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Introduction: The endorsement of circular economy, zero-waste, and
sustainable development by the EU and UN has promoted non-thermal
technologies in agro-food and health industries. While northern European
countries rapidly integrate these technologies, their implementation in
Mediterranean food-supply chains remains uncertain.

Aims:We evaluated the usefulness of hydrodynamic cavitation (HC) for valorizing
orange peel waste in the fresh orange juice supply chain of the Maltese Islands.

Method: We assessed: a) the effectiveness of HC in extracting bioactive
compounds from orange peels (Citrus sinensis) in water (35°C) and 70% (v/v)
ethanol (−10°C) over time, compared to conventional maceration, and b) the
potato sprouting-suppression and biosorbent potential of the processed peel for
copper, nitrate, and nitrite binding.

Results: Prolonged HC-assisted extractions in water (high cavitation numbers),
damaged and/or oxidized bioactive compounds, with flavonoids and ascorbic
acid being more sensitive, whereas cold ethanolic extractions preserved the
compounds involved in radical scavenging. HC-processing adequately modified
the peel, enabling its use as a potato suppressant and biosorbent for copper,
nitrate, and nitrite.

Conclusion: Coupling HC-assisted bioactive compound extractions with using
leftover peel for potato-sprouting prevention and as biosorbent for water
pollutant removal offers a straightforward approach to promoting circular
economic practices and sustainable agriculture in Malta.
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1 Introduction

Global citrus production surpasses 100 million tons annually, but
approximately 50%of the fruit is deemed inedible, resulting in 60million
tons of waste per year (Mahato et al., 2019). EU andUNpolicies over the
past decade have prioritized hierarchical food waste management,
redistribution, and valorization to promote sustainable consumption
and production, thus fostering circular economies (Teigiserova et al.,
2020; Carlsen and Bruggemann, 2022). Emerging green technologies,
such as hydrodynamic cavitation (HC), offer promising solutions for
water softening (Anaokar and Khambete, 2021), chemical/dye
inactivation (Zupanc et al., 2013; Bandala and Rodriguez-Narvaez,
2019) and non-thermal food processing (Sun et al., 2022).

In HC, device contractions induce turbulence, elevating kinetic
energy at the cost of hydrostatic pressure until it matches (or falls
below) the liquid’s vapor pressure (Carpenter et al., 2017). Flashing
liquid forms cavitation bubbles, expanding upon pressure recovery.
Upon collapse, bubbles emit energy waves, microjets, and reactive
oxygen species, inducing chemical and physical changes in the
treated material (Meneguzzo and Zabini, 2021). In citrus waste,
such changes manifest as tissue loosening (Singhal and Hulle, 2022),
improved dispersibility and functionality of pectin-biopolymers and
antioxidants (Meneguzzo et al., 2019; Chu et al., 2022), as well as
pectin methyl esterase inactivation (Arya et al., 2021) and natural
colourant release (Ciriminna et al., 2020a). Most importantly, HC-
induced changes are achieved over short yet intense treatments,
economizing on energy, and preserving the stability/functionality of
heat-sensitive core food components (Arya et al., 2023).

Typically, citrus waste valorization involves several steps,
i.e., drying and pulverizing the peel to reduce water activity and
increase surface area, mixing the dried peel with green solvents like
water or ethanol, technology-assisted extraction, content determination,
chemical identification, and purification of main compounds, and finally
processing and valorization (Supplementary Figure S1) (Panda and
Manickam, 2019; Nanda et al., 2021; Hessel et al., 2022). Extracted
bioactive compounds, including flavonoids, terpenes, phenolics,
essential oils, and carotenoids, enhance beverages, dairy, and baked
goods, providing nutritional value and shelf-life extension due to their
antimicrobial properties (Mohsin et al., 2022; Saini et al., 2022). Pectin acts
as a thickener, stabilizer, and offers antimicrobial benefits (Meneguzzo
et al., 2019; Ciriminna et al., 2020b), while extracted sugars and
carbohydrates act as prebiotics, promoting beneficial microorganism
growth (Gómez et al., 2014; Mazzucotelli and Goñi, 2023). Citrus peel
can also undergo biorefinery processes to yield various products like acids,
bioethanol, biomethane, xanthan, and curdlan gum (Mohsin et al., 2022).
Additionally, it can be converted into activated biochar for ammonium ion
removal (Tan et al., 2023), activated hydrochar for CO2 uptake (Deepak
et al., 2023), or used as an alternative to nitrate/nitrite preservatives in
fermented meats (Calderón-Oliver and López-Hernández, 2022).

In 2013-2014, the Maltese Islands produced 1,800 tonnes of citrus,
yet over 80% of the island’s needs are fulfilled through imports
(Parliamentary secretary for agriculture and fisheries and animal
rights Malta, 2018). Locally grown oranges are typically consumed
fresh or in juice form. Collected orange peel waste is used as livestock
feed (Lalramhlimi et al., 2022) but albeit nutritious, it poses risks of
acidosis in livestock due to its acidity (Alnaimy et al., 2017). Moreover,
direct use of orange peel as fertilizer (Attard et al., 2019) or improper
composting practices may lead to soil acidification and disrupt bacterial

populations. Excessive use of manure can exacerbate the imbalance in
the nitrogen cycle, increasing soil nitrates (Abascal et al., 2022) and
adversely affecting groundwater quality. Overall, agricultural
malpractices and intensive land use have significantly compromised
soil and groundwater quality in Malta (Hartfiel et al., 2020).

Here we examine HC as a method for extracting bioactive
compounds from orange waste peel in Malta, focusing on its
effectiveness within the fresh juicing industry. We discuss the
scientific data supporting HC extraction’s ability to recover
valuable compounds from citrus waste and propose a citrus-
waste valorization scheme that encourages sustainable practices,
aligning with broader national economic and environmental goals.

2 Materials and methods

2.1 Drying procedure

We evaluated the performance of three drying
techniques—microwave (MW; Midea, United States), hot-air (FOD;
Zilan, France), and freeze-drying (FRD (N-series); Scientz, China)—for
citrus peel obtained from freshly squeezed oranges (Citrus sinensis)
sourced fromMgarr Farms andKoperattiviMalta. Three different lots of
orange peel were sourced: Valenciana (DMA farms, Egypt), Valenciana
(El Gebaly Fruit Company, Egypt) and Navel (F.C.C.S Limited, Malta).
Samples from each lot were subjected to the following process: peel
pieces (albedo, flavedo, and segment walls) were cut to 1–3 mm and
stored at −80°C before drying. MW drying involved 175W [ouput
determined as in (Buesa, 2002)] microwave heating for 5 min followed
by 10 min cooling at room temperature to prevent Maillard reactions
(Ahmad and Langrish, 2012). FOD drying was carried out at 35°C, while
FRD was conducted under vacuum (110 kPa) until moisture content
and water activity were reduced to <0.2. The dried peel was pulverized
(10 s bursts, 30 s cooling), sieved through 100 μm and 50 μm pore-size
membranes for uniform particle size distribution. Particles failing to pass
through the smaller sieve were sealed and stored for future use. For
determining the influence of the drying process in the exhibited
antioxidant activities (Section 2.4) each lot provided a replica. For
subsequent works, the remaining peel from the three lots was dried
using themost effective drying method and the powders were combined
to generate a single homogeneous stock. Thus, subsequent extractions
and analytical tests were conducted in technical triplicates.

2.2 Green solvent extractions

2.2.1 Solvent-mediated extractions
70% (v/v) ethanol (Biochem Chemopharma, France) was the

selected green solvent (as was previously identified as an optimal
green solvent for at least total phenolic extraction by maceration
(Mahato et al., 2019; Viñas-Ospino et al., 2023)). Drying
effectiveness was primarily based on the process’s ability to
preserve the ethanol-extracted biocomponents and/or to improve
their antioxidant activities, relative to fresh peel. Dried and/or fresh
peel was mixed with 70% (v/v) ethanol, at a 1:40 solid-to-liquid ratio
(g/mL) (Selahvarzi et al., 2022), with mild stirring (Stuart Scientific,
UK; 100 rpm) at 35°C for 2 hours. Samples were taken at 15, 30, 60,
and 120 min of extraction time for determination of their
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antioxidant activities (Section 2.4). All extractions and analytical
experiments, including the generation of standard calibration curves
were conducted in technical triplicates, unless otherwise stated.

2.2.2 HC-mediated extractions
For HC-mediated extractions, we opted for water (the greenest

of solvents) and 70% (v/v) ethanol (Mahato et al., 2019; Viñas-
Ospino et al., 2023). Dried peel was enclosed in a 50 μm muslin bag
and inserted into a 200 mL double-walled Scott bottle fitted with a
two-port screw cap (Supplementary Figure S2A). Water or 70% (v/
v) ethanol was added to the bottle at a 1:40 solid to liquid ratio. The
screw-cap ports created a closed system (minimizing loss of volatile
D-limonene) for continuous feeding into the HC-device. The
double-jacketed container circulated coolant, maintained at the
desired temperature by a chiller unit (WCR-P12; Witeg,
Germany). Water extractions were at 35°C (to minimize thermal
effects on the stability of antioxidants), and for ethanol, the
temperature was set at −10°C to prevent flashing. Inlet and outlet
pressures were monitored with digital sensors, and samples were
collected at 15, 30, 60, and 120-min intervals. The choice of the time-
range was simply based on the industry requirement for short
processing times and energy consumption efficiency.

HC extractions were performed using a counter-rotational
system (WHARPS Technologies, Malta), featuring two co-axially
positioned rotors within a truncated conical chamber
(Supplementary Figures S2B, S2C; Isopo, 2010). A maximum
rotational frequency of 0.168 MHz facilitated bubble implosion at
communication zones between rotor orifices and slots. The
effectiveness of HC extractions was evaluated with both rotors
operating at 50%, 75%, and 100% of their maximum frequency
(the higher the frequency the more intense the cavitation). A small
peristaltic pump modulated the liquid flowrate, achieving intercept
cavitation numbers of 0.33 (50%), 0.29 (75%), and 0.25 (100%) for
water at room temperature and 0.58 (50%), 0.55 (75%), and 0.50
(100%) for 70% (v/v) ethanol at −10°C. Cavitation numbers were
derived as in (Omelyanyuk et al., 2022).

2.3 Determination of total reducing sugar,
phenolic, and flavonoid contents

The total reducing sugar content of extracts was determined
spectrophotometrically (UV-2600, Shimadzu, Japan) at 540 nm
using the 3,5-dinitrosalicylic acid (DNS; ThermoFischer Scientific,
United States) method, following (Khatri and Chhetri, 2020), with
no modifications. Calibration curves of D-glucose (Biochem
Chemopharma, France; 4.75–600 μg/mL) in Milli-Q water and
70% (v/v) ethanol were used for quantification, yielding R2 values
of 0.997 and 0.996, respectively. Sugar contents were expressed as
mg D-glucose equivalents (DGE)/g dry matter. Polyphenolic
content was determined spectrophotometrically at 765 nm using
the Folin-Ciocalteau (MP Biomedicals, France) method as per
(Waterhouse, 2003), with no modifications. Total phenolic
content was quantified using calibration curves of gallic acid
(Apollo Scientific, UK; 10–250 mg/L) in Milli-Q water and 70%
(v/v) ethanol, resulting in R2 values of 0.999, and expressed as mg
gallic acid equivalents (GAE)/g dry matter. For total flavonoid
contents, the method of (Mahboubi et al., 2013) was followed

without modifications. Calibration curves of quercetin (VWR,
France; 0.05–1.5 mg/mL) in Milli-Q water and 70% (v/v) ethanol
were used for quantification, with R2 values of 0.999, and results
were expressed as mg quercetin equivalents (QE)/g dry peel.

2.4 Determination of extract antioxidant
activities

Antioxidant activities were determined using the: a) 2,2-
diphenyl-1-picrylhydrazy (DPPH; Cayman Chemical, USA)
radical, b) 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid
(ABTS; Rockland, USA) radical cation (ABTS•+), and c) the
H2O2 (Biochem Chemopharma, France) scavenging assays with
no modification from (Shehata et al., 2021; Al-Amiery et al.,
2015), for DPPH/ABTS•+ and H2O2 assays, respectively. For
DPPH and ABTS•+, activities were expressed as mg Trolox
(Cayman Chemical, USA) equivalents (TE)/g dry matter (prepared
in 70% (v/v) ethanol), whereas for H2O2 scavenging, activities were
expressed as mg ascorbic acid (Biochem Chemopharma, France;
prepared in Milli-Q water) equivalents (AAE)/g dry matter.
Standard Curves over the 0–60 μg/mL for Trolox and 0–400 μg/
mL for ascorbic acid were constructed in Milli-Q water (with R2

values of 0.995, 0.995, 0.994, for DDPH, ABTS•+, and H2O2,
respectively), and/or in 70% (v/v) ethanol (with R2 values of 0.995,
0.997, 0.999, for DDPH, ABTS•+, and H2O2, respectively).

2.5 Investigation of inhibition of spring
potato sprouting

Following completion of the conventional extraction in 70% (v/
v) ethanol and the HC-mediated extractions in water, the remaining
peel was collected, and aseptically dried. The powdered peel was
then applied with a sterile cloth on freshly harvested, washed, and
dried spring potatoes. Peel-treated and untreated potatoes were
placed in an aluminium foil box, covered with 230 gsm paper lid,
and incubated at 35°C and 30% relative humidity for 30 days. Eye
formation, and sprouting was followed over that period in triplicates
as previously described (Thoma et al., 2022).

2.6 Fixed bed colum-scale removal of Cu2+,
NO2

−, and NO3
−

0.9 g of unprocessed or HC-processed powdered peel was mixed
with 1 mL of CuSO4 (MP Biomedicals, France; 5–80 mg/L; pH 5.5)
or NaNO2 (Biochem Chemopharma, France; 1–500 mg/L; pH 7.0)
or NaNO3 (Biochem Chemopharma, France; 3–100 mg/L; pH 6.0)
solutions for 60 min at room temperature with mild shaking. The
suspensions were then transferred to polypropylene tubes with a
50 μm-diameter cloth filter at the bottom to prevent adsorbent loss
and clogging. Flowthroughs were collected and analyzed
spectrophotometrically. CuSO4 absorbance was monitored at
635 nm, while NO2

− concentrations were determined using the
Griess-Ilosvay assay. Nitrite absorptions were subtracted from
total nitrate and nitrite absorptions, monitored at 220 nm, to
obtain NO3

− concentration (Carvalho et al., 1998).
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2.7 Curve fitting and statistical analyses

Histograms were generated using GraphPad Prism version
10 for windows (GraphPad Software, United States). Differences
were statistically evaluated using the two-way ANOVA multiple
comparisons option of the software. The Langmuir (Ebrahimi-
Gatkash et al., 2017), and the natural logarithmic
transformation of the Freundlich isotherm (Degefu and
Dawit, 2013) were fitted to the obtained adsorption data
using the same software.

3 Results and discussion

3.1 Hot air-drying can be as efficient as
freeze-drying

Selection of a universal drying technique is challenging since
its effectiveness is product, food-matrix, and food-layer
dependent. Sun-drying preserves bioactive compounds in
orange peel but is time-consuming and risks flavonoid
oxidation (Li et al., 2006). MW and infrared heating offer
faster drying rates than conventional methods, especially when
combined with vacuum drying at 50°C (Bozkir et al., 2021). Tray
or hot-air drying are popular due to simplicity and low costs but
compromise bioactive compound content at temperatures ≥50°C,
necessitating vacuum conditions for increased drying rates.
Lyophilization achieves high retention of bioactive compounds
and preserves natural colors and aromas, but its high costs limit
its adoption by small- and medium-sized businesses (SMEs) (Li
et al., 2006; Bozkir et al., 2021).

In harmony with previous works, drying did not only achieve
preservation of the fruit through reduction of its water activity
but also allowed for extract-enhanced antioxidant activities
relative to the fresh peel (Supplementary Figure S3) (Özcan
et al., 2021). Though all our tested drying methods resulted in
similar extract antioxidant activities, as determined by the DPPH
(Supplementary Figure S3A) and ABTS•+ (Supplementary Figure
S3B) assays, FOD and FRD exhibited at least 2.2-fold higher
H2O2 scavenging activities than MW-dried extracts
(Supplementary Figure S3C). Microwave heating at 175W,
albeit being the least energy consuming (0.35 kWh over 2 h),
encouraged heat transfer processes from inside out, affecting the
peel’s vitamin C content as well as its potential antioxidant
properties by at least 2-fold, as previously reported (Alibas
and Yilmaz, 2022). Of the drying processes FRD has been
consistently reported to achieve the highest retention of
antioxidant activities in fruits, with convective and/or
conductive heating processes at 50–100°C achieving lower
retention due to thermos-oxidative damage of the available
bio-compounds (Kittibunchakul et al., 2023). In this work,
FRD’s energy consumption amounted to 25.61 kWh over 26 h,
whilst a conventional food drier operating at 35°C consumed
2.66 kWh over 18.7 h. Maintenance of dry-heating at 35°C,
appeared to be gentler to the more heat-sensitive vitamin C, as
well as flavonoids (Supplementary Figure S3C), making FOD
equally effective to FRD and providing a viable economic
option to SMEs.

3.2 Conventional vs. HC-assisted
extractions; thoughts on functionalisation

Extractions in 70% (v/v) ethanol, with mild stirring at 35°C,
revealed average TPC and TFC contents of 53.9 ± 4.1 mg GAE/g,
and 12.9 ± 0.7 mg QE/g, respectively (Figure 1, conventional), in
harmony with previous studies reporting contents of 34.6 ± 2.1 mg
GAE/g TPC (1:25 solid-to-70% (v/v) ethanol, 37°C, 1 h; (Liew et al.,
2018), and 10 mg QE/g TFC (1:10 solid-to-80% (w/v) ethanol, 35°C,
30 min; (Mhiri et al., 2016). At 35°C, the pH of 70% (/v) ethanol was
close to neutrality (pH 6.82 ± 0.12), improving the extraction yield of
phenolics and possibly polyphenols (Haya et al., 2019), relative to
flavonoids whose extraction yields improve under more acidic
conditions (for a review see (Chaves et al., 2020)) (Figure 1, left
column). TPCs correlated with TFCs and antioxidant activity
(Supplementary Figure S4A; Kassambara, 2017), with DPPH
reflecting the -OH contributions of the phenolics, and the
ABTS•+ accounting for the presence of flavanones, and pyrogallol
structures [as also described in (Platzer et al., 2021)], reflecting the
flavonoid as well as phenolic contributions possible better than
DPPH (Floegel et al., 2011). Indeed, 70% (v/v) ethanol at 35°C
achieved bioactive-compound extraction from peel with ABTS•+

activity of 3.83 ± 0.01 mg TE/g within the first 15 min, and a DPPH
activity of 2.29 ± 0.03 mg TE/g (Figure 1, left column). Our observed
ABTS•+ activity was at least 2-fold higher than that reported in 50%
(v/v) ethanol, over 30 min (Ashraf et al., 2024). In contrast, the
extracts’ DPPH activity was at least 8-fold lower than that reported
by Liew et al. (Liew et al., 2018), but the authors conducted their
extraction over 72 h, suggesting that maceration with mild heating
needs to be prolonged for achieving higher extraction yields.

For the HC-mediated peel extractions in water, the higher the
rotational speed (i.e., the lower the cavitation number and the more
efficient the cavitation) the higher the TRS, TPC, and TFC contents,
with longer exposures (>30 min) compromising extraction yields
(particularly for phenolics and total reducing sugars) (Figure 1, left
column). This is consistent with the breakdown of organics
following extensive cavitation as previously described
(Montusiewicz et al., 2017). The more extensive the cavitation,
the lower the recorded pH (Supplementary Figure S4A, negative
correlation). The more acidic the extracts, the higher the yields and
their antioxidant activities (Supplementary Figure S4A, negative
correlation), in harmony with previous observations (Hegazy and
Ibrahium, 2012). Although DPPH and ABTS•+ antioxidant activities
corelated positively, their relationship to the TPC and TFC contents
appeared reverse (Supplementary Figure S4A). This is to highlight
that: i) within the TPC and TFC contents, only a certain percentage
of compounds possesses the structural characteristics for exhibiting
antioxidant activity (Aaby et al., 2004; Czech et al., 2020), ii)
following the HC-induced peel damage, there is the potential of
H2O2 production (Buron-Moles et al., 2015), dependent on the Fe
content of the peel (Czech et al., 2020), putatively responsible for the
oxidation of those bioactive compounds (Wu et al., 2015), and iii)
depending on the bio-compound structure, oxidation may enhance
or quench their antioxidant activities (Speisky Cosoy et al., 2022), as
evidenced by the H2O2 scavenging capacity of the HC-extracts in
water, relative to the conventional extraction (Figure 1, left column).

In contrast, HC-peel treatments in 70% ethanol at −10°C
eliminated heating and abrupt pH changes, enhancing extraction
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efficiency, as previously reported (Mhiri et al., 2015). At −10°C,
cavitation bubble formation was weaker (higher cavitation numbers)
with longer exposure times correlating positively with extraction
yields (Supplementary Figure S4B). Consequently, by elimination of

thermal effects, weaker cavitation was effective over prolonged
treatments. Additionally, clear positive correlations emerged
between the recorded antioxidant activities (Supplementary
Figure S4B). Total flavonoids were the major contributor towards

FIGURE 1
Orange peel waste extract contents and antioxidant activities. Top-to-Bottom: total reducing sugars, total flavonoids, total phenolics, DPPH,
ABTS

•+, and H2O2 scavenging. HC-assisted extractions were conducted in water (35°C, left column) and 70% (v/v) ethanol (−10°C, right column). White
histograms; maceration in 70% (v/v) ethanol, blue histograms; HC at 50% rotational frequency, orange histograms; HC at 75% rotational frequency, and
magenta histograms; HC at 100% rotational frequency. pH changes with time for the corresponding treatments are indicated. Error bars denote the
STDEV of triplicate measurements.
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the DPPH, ABTS•+ and H2O2 scavenging activities under slightly
acidic conditions (Figure 1, right column). However, TPC correlated
negatively with DPPH, suggesting that cold temperatures do not
facilitate release of phenolics with strong antioxidant activities
(Supplementary Figure S4B). Neutral-to-alkaline conditions
contributed positively to the measured DPPH activity
(Supplementary Figure S4B), which was almost 3-fold higher
than that of the conventionally treated extracts (Figure 1, right
column). Alkaline oxidation of flavonoids like quercetin, has been
already reported to generate metabolites whose antioxidant capacity
surpassed that of their precursor (Speisky et al., 2023). Thus,
prolonged HC-assisted extractions in ethanol under cold
conditions (neutral-to-alkaline pH) preserve and/or enhance the
bioactivity of flavonoids while keeping the sugar content of the
extracts low. In future works, we will define the nature and amounts
of the extracted compounds in the selected and/or additional
solvents by UPLC-MS. Also, we will proceed by assessing the
potential of ultrasound- and pulsed electric field (PEF)-assisted
extractions, as combinations of these non-conventional
treatments with HC are likely to enhance extraction yields with
shorter processing times.

Evidently, different HC treatments produce varying antioxidant
contents, influenced by the raw material, as well as the
interdependency between pH, temperature, and oxidation. Thus,
effective integration of HC in food processing requires a clear
understanding of the desired product, since design considerations
determine the type and quantity of antioxidants needed for value
addition, shelf-life extension, or sensory enhancement. State (e.g.,
powder or liquid) and cooking method further impact antioxidant
bioavailability. For instance, to fortify cookies, peel waste (subjected
to brief HC-treatments) can enhance antioxidant release when
added as dried powder to flour, optimizing bioavailability during
baking. In contrast, dairy fermentations may benefit from controlled
release of antioxidants into the food matrix, using encapsulation-
based methods (Adinepour et al., 2022).

3.3 Potato sprouting prevention

The use of essential oils in prevention of potato-sprouting has
been well described with products comprising D-limonene currently
approved as sprouting suppressants (Thoma and Zheljazkov, 2022).
HC-assisted extraction of D-limonene from waste orange peel has
also been explored as a more sustainable approach to conventional
extractions (Meneguzzo et al., 2020). However, little is known about
the overall potential of dried and/or HC-processed peel as a potato-
sprouting suppressant, considering that it comprises both free and
bound compounds with antioxidant propensity (Oboh and
Ademosun, 2012). Following HC-assisted extractions, we
collected the processed peel, air-dried it and investigated its
potential as a sprouting suppressant (Section 2.5). We found that
the processed peel exhibits potato-sprouting suppressant abilities,
and that the more intense the HC-treatment (higher extract
antioxidant activities, and potential plant-tissue damage reflecting
reduced bound antioxidants) the weaker the prevention
(Supplementary Figure S5). Thus, powdered peel, previously
subjected to moderate processing by HC, can be further valorised
as a potato-sprouting suppressant, providing a cost-effective

preservation method, contributing to sustainability that is an
elemental aspect of process intensification.

3.4 Water remediation

In countries lacking established juice-plant processing,
hydrodynamic cavitation (HC) aids in extracting essential oils
and bioactive compounds from peel waste while offering
preliminary physicochemical treatment for further valorization.
Unprocessed peel is a low-to-moderately effective bio-sorbent,
but its adsorption is enhanced following physicochemical, or
biological treatments (Michael-Igolima et al., 2023). This
enhanced adsorption makes it effective at removing contaminants
such as heavy metals, nitrates, and ammonia from water (Dey et al.,
2021; Mahato et al., 2021). We have assessed the adsorption of
copper (Figure 2A), as well as nitrates (Figure 2B) and nitrites
(Figure 2C) on unprocessed and HC-processed peel, with
biosorption parameters reflecting favourable binding
(Supplementary Tables S1, S2) in harmony with previous works
(Feng et al., 2009; Izquierdo et al., 2013; Abdulrazak, 2016; Romero-
Cano et al., 2016; Amin et al., 2017; Surovka and Pertile, 2017;
Özkan et al., 2017; Amin et al., 2019; Safari et al., 2019; Kumar and
Raju, 2020; Amirsadat et al., 2022; Shahaji et al., 2023). Though
further HC-treatment and pH optimisations are required to
maximise copper and nitrate binding, these preliminary works
demonstrate that HC pre-treatments even under suboptimal
pH can provide a level of physical peel modification essential for
the adsorption of the tested chemicals. Interestingly, adsorption of
nitrite (whose reactivity and toxicogenic propensity are stronger
than nitrate) to the HC-processed peel appeared more favourable
than nitrate (Supplementary Tables S1, S2; increased nitrite
biosorption parameters relative to nitrate).Thus, utilisation of the
adsorptive strength of orange peel in the filtration of the Maltese
ground water, considering its deterioration (Hartfiel et al., 2020), can
assist in the reduction of heavy metal, as well as nitrate, nitrite, and
ammonium, to levels below those suggested by the EU directive
(Psakis et al., 2023). With demonstrated reusability in nitrate/
ammonium and iron-oxide removal, orange peel filtration offers
a cost-effective solution for water remediation inMalta’s agricultural
sector (Oteng-Peprah et al., 2018; Dey et al., 2021; Praipipat
et al., 2023).

4 Leaping three mountains with
one jump

Despite HC’s potential in process intensification (Katariya et al.,
2020), its adoption by SMEs as a green technological processing step
remains hesitant, despite offering lower capital costs compared to
PEF (Avdieieva et al., 2023). HC, with various available devices (Sun
et al., 2022), presents a cost-effective solution for valorizing orange
peel waste. The cavitator used in this study allows easy compartment
exchange (food grade) without additional pumping, ensuring
compliance with food-processing legislation. Short HC treatments
in water effectively extracted antioxidants, facilitating juice product
functionalization. Concerns over CO2 footprint and capital costs
associated with sophisticated freeze-drying equipment can be
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mitigated by solar-panel freeze-drying technologies (Zhou et al.,
2021), potentially subsidized by government schemes. Alternatively,
SMEs can opt for more economical hot-air/tray drying methods.
Studies comparing the cost-benefit analysis of HC-produced foods
to conventional processes are lacking. However, PEF-based analyses
indicate higher production costs (Sampedro et al., 2013), potentially
leading to higher product prices, which consumers may be unwilling
to pay (Aschemann-Witzel and Zielke, 2017). Nevertheless, limited
availability of niche functionalized sustainable foods may encourage
consumer purchasing (Maojie, 2023). Dried orange peel waste can
prevent potato sprouting for up to 3 weeks, paralleling beverage
functionalization to peel drying processes. For Malta, extended
potato shelf life is crucial for maintaining profitability in export

markets like the Netherlands, Germany, Switzerland, and the UK
(Parliamentary secretary for agriculture and fisheries and animal
rights Malta, 2018), where spring potatoes are exported. Profits
generated can help offset HC-functionalized beverage production
costs, making these products more affordable for consumers.
Moderately acidic soils (pH 5.0–6.5) are ideal for potato growth.
Utilizing orange peel waste’s biosorbent capacity for pollutants like
ammonium, nitrates, nitrites, and heavy metals in constructing
biosorbent or biochar fixed-bed columns can improve irrigation
water quality, enhancing soil conditions for potatoes. This proposed
coupling of processes offers a straightforward approach to initiating
circular economic practices in Malta, promoting sustainable
agriculture.

FIGURE 2
Non-liner Langmuir isotherm following adsorption of Cu2+ to untreated and HC-treated (water, at 75% rotational frequency, for 2 h) peel. qe and ce,
refer to the adsorption capacity of the peel and the concentration of ions used at equilibrium, respectively (A). Non-liner Langmuir isotherm following
adsorption of nitrates to water-macerated and HC-treated (water, at the specified rotational frequencies, for 2 h) peel (B). Non-liner Langmuir isotherm
following adsorption of nitrites to water-macerated and HC-treated (water, at the specified rotational frequencies, for 2 h) peel (C). Error bars
denote the STDEV of triplicate measurements.
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5 Conclusion and final thoughts

In this work, we bench-scale evaluated the performance of a
counter-rotational HC device in extracting bioactive compounds
from unprocessed orange peel waste, using water and 70% (v/v)
ethanol with heating <40°C and at −10°C, respectively. In agreement
with previous works, this study highlights the potential of HC-
mediated peel waste treatments for bio-compound extraction in
green solvents for industrial processing. Furthermore, we have
demonstrated that: i) hot-air drying can be a cost-effective
alternative for orange peel waste drying, instead of the more
costly freeze drying, ii) prolonged HC-assisted extractions in
water, at high cavitation numbers, can mechanically damage and/
or oxidise the bioactive compounds, with flavonoids and ascorbic
acid appearing more sensitive to the treatments, iii) cold extractions
in 70% (v/v) ethanol, preserve the nature of flavonoids and those
organic acids that contribute to increased radical scavenging, and iv)
HC-processing provides an adequate level of physical peel
modification, facilitating its use as a potato suppressant and
biosorbent for copper, nitrate and nitrite.

Regarding the selection of appropriate conditions for industrial
processing, given the interdependency of cavitation effects, pH,
temperature, and oxidative damage, we have further advised on
the necessity of a clear understanding of the food-product design
process, as the product will dictate the groups of antioxidants required
for functionalisation, and as such the directions for optimisations.
With studies suggesting consumer acceptability for cavitation-
functionalised beverages (Katariya et al., 2020) main challenges for
HC adoption include processing optimisations and lack of regulatory
legislation (Priyadarshini et al., 2019). Policy making is hindered by
insufficient research on microbiology and toxicology. Factors
influencing microbiology and toxicology include material, solvent,
reactor type, and processing conditions. Given recent systematic
research, establishing a database detailing extraction conditions,
bio-compound contents, HC-processing details, and toxicological
and microbiological profiling (Ben-Othman et al., 2020) is crucial.
Availability of such information can drive future extraction strategies,
involving the use of hybrid technologies that enable the development
of synergistic effects over shorter processing times. Such tools will aid
policy making and incentivize sustainability practices (Teigiserova
et al., 2020), encouraging SEMs to embrace innovative green
technologies in food production.
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