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This study investigates the quantitative structure–property relationship (QSPR)
modeling of guar gum biomolecules, focusing on their structural parameters.
Guar gum, a polysaccharide with diverse industrial applications, exhibits various
properties such as viscosity, solubility, and emulsifying ability, which are
influenced by its molecular structure. In this research, M-polynomial and
associated topological indices are employed as structural descriptors to
represent the molecular structure of guar gum. The M-polynomial and
associated topological indices capture important structural features, including
size, shape, branching, and connectivity. By correlating these descriptors with
experimental data on guar gum properties, predictive models are developed
using regression analysis techniques. The analysis revealed a strong correlation
between the boiling point and molecular weight and all the considered
topological descriptors. The resulting models offer insights into the
relationship between guar gum structure and its properties, facilitating the
optimization of guar gum production and application in various industries.
This study demonstrates the utility of M-polynomial and QSPR modeling in
elucidating structure–property relationships of complex biomolecules like
guar gum, contributing to the advancement of biomaterial science and
industrial applications.
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1 Introduction

Guar gum, an innovative agrochemical, is derived from the endosperm of cluster beans.
The species Cyamopsis tetragonoloba, belonging to the Leguminosae family, produces the
seeds used in guar gum production, and these seeds are resistant to drought (Prem et al.,
2005). The concept of transdomestication was introduced by Hymowitz, although the exact
origins of this practice are still a matter of dispute. Further information on the subject can be
found in Whistler (1948) and BeMiller (2009). Guar gum has recently piqued the curiosity
of several experts for numerous reasons. Guar gum powder serves as a thickener, stabilizer,
and health management tool in various industries. It consists of galactomannan
polysaccharides and can be derived from different sources, including algae, plants,
microorganisms, and animals (Hovgaard and Brondsted, 1996). These polysaccharides
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are characterized by their stability, non-toxicity, hydrophilicity, and
biodegradability. Its unique properties, such as high viscosity,
solubility, and stability, make it a versatile ingredient with a wide
range of applications in industries like food, pharmaceuticals,
cosmetics, and oil drilling. Additionally, guar gum is known for
its biocompatibility and non-toxic nature, making it suitable for
various biomedical and pharmaceutical applications. By studying
guar gum, researchers can explore its potential uses, optimize its
properties, and develop innovative products with improved
performance and functionality. Overall, the selection of guar gum
for research offers opportunities to advance knowledge in various
fields and contribute to the development of sustainable and high-
performing materials and products.

Various derivatives of guar gum exist, such as carboxymethyl
guar HPG, hydroxymethyl guar CMG, hydroxypropylethyl
guar, ammonium hydroxylpropyl trimethyl chloride guar,
acryloyloxy guar, methacryloyl guar, guar gum esters, and
carboxymethyl hydroxypropyl guar CMHPG. The
computation of guar gum and its derivatives employs
molecular graphs, as detailed in Shanmukha et al. (2022).
The most widely used derivatives are carboxymethyl guar
(CMG), hydroxypropyl guar (HPG), and carboxymethyl
hydroxypropyl guar (CMHPG), which are discussed in this
study with respect to topological indices.

Chemical graph theory is an interdisciplinary field that links
chemistry and mathematics. Graph modeling, originating from
early chemical experiments, is a crucial aspect of theoretical
chemistry. The subfield of cheminformatics analyzes
quantitative structure–activity relationships (QSAR) and
quantitative structure–property relationships (QSPR) to
predict the biological activity and characteristics of guar gum
and its derivatives. Utilizing topological indices and physico-
chemical substances, it is possible to infer the pharmacological
activity of these compounds without conducting experiments.
Noteworthy, studies related to topological indices and physico-
chemical substances include Arockiaraj et al. (2023a); Arockiaraj
et al. (2023b); and Arockiaraj et al. (2023c). Recently, algebraic
polynomials, such as the Hosoya polynomial (Consonni and
Todeschini, 2010a) and M-polynomials (Deutsch and Klavar,
2014), have gained prominence in chemistry for determining
distance-based topological indices and degree-based topological
indices, respectively. The M-polynomial yields closed forms for
various degree-based indices, while the Hosoya polynomial
focuses on distance-based indices. The M-polynomial, often
denoted as M(x, y), is a polynomial used in the study of
chemical graph theory, particularly in the enumeration of
certain chemical structures known as molecular graphs. The
M-polynomial encodes information about the molecular
graph’s topology, such as its number of vertices, edges, and
other structural properties. It has applications in the
enumeration of molecular isomers, the prediction of molecular
properties, and the study of chemical reactions. Significant
knowledge regarding degree-based graph invariants can be
found in the M-polynomial literature, including Munir et al.
(2016a); Munir et al. (2016b); Munir et al. (2016c); Munir et al.
(2016d); and Ajmal et al. (2017). There is a wealth of
knowledge regarding degree-based graph invariants in the
M-polynomial.

The M-polynomial of graph Γ is defined as

M Γ;x, y( ) � ∑
s≤t

mst Γ( )xsyt,

where mst(Γ) is the number of edges ]υ ∈ E(Γ) such that {d],
dυ} = {s, t}.

Table 1 contains some degree-based TIs and the M-polynomial
for the graph Γ:Dx � x ∂(g(x,y))

∂(x) , Dy � y ∂(g(x,y))
∂(y) , Sx � ∫x

0
g(t,y)

t dt,
Sy � ∫y

0
g(x,t)

t dt, I(g(x, y)) � (g(x, x)), and Qα(g(x, y)) �
xα(g(x, y)).

The topological index, frequently known as the connectedness
index, was introduced in 1947 as a result of Weiner’s research
(Consonni and Todeschini, 2010b). The earliest and most
extensively researched topological index was the Wiener index
[for further information, see (Wiener, 1947; Gutman et al.,
1986)]. One of the earliest topological indices, the Randi�c index
(Randic, 1975), was first introduced by Milan Randi�c in 1975 and is
represented by the symbol R−1

2
(Γ). Its definition is as follows:

R−1
2
Γ( ) � ∑

υ]∈E Γ( )

1����
dυd]

√ . (1)

In 1998, Bollobs and Erds (1998) and Amic et al. (1998)
independently proposed the general Randi�c index, which has been
extensively studied for its numerous mathematical properties
(Caporossi et al., 2003; Hu et al., 2005). For a detailed survey, refer
to Li et al. (2006). The general Randi�c index is defined as

Rα Γ( ) � ∑
υ]∈E Γ( )

1
dυd]( )α, (2)

and RRα(Γ) � ∑υ]∈E(Γ)(dυd])α is the definition of the inverse
Randi�c index.

Many papers and books, such as Kier and Hall (1976) and Kier
and Hall (1986), have been produced on this topological index. For
drug design, the Randi�c index was recognized. The first and second
Zagreb indices were introduced by Gutman and Trinajsti�c. They are
denoted as follows: M1(Γ) = ∑υ]∈E(Γ)(dυ + d]) and M2(Γ) =
∑υ]∈E(Γ)(dυd]), respectively. The reader is referred to Nikolic et al.
(2003); Das and Gutman (2004); Gutman and Das (2004); Vukicevic
and Graovac (2004); and Trinajstic et al. (2010) for

TABLE 1 M-polynomials are used to derive several degree-based
topological indices.

TopologicalIndex DerivationfromM(Γ; x, y)
M1 (Dx +Dy)(M(Γ; x, y))|x�y�1

M2 (DxDy)(M(Γ; x, y))|x�y�1
mM2 (SxSy)(M(Γ; x, y))|x�y�1

Rα (Dα
xDα

y)(M(Γ; x, y))|x�y�1

RRα (Sα
xSα

y)(M(Γ; x, y))|x�y�1

SDD (DxSy + SxDy)(M(Γ; x, y))|x�y�1

H 2(SxI)(M(Γ; x, y))|x�1
I (SxIDxDy)(M(Γ; x, y))|x�1

AZI (S3
xQ−2ID3

xD3
y)(M(Γ;x, y))|x�1
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further information on these indices. Among several
modifications of Zagreb indices, one is the second modified
Zagreb index. According to Milicevic et al. (2004), the second
modified Zagreb index for a simple connected graph Γ is
defined as

mM2 Γ( ) � ∑
υ]∈E Γ( )

1
dυd]

(3)

The symmetric division index (SDD) is particularly useful in
determining the total surface area for polychlorobiphenyls (Gupta
et al., 2016) based on the discrete Adriatic indices. The symmetric
division index of a connected graph G is defined as

SDD Γ( ) � ∑
υ]∈E Γ( )

min dυ, d]( )
max dυ, d]( ) +

max dυ, d]( )
min dυ, d]( ){ }. (4)

The harmonic index is an additional Randi�c index variation that
is described as

H Γ( ) � ∑
υ]∈E Γ( )

2
dυ + d]

. (5)

There is a relationship between graph eigenvalues and the
harmonic index (Favaron et al., 1993). Using MathChem, the
elegant structure of extremal graphs is used to generate the
inverse sum index (Balaban, 1982), a significant predictor of the
octane isomer total surface area.

I Γ( ) � ∑
υ]∈E Γ( )

dυd]

dυ + d]
. (6)

Furtula et al. (2010) is credited for the augmented Zagreb index
AZI, which is characterized as

AZI Γ( ) � ∑
υ]∈E Γ( )

dυd]

dυ + d] − 2
{ }3

. (7)

Graph invariant AZI has higher prediction power than the
atom-bond connectivity index (Furtula et al., 2010) and is a
useful predictive measure for analyzing the heat of formation in
octanes and heptanes (for more detail, see (Estrada et al., 1998; Das,
2010)). A few well-known degree-based topological indices (which
are defined in Eqs 1–7) with M-polynomials (Deutsch and Klavar,
2014) are related in the following Table 1.

FIGURE 1
Molecular structure. (A) guar gum, (B) HPG, (C) CMG, and (D) CMHPG.
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2 Methodology

Molecular graphs and vertex and edge partitions are used tomodify
themolecular structure of guar gum and its chemical derivatives (Figure
1). Topological indices are derived using M-polynomial. Graphical
comparisons of the aforementioned defined indices are made using
vertex partition, edge partition, and combinatorial computing. The
graphical representation of the outcomes and the comparative study of
the findings are performed via 2D plotting in Figure 2 and 3D plotting
in Figure 3 are shown by utilizing Mathematica software. In this study,
physio-chemical properties of the selected guar gum and its derivatives
were obtained from ChemSpider, providing a comprehensive dataset
for analysis. Several topological indices were calculated using
M-polynomials, extracting key molecular information relevant to
biological activities. Subsequently, these indices were utilized in
quantitative structure–property relationship (QSPR) analysis,
employing SPSS software. The process involves constructing linear,
quadratic, and logarithmic models to establish correlations between the
calculated topological indices and the properties of selected guar gum
and its derivatives. This meticulous methodology aims to uncover

patterns and relationships within the molecular structures,
contributing to a deeper understanding of the properties of selected
guar gum and its derivatives.

3 Main results and discussions

This section outlines our primary analytical findings and
subdivides the material into three sections: guar gum,
hydroxypropyl guar, and carboxymethyl guar. The
M-polynomials and their associated topological indices are
derived for the chemical structures of guar gum, which are useful
in the QSPR study. Guar gum is a polysaccharide used in various
industries including food, pharmaceuticals, and cosmetics. QSPR
studies based onM-polynomials and topological indices can help in
understanding how its structural features relate to its properties such
as viscosity, solubility, and emulsifying ability. By establishing
quantitative relationships between structure and properties,
researchers can optimize the production and application of guar
gum for various industrial purposes.

FIGURE 2
Comparison of topological indices of guar gum in blue,HPG and CMG in yellow, and CMHPG in green, respectively. (A)M1, (B)M2, (C)

mM2, (D) SDD,
(E) H, (F) I, and (G) AZI.
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3.1 Guar gum

This section uses various topological indices to analyze the
molecular graph of guar gum. Figure 4 shows the vertex and
edge partitioning of guar gum.

E i0 ,i1{ } � e � υ] ∈ E Γ m, n[ ]( ): dυ � i0, d] � i1{ },
such that |E{1,2}| = 1, |E{1,3}| = 7n + 1, |E{2,2}| = 2n, |E{2,3}| = 14n − 1,
and |E{3,3}| = 9n.

Theorem 3.2: Consider a molecular graph Γ for guar gum. Then,

M Γ;x, y( ) � xy2 + 7n + 1( )xy3 + 2nx2y2 + 14n − 1( )x2y3

+ 9nx3y3.

Proof. Using the M-polynomial of Γ, we obtain the
following equation:

M Γ; x, y( ) � ∑
i0 ≤ i1

mi0 i1 Γ( )xi0yi1 .

� ∑
1≤2

m12 Γ( )x1y2 +∑
1≤3

m13 Γ( )x1y3 +∑
2≤2

m22 Γ( )x2y2

+∑
2≤3

m22 Γ( )x2y3 +∑
3≤3

m33 Γ( )x3y3.

� ∑
uv∈E 1,2{ }

m12 Γ( )x1y2 + ∑
uv∈E 1,3{ }

m13 Γ( )x1y3

+ ∑
uv∈E 2,2{ }

m22 Γ( )x2y2 + ∑
uv∈E 2,3{ }

m23 Γ( )x2y3

+ ∑
uv∈E 3,3{ }

m33 Γ( )x3y3.

� |E 1,2{ }x1y2 + |E 1,3{ }|x1y3 + |E 2,2{ }|x2y2 + |E 2,3{ }|x2y3

+ |E 3,3{ }|x3y3.

� xy2 + 7n + 1( )xy3 + 2nx2y2 + 14n − 1( )x2y3

+ 9nx3y3.

Proposition 3.3: Consider a molecular graph Γ for guar gum. Then,

1. M1 Γ( ) � 160n + 2.
2. M2 Γ( ) � 194n − 1.

3. mM2 Γ( ) � 6.167n + 0.67.
4. Rα Γ( ) � 2α + 3α 7n + 1( ) + 22α+1n + 2α3α 14n − 1( ) + 32α+2n.

5. RRα Γ( ) � 1
2α

+ 7n + 1( )
3α

+ n

22α−1
+ 14n − 1( )

2α3α
+ n

32α−2
.

6. SDD Γ( ) � 75.67n + 2.5.

FIGURE 3
3D plots of M-polynomials. (A) Guar gum, (B) CMG, (C) CMHPG.

FIGURE 4
Guar gum molecular graph for n = 3.
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Proof: From the edge partitioning of guar gum and using the
definition M-polynomial of Γ, we obtain the following equations
(Eqs 8–16):

g x, y( ) � M Γ; x, y( )
� xy2 + 7n + 1( )xy3 + 2nx2y2

+ 14n − 1( )x2y3 + 9nx3y3,

Dx g x, y( )( ) � xy2 + 7n + 1( )xy3 + 4nx2y2 + 2 14n − 1( )x2y3

+ 27nx3y3, (8)
Dy g x, y( )( ) � xy2 + 3 7n + 1( )xy3 + 4nx2y2 + 3 14n − 1( )x2y3

+ 27nx3y3,

(9)

DxDy g x, y( )( ) � xy2 + 3 7n + 1( )xy3 + 8nx2y2 + 6 14n − 1( )x2y3

+ 81nx3y3,

(10)
Sx g x, y( )( ) � xy2 + 7n + 1( )xy3 + nx2y2 + 1

2
14n − 1( )x2y3

+ 9
3
nx3y3,

(11)
SySx g x, y( )( ) � 1

2
xy2 + 1

3
7n + 1( )xy3 + 1

2
nx2y2

+ 1
6

14n − 1( )x2y3 + 9
9
nx3y3, (12)

Dα
xDα

y g x, y( )( ) � 2αxy2 + 3α 7n + 1( )xy3 + 2.2α.2αnx2y2

+ 2α.3α 14n − 1( )x2y3, (13)

+9n3α.3αx3y3, (14)

Sα
ySα

x g x, y( )( ) � xy2

2α
+ 7n + 1

3α
xy3 + nx2y2

2α−1.2α
+ 14n − 1

2α.3α
x2y3

+ 9nx3y3

3α.3α
, (15)

SyDx g x, y( )( ) � xy2

2
+ 7n + 1

3
xy3 + 2nx2y2 + 2

3
14n − 1( )x2y3

+ 9nx3y3,

(16)
SxDy g x, y( )( ) � 2xy2 + 3 7n + 1( )xy3 + 2nx2y2

+ 3
2

14n − 1( )x2y3 + 9nx3y3. (17)

From Table 1, we obtain the following equation:

1. M1 Γ( ) � Dx +Dy( ) M Γ;x, y( )( )|x�y�1 � 160n + 2.

2. M2 Γ( ) � DxDy( ) M Γ; x, y( )( )|x�y�1 � 194n − 1.

3. mM2 Γ( ) � SxSy( ) M Γ;x, y( )( )|x�y�1 � 6.167n + 0.67.

4. Rα Γ( ) � Dα
xDα

y( ) M Γ;x, y( )( )|x�y�1
� 2α + 3α 7n + 1( ) + 22α+1n + 2α3α 14n − 1( ) + 32α+2n.

5. RRα Γ( ) � Sα
xSα

y( ) M Γ;x, y( )( )|x�y�1
� 1
2α

+ 7n + 1( )
3α

+ n

22α−1
+ 14n − 1( )

2α3α
+ n

32α−2
.

6. SDD Γ( ) � DxSy + SxDy( ) M Γ;x, y( )( )|x�y�1 � 75.67n + 2.5.

Proposition 3.4: Consider a molecular graph Γ for guar
gum. Then,

1. H Γ( ) � 13.1n + 0.76.
2. I Γ( ) � 37.55n + 0.22.

3. AZI Γ( ) � 254.125n + 3.375.

Proof: From the edge partitioning of guar gum and using the
definition M-polynomial of Γ, we obtain the following equations
(Eqs 17–20):

g x, y( ) � M Γ;x, y( )
� xy2 + 7n + 1( )xy3 + 2nx2y2 + 14n − 1( )x2y3 + 9nx3y3.

FIGURE 6
Molecular graph of CMHPG for n = 3.

FIGURE 5
Molecular graph for n = 3: (A) HPG and (B) CMG.
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I g x, y( )( ) � x3 + 7n + 1( )x4 + 2nx4 + 2 14n − 1( )x5 + 9nx6, (18)

SxI g x, y( )( ) � 1
3
x3 + 7n + 1( )

4
x4 + 1

2
nx4 + 1

5
14n − 1( )x5 + 3

2
nx6,

(19)

SxIDxDy g x, y( )( ) � 2
3
x3 + 3 7n + 1( )

4
x4 + 2nx4 + 6

5
14n − 1( )x5

+ 27
2
nx6,

(20)

FIGURE 7
Molecular structures of carbohydrates: (A) arabinose, (B) galactose, (C) maltose, (D) sucrose, (E) sorbose, (F) ribose, (G) hydroxymethyl furfural
(HMF), and (H) raffinose.

TABLE 2 Properties of aforementioned structures.

Structure Density Boiling
Point (BP)

Melting
Point (MP)

Molecular
Weight (MW)

Water
Solubility (WS)

Unit g/cm3 °C °C g/mol g/L

Arabinose 1.585 415.5 164 150.13 834

Galactose 1.5 232.96 168 180.156 650

Maltose 1.54 397.76 160 342.297 310

Sucrose 1.587 697.1 186 342.30 200

Sorbose 1.65 551.7 165 180 550

Ribose 1.5 415.5 95 150.13 100

HMP 1.29 114 30 126.11 83

Raffinose 884.8 363.0 81 504.44 229.8
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S3
xQ−2ID3

xD3
y g x, y( )( ) � 8x + 27 7n + 1( )

8
x2 + 16nx2

+ 8 14n − 1( )x3 + 9.27.27
64

nx4. (21)

From Table 1, we obtain the following equation:

1. H Γ( ) � 2 SxI( ) M Γ; x, y( )( )|x�1 � 13.1n + 0.76.
2. I Γ( ) � SxIDxDy( ) M Γ;x, y( )( )|x�1 � 37.55n + 0.22.

3. AZI Γ( ) � S3
xQ−2ID3

xD3
y( ) M Γ; x, y( )( )|x�1 � 254.125n + 3.375.

3.2 Results of HPG and CMG
molecular graphs

When the chemical derivatives of guar gum, such as HPG and
CMG, were developed into molecular graphs. The results for these
chemical derivatives were combined, as shown below, because the
vertex and edge partitions are similar. Figure 5 shows the molecular
graphs ofHPG and CMG. From the vertices and edges ofHPG and
CMG, we obtain the following equation:

E i0 ,i1{ } � e � υ] ∈ E CMG m, n[ ]( ): dυ � i0, d] � i1{ },
such that |E{1,2}| = 2n + 1, |E{1,3}| = 7n + 1, |E{2,2}| = 4n, |E{2,3}| = 14n −
1, and |E{3,3}| = 12n.

Theorem 3.6: Consider a molecular graph Γ for hydroxypropyl
Guar and carboxymethyl guar. Then,

M CMG;x, y( ) � 2n + 1( )xy2 + 7n + 1( )xy3 + 4nx2y2

+ 14n − 1( )x2y3 + 12nx3y3.

Proof: From the edge partitioning of HPG and CMG and
using the definition M-polynomial of Γ, we obtain the
following equation:

M CMG;x, y( ) � ∑
i0 ≤ i1

mi0i1 Γ( )xi0yi1 .

� ∑
1≤2

m12 Γ( )x1y2 +∑
1≤3

m13 Γ( )x1y3

+∑
2≤2

m22 Γ( )x2y2 +∑
2≤3

m22 Γ( )x2y3

+∑
3≤3

m33 Γ( )x3y3.

� ∑
uv∈E 1,2{ }

m12 Γ( )x1y2 + ∑
uv∈E 1,3{ }

m13 Γ( )x1y3

+ ∑
uv∈E 2,2{ }

m22 Γ( )x2y2 + ∑
uv∈E 2,3{ }

m23 Γ( )x2y3

+ ∑
uv∈E 3,3{ }

m33 Γ( )x3y3.

� |E 1,2{ }x1y2 + |E 1,3{ }|x1y3 + |E 2,2{ }|x2y2

+ |E 2,3{ }|x2y3 + |E 3,3{ }|x3y3.

� 2n + 1( )xy2 + 7n + 1( )xy3 + 4nx2y2

+ 14n − 1( )x2y3 + 12nx3y3.

Proposition 3.7: Consider a molecular graph Γ for hydroxypropyl
guar and carboxymethyl guar. Then,

1. M1 Γ( ) � 192n + 1.
2. M2 Γ( ) � 233n − 1.
3. mM2 Γ( ) � 7.99n + 0.663.

4. Rα Γ( ) � 2α 2n + 1( ) + 3α 7n + 1( ) + 22α+2n + 2α3α 14n − 1( )
+ 4.32α+1n.

5. RRα Γ( ) � 1
2α

2n + 1( ) + 7n + 1( )
3α

+ n

22α−2
+ 14n − 1( )

2α3α
+ 4n

32α−1
.

6. SDD Γ( ) � 90.66n + 3.66.

Proof: From the edge partitioning ofHPG and CMG and using
the definitionM-polynomial of Γ, we obtain the following equations
(Eqs 21–30):

TABLE 3 Computation of topological indices.

Structure H I AZI M1 M2
mM2 SDD

Arabinose 4.3 10.9 71.6719 48 55 2.25 25.6667

Galactose 5.2 13.2667 91.0625 59 68 2.7778 30.3333

Maltose 10.2 27.4333 191.375 118 143 5.2222 58.3333

Sucrose 10.4333 27.05 192.6094 116 138 5.4444 57.6667

Sorbose 5.0875 12.2976 89.1006 60 71 2.7222 32

Ribose 4.3667 11.0167 66.4375 48 56 2.3333 25

HMP 4.9 10.2 80 46 49 2.25 25

Raffinose 14.3857 39.0143 271.3396 169 205 7.275 83.25
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h x, y( ) � M CMG;x, y( )
� 2n + 1( )xy2 + 7n + 1( )xy3 + 4nx2y2 + 14n − 1( )x2y3

+ 12nx3y3,

Dx h x, y( )( ) � 2n + 1( )xy2 + 7n + 1( )xy3 + 8nx2y2

+ 2 14n − 1( )x2y3 + 36nx3y3, (22)
Dy h x, y( )( ) � 2 2n + 1( )xy2 + 3 7n + 1( )xy3 + 8nx2y2

+ 3 14n − 1( )x2y3 + 36nx3y3, (23)
DxDy h x, y( )( ) � 2 2n + 1( )xy2 + 3 7n + 1( )xy3 + 16nx2y2

+ 6 14n − 1( )x2y3 + 108nx3y3, (24)
Sx h x, y( )( ) � 2n + 1( )xy2 + 7n + 1( )xy3 + 2nx2y2

+ 1
2

14n − 1( )x2y3 + 4nx3y3, (25)

SySx h x, y( )( ) � 2n + 1( )
2

xy2 + 1
3

7n + 1( )xy3 + 2nx2y2

+ 1
3

14n − 1( )x2y3 + 4nx3y3, (26)
Dα

xDα
y h x, y( )( ) � 2α 2n + 1( )xy2 + 3α 7n + 1( )xy3 + 4.2α.2αnx2y2,

(27)
+2α.3α 14n − 1( )x2y3 + 12n3α.3αx3y3, (28)

Sα
ySα

x h x, y( )( ) � 2n + 1( )xy2

2α
+ 7n + 1

3α
xy3 + 4nx2y2

2α.2α

+ 14n − 1
2α.3α

x2y3 + 12nx3y3

3α.3α
, (29)

SyDx h x, y( )( ) � 2n + 1( )xy2

2
+ 7n + 1

3
xy3 + 4nx2y2

+ 2
3

14n − 1( )x2y3 + 12nx3y3, (30)
SxDy h x, y( )( ) � 2 2n + 1( )xy2 + 3 7n + 1( )xy3 + 4nx2y2

+ 3
2

14n − 1( )x2y3 + 12nx3y3. (31)

TABLE 4 Vertex and edge partitioning of arabinose.

(dυ, d]) Frequency

(1,3) 4

(2,2) 1

(2,3) 2

(3,3) 3

TABLE 5 Vertex and edge partitioning of galactose.

(dυ, d]) Frequency

(1,2) 1

(1,3) 4

(2,3) 3

(3,3) 4

TABLE 6 Vertex and edge partitioning of maltose.

(dυ, d]) Frequency

(1,2) 2

(1,3) 6

(2,3) 8

(3,3) 8

TABLE 7 Vertex and edge partitioning of sucrose.

(dυ, d]) Frequency

(1,2) 3

(1,3) 5

(2,3) 9

(3,3) 7

TABLE 8 Vertex and edge partitioning of sorbose.

(dυ, d]) Frequency

(1,2) 1

(1,3) 3

(1,4) 1

(2,2) 1

(2,3) 1

(2,4) 2

(3,3) 2

(3,4) 1

TABLE 9 Vertex and edge partitioning of ribose.

(dυ, d]) Frequency

(1,2) 1

(1,3) 3

(2,3) 3

(3,3) 3

TABLE 10 Vertex and edge partitioning of HMP.

(dυ, d]) Frequency

(1,2) 3

(1,3) 1

(2,3) 6
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From Table 1, we obtain the following equation:

1. M1 Γ( ) � Dx +Dy( ) M CMG;x, y( )( )|x�y�1 � 192n + 1.

2. M2 Γ( ) � DxDy( ) M CMG; x, y( )( )|x�y�1 � 233n − 1.

3. mM2 Γ( ) � SxSy( ) M CMG; x, y( )( )|x�y�1 � 7.99n + 0.663.

4. Rα Γ( ) � Dα
xDα

y( ) M CMG;x, y( )( )|x�y�1
� 2α 2n + 1( ) + 3α 7n + 1( ) + 22α+2n + 2α3α 14n − 1( ) + 4.32α+1n.

5. RRα Γ( ) � Sα
xSα

y( ) M CMG;x, y( )( )|x�y�1
� 1
2α

2n + 1( ) + 7n + 1( )
3α

+ n

22α−2
+ 14n − 1( )

2α3α
+ 4n

32α−1
.

6. SDD Γ( ) � DxSy + SxDy( ) M CMG; x, y( )( )|x�y�1 � 90.66n + 3.66.

Proposition 3.8: Consider a molecular graph Γ for hydroxypropyl
guar and carboxymethyl guar. Then,

1. H Γ( ) � 16.44n + 0.78.
2. I Γ( ) � 45.38n + 0.22.

3. AZI Γ( ) � 320.315n + 3.375.

Proof: From the edge partitioning ofHPG and CMG and using
the definitionM-polynomial of Γ, we obtain the following equations
(Eqs 31–34):

h x, y( ) � M Γ;x, y( )
� 2n + 1( )xy2 + 7n + 1( )xy3 + 4nx2y2 + 14n − 1( )x2y3

+ 12nx3y3,

I h x, y( )( ) � 2n + 1( )x3 + 7n + 1( )x4 + 4nx4 + 14n − 1( )x5

+ 12nx6, (32)

SxI h x, y( )( ) � 2n + 1( )
3

x3 + 7n + 1( )
4

x4 + nx4 + 1
5

14n − 1( )x5

+ 2nx6,

(33)
SxIDxDy h x, y( )( ) � 2

3
2n + 1( )x3 + 3 7n + 1( )

4
x4 + 4nx4

+ 6
5

14n − 1( )x5 + 18nx6, (34)

TABLE 11 Vertex and edge partitioning of raffinose.

(dυ, d]) Frequency

(1,2) 3

(1,3) 8

(2,2) 1

(2,3) 9

(2,4) 3

(3,3) 9

(3,4) 1

TABLE 12 Statistical parameters for H(Γ).

Model r r2 F P

Linear regression model

Density = 9.133–0.196 [H(Γ)] 0.222 0.049 0.312 0.597

BP = 506.288–3.227 [H(Γ)] 0.211 0.045 0.280 0.616

MP = 118.582 + 0.950 [H(Γ)] 0.276 0.076 0.495 0.508

MW = 243.839 + 0.235 [H(Γ)] 0.028 0.001 0.005 0.947

WS = 293.061 + 5.979 [H(Γ)] 0.338 0.114 0.775 0.413

Quadratic regression model

Density = 0.031 [H(Γ)]2-1.944 [H(Γ)]+19.951 0.394 0.155 0.460 0.656

BP = −1.211 [H(Γ)]2 + 65.982 [H(Γ)]+78.097 0.768 0.590 3.604 0.107

MP = −0.012 [H(Γ)]2 + 1.623 [H(Γ)]+114.412 0.278 0.077 0.209 0.818

MW = −0.885 [H(Γ)]2 + 50.800 [H(Γ)]-69.001 0.988 0.975 99.181 0.0000

WS = 0.660 [H(Γ)]2-31.903 [H(Γ)]+526.307 0.493 0.243 0.803 0.498

Logarithmic regression model

Density = 18.558–5.507ln [H(Γ)] 0.333 0.111 0.747 0.421

BP = 441.473 + 10.184ln [H(Γ)] 0.035 0.001 0.007 0.934

MP = 89.682 + 19.018ln [H(Γ)] 0.293 0.086 0.563 0.481

MW = 125.979 + 55.510ln [H(Γ)] 0.352 0.124 0.848 0.393

WS = 234.016 + 62.235ln [H(Γ)] 0.196 0.037 0.230 0.648
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TABLE 14 Statistical parameters for AZI(Γ).

Model r r2 F P

Linear regression model

Density = 14.748–0.062 [AZI(Γ)] 0.355 0.112 0.760 0.417

BP = 143.262 + 2.431 [AZI(Γ)] 0.752 0.566 7.830 0.031

MP = 128.852 + 0.017 [AZI(Γ)] 0.024 0.001 0.003 0.956

MW = 15.678 + 1.754 [AZI(Γ)] 0.993 0.987 443.929 0.0000

WS = 525.992–1.186 [AZI(Γ)] 0.327 0.107 0.720 0.429

Quadratic regression model

Density = 0.001 [AZI(Γ)]2-0.423 [AZI(Γ)]+37.145 0.452 0.204 0.642 0.565

BP = 0.015 [AZI(Γ)]2-2.284 [AZI(Γ)]+436.166 0.786 0.618 4.043 0.090

MP = −0.009 [AZI(Γ)]2 + 2.815 [AZI(Γ)]-44.988 0.601 0.361 1.411 0.327

MW = 0.002 [AZI(Γ)]2 + 1.081 [AZI(Γ)]+57.517 0.995 0.990 252.564 0.0000

WS = −0.001 [AZI(Γ)]2-0.726 [AZI(Γ)]+497.430 0.328 0.108 0.301 0.752

Logarithmic regression model

Density = 56.222–10.460ln [AZI(Γ)] 0.398 0.159 1.130 0.329

BP = −1074.714 + 323.998ln [AZI(Γ)] 0.707 0.501 6.012 0.050

MP = 76.730 + 11.456ln [AZI(Γ)] 0.111 0.012 0.075 0.793

MW = −910.201 + 243.707ln [AZI(Γ)] 0.973 0.947 107.701 0.0000

WS = 1123.059–158.678ln [AZI(Γ)] 0.309 0.095 0.633 0.457

TABLE 13 Statistical parameters for I(Γ).

Model r r2 F P

Linear regression model

Density = 15.633–0.514 [I(Γ)] 0.310 0.096 0.637 0.455

BP = 110.644 + 20.004 [I(Γ)] 0.691 0.478 5.486 0.058

MP = 108.224 + 1.298 [I(Γ)] 0.199 0.040 0.248 0.636

MW = −18.121 + 15.020 [I(Γ)] 0.949 0.901 54.429 0.0000

WS = 549.858–10.212 [I(Γ)] 0.315 0.099 0.659 0.448

Quadratic regression model

Density = 0.127 [I(Γ)]2-5.501 [I(Γ)]+55.997 0.347 0.120 0.342 0.726

BP = 1.585 [I(Γ)]2-42.153 [I(Γ)]+613.760 0.700 0.490 2.404 0.186

MP = −2.580 [I(Γ)]2 + 102.476 [I(Γ)]-710.745 0.834 0.696 5.720 0.051

MW = 1.135 [I(Γ)]2-29.515 [I(Γ)]+342.360 0.960 0.922 29.653 0.002

WS = −6.853 [I(Γ)]2 + 258.578 [I(Γ)]-1625.811 0.534 0.285 0.998 0.432

Logarithmic regression model

Density = 33.404–9.682ln [I(Γ)] 0.319 0.102 0.679 0.441

BP = −546.406 + 364.277ln [I(Γ)] 0.688 0.474 5.404 0.059

MP = 48.517 + 29.792ln [I(Γ)] 0.250 0.063 0.401 0.550

MW = −508.481 + 272.441ln [I(Γ)] 0.942 0.887 46.901 0.0000

WS = 832.635–166.978ln [I(Γ)] 0.281 0.079 0.516 0.500
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S3
xQ−2ID3

xD3
y h x, y( )( ) � 8 2n + 1( )x + 27 7n + 1( )

8
x2 + 32nx2

+ 8 14n − 1( )x3,

(35)
+12.27.27

64
nx4. (36)

From Table 1, we obtain the following equation:

1. H Γ( ) � 2 SxI( ) M CMG;x, y( )( )|x�1 � 16.44n + 0.78.
2. I Γ( ) � SxIDxDy( ) M CMG;x, y( )( )|x�1 � 45.38n + 0.22.

3. AZI Γ( ) � S3
xQ−2ID3

xD3
y( ) M CMG;x, y( )( )|x�1 � 320.315n + 3.375.

3.3 Results for the CMHPGmolecular graph

In the carboxymethyl hydroxypropyl guar molecular graph
shown in Figure 6, for the vertices and edges, we obtain the
following equation:

E i0 ,i1{ } � e � υ] ∈ E CMHPG m, n[ ]( ): dυ � i0, d] � i1{ },
such that |E{1,2}| = 3n + 1, |E{1,3}| = 6n + 1, |E{2,2}| = 5n, |E{2,3}| = 15n −
1, and |E{3,3}| = 12n.

Theorem 3.10: Consider a molecular graph Γ for carboxymethyl
hydroxypropyl guar. Then,

M CMHPG;x, y( ) � 3n + 1( )xy2 + 6n + 1( )xy3 + 5nx2y2

+ 15n − 1( )x2y3 + 12nx3y3.

Proof: From the edge partitioning of CMHPG and using
the definition M-polynomial of Γ, we obtain the
following equation:

M CMHPG;x, y( ) � ∑
i0 ≤ i1

mi0j1 Γ( )xi0yi1 .

� ∑
1≤2

m12 Γ( )x1y2 +∑
1≤3

m13 Γ( )x1y3

+∑
2≤2

m22 Γ( )x2y2 +∑
2≤3

m22 Γ( )x2y3

+∑
3≤3

m33 Γ( )x3y3.

� ∑
uv∈E 1,2{ }

m12 Γ( )x1y2 + ∑
uv∈E 1,3{ }

m13 Γ( )x1y3 + ∑
uv∈E 2,2{ }

m22 Γ( )x2y2

+ ∑
uv∈E 2,3{ }

m23 Γ( )x2y3 + ∑
uv∈E 3,3{ }

m33 Γ( )x3y3.

� |E 1,2{ }x1y2 + |E 1,3{ }|x1y3 + |E 2,2{ }|x2y2 + |E 2,3{ }|x2y3

+ |E 3,3{ }|x3y3.

� 3n + 1( )xy2 + 6n + 1( )xy3 + 5nx2y2 + 15n − 1( )x2y3

+ 12nx3y3.

Proposition 3.11: Consider a molecular graph Γ for carboxymethyl
hydroxypropyl guar. Then,

1. M1 Γ( ) � 200n + 2.
2. M2 Γ( ) � 242n − 1.

3. mM2 Γ( ) � 8.58n + 0.663.
4. Rα Γ( ) � 2α 3n + 1( ) + 3α 6n + 1( )

+5n.22α + 2α3α 15n − 1( ) + 12n.32α.

TABLE 15 Statistical parameters for M1(Γ).

Model r r2 F P

Linear regression model

Density = 1.375 + 0.002 [M1(Γ)] 0.684 0.467 5.261 0.062

BP = 115.600 + 4.200 [M1(Γ)] 0.781 0.611 9.413 0.022

MP = 127.371 + 0.045 [M1(Γ)] 0.037 0.001 0.008 0.930

MW = 3.754 + 2.934 [M1(Γ)] 0.999 0.997 2200.450 0.0000

WS = 522.419–1.844 [M1(Γ)] 0.306 0.094 0.619 0.461

Quadratic regression model

Density = −0.001 [M1(Γ)]2 + 0.0000 [M1(Γ)]+1.519 0.706 0.498 2.482 0.178

BP = 0.536 [M1(Γ)]2 + 0.018 [M1(Γ)]+262.656 0.789 0.622 4.119 0.088

MP = −0.026 [M1(Γ)]2 + 5.434 [M1(Γ)]-88.890 0.705 0.497 2.468 0.180

MW = 0.002 [M1(Γ)]2 + 2.613 [M1(Γ)]+16.660 0.999 0.998 1030.398 0.0000

WS = −0.010 [M1(Γ)]2 + 0.252 [M1(Γ)]+438.332 0.311 0.097 0.267 0.776

Logarithmic regression model

Density = 0.729 + 0.193ln [M1(Γ)] 0.664 0.441 4.735 0.072

BP = −1125.431 + 369.772ln [M1(Γ)] 0.763 0.582 8.360 0.028

MP = 59.381 + 16.694ln [M1(Γ)] 0.153 0.023 0.144 0.717

MW = −875.480 + 261.181ln [M1(Γ)] 0.986 0.972 204.691 0.0000

WS = 1020.733–151.515ln [M1(Γ)] 0.279 0.078 0.505 0.504
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5. RRα Γ( ) � 1
2α

3n + 1( ) + 6n + 1( )
3α

+ 5n

22α
+ 15n − 1( )

2α3α
+ 12n

32α
.

6. SDD Γ( ) � 106.03n + 3.66.

Proof: From the edge partitioning of CMHPG and using
the definition M-polynomial of Γ, we obtain the following
equations (Eqs 35–43):

J x, y( ) � M CMHPG;x, y( )
� 3n + 1( )xy2 + 6n + 1( )xy3 + 4nx2y2 + 15n − 1( )x2y3

+ 12nx3y3,

Dx J x, y( )( ) � 3n + 1( )xy2 + 6n + 1( )xy3 + 10nx2y2

+ 2 15n − 1( )x2y3 + 36nx3y3, (37)
Dy J x, y( )( ) � 2 3n + 1( )xy2 + 3 6n + 1( )xy3 + 10nx2y2

+ 3 15n − 1( )x2y3 + 36nx3y3, (38)
DxDy J x, y( )( ) � 2 3n + 1( )xy2 + 3 6n + 1( )xy3 + 20nx2y2

+ 6 15n − 1( )x2y3 + 108nx3y3, (39)
Sx J x, y( )( ) � 3n + 1( )xy2 + 6n + 1( )xy3 + 5

2
nx2y2

+ 1
2

15n − 1( )x2y3 + 4nx3y3, (40)

SySx J x, y( )( ) � 3n + 1( )
2

xy2 + 1
3

6n + 1( )xy3 + 5
4
nx2y2

+ 1
6

15n − 1( )x2y3 + 4
3
nx3y3, (41)

Dα
xDα

y J x, y( )( ) � 2α 3n + 1( )xy2 + 3α 6n + 1( )xy3 + 5.2α .2αnx2y2

+ 2α .3α 15n − 1( )x2y3, (42)
+12n3α.3αx3y3, (43)

Sα
ySα

x J x, y( )( ) � 3n + 1( )xy2

2α
+ 6n + 1

3α
xy3 + 5nx2y2

2α.2α

+ 15n − 1
2α.3α

x2y3 + 12nx3y3

3α.3α
, (44)

SyDx J x, y( )( ) � 3n + 1( )xy2

2
+ 6n + 1

3
xy3 + 5nx2y2

+ 2
3

15n − 1( )x2y3 + 12nx3y3, (45)
SxDy J x, y( )( ) � 2 3n + 1( )xy2 + 3 6n + 1( )xy3 + 5nx2y2

+ 3
2

15n − 1( )x2y3 + 12nx3y3. (46)

From Table 1, we obtain the following equation:

1. M1 Γ( ) � Dx +Dy( ) M CMHPG;x, y( )( )|x�y�1 � 200n + 2.

2. M2 Γ( ) � DxDy( ) M CMHPG;x, y( )( )|x�y�1 � 242n − 1.

3. mM2 Γ( ) � SxSy( ) M CMHPG;x, y( )( )|x�y�1 � 8.58n + 0.663.

4. Rα Γ( ) � Dα
xDα

y( ) M CMHPG;x, y( )( )|x�y�1 � 2α 3n + 1( )

+3α 6n + 1( ) + 5n.22α + 2α3α 15n − 1( ) + 12n.32α.

5. RRα Γ( ) � Sα
xSα

y( ) M CMHPG;x, y( )( )|x�y�1
� 1
2α

3n + 1( ) + 6n + 1( )
3α

+ 5n

22α
+ 15n − 1( )

2α3α
+ 12n

32α
.

6. SDD Γ( )� DxSy + SxDy( ) M CMHPG; x, y( )( )|x�y�1
� 106.03n + 3.66.

TABLE 16 Statistical parameters for M2(Γ).

Model r r2 F P

Linear regression model

Density = 1.380 + 0.002 [M2(Γ)] 0.698 0.487 5.703 0.054

BP = 129.011 + 3.415 [M2(Γ)] 0.789 0.622 9.882 0.020

MP = 126.188 + 0.050 [M2(Γ)] 0.052 0.003 0.016 0.903

MW = 15.142 + 2.365 [M2(Γ)] 0.999 0.999 4276.696 0.0000

WS = 509.284–1.425 [M2(Γ)] 0.293 0.086 0.565 0.481

Quadratic regression model

Density = 0.0000 [M2(Γ)]2 + 0.000 [M2(Γ)]+1.473 0.710 0.504 2.538 0.173

BP = 0.008 [M2(Γ)]2 + 1.463 [M2(Γ)]+220.317 0.792 0.628 4.220 0.084

MP = −0.018 [M2(Γ)]2 + 4.370 [M2(Γ)]-75.841 0.748 0.559 3.169 0.129

MW = 0.001 [M2(Γ)]2 + 2.122 [M2(Γ)]+26.541 0.999 0.999 2268.338 0.0000

WS = −0.011 [M2(Γ)]2 + 1.174 [M2(Γ)]+387.701 0.307 0.094 0.260 0.781

Logarithmic regression model

Density = 0.714 + 0.190ln [M2(Γ)] 0.690 0.476 5.459 0.058

BP = −1120.210 + 355.799ln [M2(Γ)] 0.777 0.604 9.134 0.023

MP = 44.322 + 19.499ln [M2(Γ)] 0.189 0.036 0.223 0.654

MW = −849.292 + 246.357ln [M2(Γ)] 0.983 0.967 176.423 0.0000

WS = 947.654–129.845ln [M2(Γ)] 0.253 0.064 0.410 0.546
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Proposition 3.12: Consider a molecular graph Γ for carboxymethyl
hydroxypropyl guar. Then,

1. H(Γ) = 17.5n + 0.76
2. I(Γ) = 47.5n + 0.22
3. AZI(Γ) = 340.95n + 3.4

Proof: From the edge partitioning of CMHPG and using
the definition M-polynomial of Γ, we obtain the following
equations (Eqs 44–47):

J x, y( ) � M CMPHG;x, y( ) � 3n + 1( )xy2 + 6n + 1( )xy3 + 5nx2y2

+ 15n − 1( )x2y3 + 12nx3y3,

I J x, y( )( ) � 3n + 1( )x3 + 6n + 1( )x4 + 5nx4 + 15n − 1( )x5

+ 12nx6, (47)
SxI J x, y( )( ) � 3n + 1( )

3
x3 + 6n + 1( )

4
x4 + 5

4
nx4 + 1

5
15n − 1( )x5

+ 2nx6,

(48)
SxIDxDy J x, y( )( ) � 2

3
3n + 1( )x3 + 3 6n + 1( )

4
x4 + 5nx4

+ 6
5

15n − 1( )x5 + 18nx6, (49)

S3
xQ−2ID3

xD3
y J x, y( )( ) � 8 3n + 1( )x + 27 6n + 1( )

8
x2 + 40nx2

+ 8 15n − 1( )x3,

(50)

+12.27.27
64

nx4. (51)

From Table 1, we obtain the following equation:

1. H Γ( ) � 2 SxI( ) M CMHPG;x, y( )( )|x�1 � 17.5n + 0.76.
2. I Γ( ) � SxIDxDy( ) M CMHPG;x, y( )( )|x�1 � 47.5n + 0.22.

3. AZI Γ( ) � S3
xQ−2ID3

xD3
y( ) M CMHPG; x, y( )( )|x�1 � 340.95n + 3.4.

4 Molecular structures and
computations of topological indices for
different carbohydrates

Carbohydrates are organic molecules made up of carbon,
hydrogen, and oxygen. They come in three main types:
monosaccharides, disaccharides, and polysaccharides. These sugars
or polymers can be aldehydes or ketones and serve various purposes in
various species. Exoskeletons, found on arthropods, are made of
chitin, a nitrogen-containing polymer. Guar gum, a non-ionic
polysaccharide derived from the cluster bean endosperm, is a new
agrochemical. Polysaccharides are polymers formed when several
monomer units are linked together through condensation. They
are the most common type of biomolecules and are found in
various sources, including algal, plant, microbial, and animal
sources. The structural parameters of polysaccharides typically
define its chemical compositions, molecular weights, molecular

TABLE 17 Statistical parameters for mM2(Γ).

Model r r2 F P

Linear regression model

Density = 1.367 + 0.050 [mM2(Γ)] 0.665 0.443 4.770 0.072

BP = 90.113 + 98.384 [mM2(Γ)] 0.780 0.609 9.335 0.022

MP = 125.904 + 1.375 [mM2(Γ)] 0.048 0.02 0.014 0.909

MW = −13.971 + 68.719 [mM2(Γ)] 0.997 0.993 905.950 0.0000

WS = 543.926–45.903 [mM2(Γ)] 0.325 0.105 0.706 0.433

Quadratic regression model

Density = 0.013 [mM2(Γ)]2-0.072 [mM2(Γ)]+1.593 0.704 0.495 2.451 0.181

BP = −52.840 [mM2(Γ)]2 + 16.606 [mM2(Γ)]+369.528 0.798 0.637 4.393 0.079

MP = −14.861 [mM2(Γ)]2 + 136.708 [mM2(Γ)]-124.149 0.674 0.454 2.080 0.220

MW = 2.326 [mM2(Γ)]2 + 47.542 [mM2(Γ)]+25.157 0.998 0.995 528.816 0.0000

WS = −3.924 [mM2(Γ)]2-10.168 [mM2(Γ)]+477.899 0.324 0.107 0.298 0.754

Logarithmic regression model

Density = 1.313 + 0.199ln [mM2(Γ)] 0.640 0.409 4.154 0.088

BP = −17.267 + 391.087ln [mM2(Γ)] 0.754 0.569 7.926 0.031

MP = 110.702 + 16.608ln [mM2(Γ)] 0.142 0.020 0.124 0.737

MW = −95.851 + 278.575ln [mM2(Γ)] 0.983 0.967 177.008 0.0000

WS = 589.578–178.852ln [mM2(Γ)] 0.303 0.095 0.627 0.459
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structure, degree of substitution, viscosity, solubility, and particle size,
contributing to their structural and chemical properties. These
parameters collectively determine the functionality and
performance of guar gum in various applications, making it a
versatile ingredient in numerous industries. They are highly stable,
secure, non-toxic, hydrophilic, and biodegradable as natural
biomaterials.

This section examines eight carbohydrate molecules: arabinose,
galactose, maltose, sucrose, sorbose, ribose, hydroxymethyl furfural,
and raffinose. Their molecular structures are depicted in Figure 7,
and their physical and chemical properties are listed in Table 2.
Table 3 includes consideration of topological indices through vertex
and edge partitioning, as defined in Tables 4–11.

5 Regression models

This section discusses linear, quadratic, and logarithmic
regression models. Linear regression predicts the value of one
variable based on another, while quadratic models modify
variables. Log-regression models linearize variables and test the
significance level between topological indices and molecular
structures. The mathematical expressions for the linear,
quadratic, and logarithmic regression models are as follows:

P � A + B TI( ),
P � A + B TI( ) + C TI( )2,

P � A + Bln TI( ).

where P is the property of the molecular structure, A is the constant,
B and C are the regression coefficients, and TI is the topological
index. The results of these three regression models for the
aforementioned indices are calculated using SPSS statistical
software, which are depicted in Tables 12–18.

6 Discussion

A regression model is a statistical technique used to predict the
value of a continuous target variable based on input features. Four
metrics are crucial in regression analysis: correlation coefficient (r),
R-squared (r2), F-statistic, and p-value. The R-squared value
measures how well the independent variables predict the
dependent variable, with a higher R-squared indicating a stronger
linear relationship. The F-statistic tests the overall significance of the
model, with a significant F-statistic indicating a non-zero effect of at
least one independent variable on the dependent variable. A small
p-value indicates statistical significance, indicating that at least one
independent variable has a significant effect on the
dependent variable.

This study employs linear, quadratic, and logarithmic regression
models to predict five physical and chemical properties of various
carbohydrates, considering topological indices as independent and
properties as dependent variables. It has been observed that two
properties, namely, molecular weight and boiling point, give the best
predicted value by each regression model (as the value of R is greater
than 0.68 in each case except for linear and logarithmic regressions

TABLE 18 Statistical parameters for SDD(Γ).

Model r r2 F P

Linear regression model

Density = 1.361 + 0.005 [SDD(Γ)] 0.688 0.473 5.388 0.059

BP = 88.568 + 8.898 [SDD(Γ)] 0.784 0.615 9.587 0.021

MP = 127.401 + 0.088 [SDD(Γ)] 0.035 0.001 0.007 0.935

MW = −14.123 + 6.193 [SDD(Γ)] 0.998 0.997 1803.041 0.0000

WS = 530.836–3.824 [SDD(Γ)] 0.300 0.090 0.596 0.470

Quadratic regression model

Density = 0.0000 [SDD(Γ)]2-0.003 [SDD(Γ)]+1.521 0.709 0.503 2.529 0.174

BP = 0.077 [SDD(Γ)]2 + 0.960 [SDD(Γ)]+253.757 0.791 0.626 9.194 0.085

MP = −0.115 [SDD(Γ)]2 + 11.835 [SDD(Γ)]-117.049 0.701 0.492 2.420 0.184

MW = 0.005 [SDD(Γ)]2 + 5.678 [SDD(Γ)]-3.409 0.998 0.997 789.458 0.0000

WS = −0.053 [SDD(Γ)]2 + 1.594 [SDD(Γ)]+418.090 0.307 0.094 0.261 0.780

Logarithmic regression model

Density = 0.798 + 0.209ln [SDD(Γ)] 0.667 0.445 4.819 0.071

BP = −988.425 + 399.150ln [SDD(Γ)] 0.765 0.585 8.465 0.027

MP = 69.491 + 16.942ln [SDD(Γ)] 0.144 0.021 0.128 0.733

MW = −776.633 + 281.361ln [SDD(Γ)] 0.986 0.973 213.264 0.0000

WS = 951.942–160.064ln [SDD(Γ)] 0.274 0.075 0.485 0.512
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of the topological index H). Linear, quadratic, and logarithmic
models and their four important metric values are shown in
Tables 12–18. The study focuses on the significance of
topological descriptors in predicting the molecular structures of
gaur gum and its derivatives, which are crucial in predicting the
molecular weight of carbohydrates. Quantitative structure–property
relationship (QSPR) methodology is a powerful approach used in
the field of drug design, material science, environmental chemistry,
cheminformatics, and computational chemistry. QSPR
methodology focuses on establishing mathematical relationships
between the chemical structure of compounds and their
properties, allowing for the prediction of properties based on
molecular features. One notable difference is that QSPR
specifically targets physical and chemical properties of
compounds, while QSAR often focuses on biological activities.
Additionally, molecular modeling techniques may involve more
complex simulations and calculations to predict molecular
behavior. Finally, QSPR methodology offers a systematic and
quantitative approach to predict physicochemical properties of
chemical compounds based on their molecular structure, distinct
from other methodologies such as QSAR, MD simulation, DFT,
machine learning models, and hybrid QSAR/QSPR models, each
with its own advantages and limitations depending on the specific
application and research goals.

7 Conclusion

This study focuses on the analysis of the polysaccharide guar
gum and its chemical variants, namely,HPG, CMG, and CMHPG.
Initially, molecular graphs are used to represent these
polysaccharides, and vertex and edge partitions are defined. The
closed form of the M-polynomial is then computed for these
molecular graphs, using various topological indices such as
Zagreb indices, Randi�c index, inverse Randi�c index, H index,
SDD index, I index, and AZI index. The molecular structures of
the four polysaccharides are compared graphically based on these
nine degree-based topological indices. It is important to note that
polysaccharides are a type of biopolymer and have diverse
applications, particularly in food preservation, the
pharmaceutical industry, and petroleum extraction. The
findings of this research will be valuable for chemists and
pharmaceutical researchers in their respective fields of study.
The results of this investigation can have various applications in
the field of polymer science and material engineering. By
analyzing the topological indices of guar gum, researchers can
gain insights into its molecular structure, connectivity, and
properties. This information can be used to predict and
understand the behavior of guar gum in different
environments, such as its solubility, viscosity, and interactions
with other molecules.

Furthermore, these results can help in the design and
optimization of guar gum-based products and formulations. By
correlating the topological indices with the performance of guar
gum in various applications, researchers can tailor its properties to
meet specific requirements in industries such as food,
pharmaceuticals, cosmetics, and agriculture. Overall, these results
can contribute to a better understanding of its structure–property
relationships and facilitate the development of innovative products
and technologies in diverse fields.

8 Future work

The authors will investigate the polysaccharide guar gum and its
chemical variants with respect to the generalized reverse degree for
future work.
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