/GBSA module and the binding free energies.

Energy component Reference S1 S2

ΔEvdW −40.86 ± 0.63 −42.74 ± 0.47 −40.03 ± 0.35

ΔEele −6.76 ± 0.68 −3.71 ± 0.21 −6.08 ± 0.31

ΔEGB 25.1 ± 0.82 19.42 ± 0.24 22.26 ± 0.28

ΔEsurf −5.37 ± 0.07 −5.51 ± 0.03 −5.29 ± 0.02

ΔGgas −47.63 ± 1.07 −46.45 ± 0.49 −46.11 ± 0.34

ΔGsolv 19.73 ± 0.76 13.91 ± 0.22 16.96 ± 0.28

ΔGtotal −27.9 ± 0.55 −32.54 ± 0.44 −29.14 ± 0.33

FIGURE 7
Role of individual binding energy components within the overall binding free energy.
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performed similar approaches for de novo drug design (Wang et al.,
2022). The Protein Data Bank (https://www.rcsb.org/) was used for
retrieving the crystal structures of the BACE1 protein. One of the
studies suggested the co-crystal ligands’ activity against BACE1,
which was taken into consideration (Stamford and Strickland, 2013;
Egbertson et al., 2015; Gupta et al., 2020). The pharmacophore
model, which was receptor–ligand-based, was developed according
to the inhibitor with the highest activity against BACE1. The
Schrödinger phase tool acquired the pharmacophore hypothesis
(Dixon et al., 2006).

Some previously reported BACE1 inhibitors, verubecestat (MK-
8931) and its analog umibecestat (CNP-520), reached phase II/III
clinical trials (Neumann et al., 2018; Thaisrivongs et al., 2018).
However, these inhibitors were discontinued in February 2018
(Merck 2018.) and July 2019 (NIA, 2019), respectively, because
they were associated with a decline in cognitive functions in
participants.

In the current study, the two compounds S1 and S2 exhibitedmany
hydrophobic and hydrogen bonding including hydrophobic
interactions of S1; Gln>73, Gly>74, Leu>91, Asp>93, Trp>137,
Trp>176, and Ser>290; hydrogen binding of Val>130, Tyr>132,
Ile>179, and Gly>291; S2 hydrophobic interactions including

Gly>74, Leu>91, and Asp>93; and hydrogen bonding of Gln>73,
Val>130, Tyr>132, Trp>137, Trp>176, Ile>179, Ser>290, and
Gly>291 (Figure 3). The previous study indicated that the AM-6494
inhibitor demonstrated active binding with BACE1, primarily involving
interactions with specific amino acid residues including Lys>9, Gly>11,
Gly>13, Tyr>14, Leu>30, Gly>34, Tyr>71, Thr>72, Phe>108, Trp>115,
Ile>118, Val>170, Gly>230, Thr>231, Thr>232, Arg>235, Arg>307,
and Ala>335. It is noteworthy that these interactions occur alongside
the protonated Asp>32 and Asp>228 catalytic dyad (Ugbaja et al.,
2021). The study also reported that 19 amino acid residues
demonstrated interactions with the CNP-520 ligand, in which eight
amino acids (Ser>35, Thr>72, Ile>110, Trp>115, Thr>231, Thr>232,
Arg>235, and Ala>335) formed van der Waals (vdW) interactions
(Ugbaja et al., 2021).

BACE1 harbors two aspartate amino acids (aa) within its
extracellular protein domain (aa 93–96 and 289–292), both
crucial for its protease function (Hussain et al., 1999). These
residues are strategically located to facilitate the cleavage of APP
at the β-site. In our study, both ligands S1 and S2 are responsible for
hydrogen bonding with residues Asp>93, Gly>291, and Ser>290.

The protein-binding pocket and ligand sites were targeted for
building the hypothesis. Virtual screening of pharmacophores has

FIGURE 8
Structures of two hits (STK346841 and STK122203). STK346841 (IUPAC: N-[2-(2-chlorophenyl)-1,3-benzoxazol-5-yl]pyridine-3-carboxamide) has
a chlorine (Cl) atom and an imidazole ring as substituents. STK122203 (IUPAC: 2-fluoro-N-[4-(4-methylphenyl)-1,3-thiazol-2-yl]benzamide) features a
fluorine (F) atom and a thiazole ring (a ring containing both sulfur and nitrogen).
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shown beneficial for hit identification and lead optimization in the
initial phase of new drug development programs (Gautam et al.,
2023). Themain advantage of this approach is that virtually, millions
of compounds can be screened for hit identification. Recently,
virtual screening has been an obligatory part of drug research
and development pipeline and an essential technique for
discovering hits or chemical probes (Kumar and Zhang, 2015;
Leung and Ma, 2015). Database screening from Vitas-M
Laboratory library was executed virtually. At least four features
must be matched to identify a complex as a hit. The final ranking of
hits from the screening, contributing to the phase fitness score, was
determined by vector arrangements, volume scores, and matching
RMSD sites. The structures of the BACE1 protein were recovered
from the Protein Data Bank. The literature was searched for the IC50

cut-offs of the co-crystal ligands. As evident, the ligand of crystal
66H showed maximum performance against the protease protein
between the considered ligands. The identification of PDB, the
arrangements, and the complementary IC50 values of other ligand
studies are shown in Table 1. The compound STK081237 (chemical
name: 6-hydrazinyl-N’-(naphthalen-1-yl)-N,N-diphenyl-1,3,5-
triazine-2,4-diamine and empirical formula: C25H21N7) showed
the align score of 0.31. Three compounds STK280616 (chemical
name: ethyl4-phenyl-2-[(phenylcarbonyl) amino]thiophene-3-
carboxylate and empirical formula: C20H17NO3S), compound
STK057995 (chemical name: ethyl4-(3,4-dimethoxyphenyl)-2-
[(pyridin-4-ylcarbonyl)amino]thiophene-3-carboxylate and
empirical formula: C21H20N2O5S), and compound STK408850

(chemical name: ethyl4-(4-fluorophenyl)-2-[(3-methoxyphenyl)
carbonyl]amino thiophene-3-carboxylate and empirical formula:
C21H18FNO4S) obtained similar results of 0.453 align scores
(Table 3). Recently, pharmacophore-based virtual screening and
molecular docking studies of cyclin-dependent kinase inhibitors
(CDKIs) have been reported (Shawky et al., 2021). Others studied
applying pharmacophore modeling techniques to protease
inhibitor development (Pautasso et al., 2014). A group of
researchers recently reviewed the general aspects of AI and
ML from the perspective of drug discovery in the CNS
(Gautam et al., 2023). It is found that the co-crystal ligand
66H has the highest activity against BACE1 and can be
potentially considered an inhibitor in drug development.

5 Conclusion

BACE1 is one of the most critical membrane-associated
aspartate proteases that targets AD. Several inhibitors of
BACE1 have been introduced, but effective therapies are still
unavailable. Here, we attempted to find the most effective
inhibitors against BACE1 for drug development against AD. We
downloaded and prepared 200,000 compounds from the Vitas-M
Laboratory database for virtual screening. We generated
10 conformers for each ligand to enhance the search in chemical
space. It was found that among the studied ligands, the 66H crystal
ligand exhibited themaximum performance against the protein. Our

FIGURE 9
Post-simulation comparison of BAC1 interactions with references S1 and S2.
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study provides a new perception of using 66H as anti BACE1 for
drug development against AD.
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