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A novel neural network adaptive filter algorithm is proposed to address the
challenge of weak spectral signals and low accuracy in micro-spectrometer
detection. This algorithm bases on error backpropagation (BP) and least mean
square (LMS), introduces an innovative BP neural network model incorporating
instantaneous error function and error factor to optimize the learning process. It
establishes a network relationship through the input signal, output signal, error
and step factor of the adaptive filter, and defines a training optimization learning
method for this relationship. To validate the effectiveness of the algorithm,
experiments were conducted on simulated noisy signals and actual spectral
signals. Results show that the algorithm effectively denoises signals, reduces
noise interference, and enhances signal quality, the SNR of the proposed
algorithm is 3–4 dB higher than that of the traditional algorithm. The
experimental spectral results showed that the proposed neural network
adaptive filter algorithm combined with partial least squares regression is
suitable for simultaneous detection of copper and cobalt based on ultraviolet-
visible spectroscopy, and has broad application prospects.
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1 Introduction

In the hydrometallurgy of extracting zinc, the current primary method of detecting the
concentration information of copper and cobalt impurity metal ions relies on manual
offline analysis (Zabiszak et al., 2021; Zhou et al., 2020; Sikder et al., 2018; Deluca et al.,
2023). This approach means that the setting of industrial parameters in the process of
hydrometallurgy lacks scientific basis. The real-time responsiveness is poor, the detection
steps are cumbersome, and there is a significant lag time (Fawzy et al., 2023). The micro-
fiber spectrometer, due to its characteristics such as miniaturization, integration, and rapid
detection speed, is suitable for the online detection of multi-component substances in
industrial settings (Attia et al., 2018; Giriraj and Sivakkumar, 2017; Martins et al., 2017;
Dehghannasiri et al., 2017). However, as the micro-spectrometer adopts a single-beam
structure and a CCD detector, when detecting the concentration of multiple metal ions in
high zinc solution, issues arise due to the fluctuation of the light source, instrument circuit
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noise and interference from the base zinc ions (Jin et al., 2024; Zhang
D. Y. et al., 2021; Liu et al., 2017; Zou et al., 2018). These factors lead
to weak spectral signals and poor accuracy, severely affecting the
precision of spectral detection.

In actual detection, noise is ubiquitous, encompassing high-
frequency noise, low-frequency noise, white noise, and various other
types of noise signals. To mitigate the impact of these noise signals,
they need to be removed (Zhou et al., 2019; Ford et al., 2018; Huang
and Chen, 2021; Li and Zhao, 2023). Signal enhancement algorithms
are mainly aimed at processing signals where the signal-to-noise
ratio is low due to strong noise interference (Lee et al., 2015). How to
reduce noise in signals has always been a focal research topic in
signal processing. Presently, commonly used signal enhancement
algorithms both domestically and internationally include wavelet
signal enhancement algorithms, Savitzky-Golay denoising
enhancement algorithms, and LMS algorithms (Chu et al., 2021;
Huang et al., 2020). The LMS algorithm, due to its low
computational complexity, rapid convergence and high stability,
has been widely applied worldwide. However, through research on
the LMS algorithm, it is found that it inherently has some flaws. For
instance, the conventional LMS algorithm has a relatively slow
convergence speed and requires a longer denoising time (Sibtain
et al., 2022). Therefore, it is necessary to improve the convergence
speed and make the algorithm stable in a shorter time. It is clear that
while traditional methods provide accuracy, they lack real-time
capability and efficiency. Advanced spectroscopic techniques offer
speed and integration but are hindered by noise and interference
issues. Existing signal enhancement algorithms each have their
strengths and weaknesses, with the LMS algorithm being notable
for its balance of simplicity and performance despite its slower
convergence.

In this paper, a neural network adaptive filtering algorithm
(NNAF) based on BP (backpropagation) and LMS (Least Mean
Square) is studied to improve the accuracy and real-time
performance of online detection of impurity metal ion
concentration (Zhang and So, 2020; Liu et al., 2015; Zhang and
Luo, 2023; Zheng et al., 2020; Shi et al., 2021). As a widely used
learning mechanism in neural network, BP algorithm adjusts the
weight by calculating the output error and propagating it back to the

network (Mancini et al., 2021). LMS algorithm is an adaptive
filtering algorithm based on gradient descent principle, which has
good convergence and robustness. The proposed neural network
adaptive filtering algorithm integrates adaptive filtering and neural
network error compensation (LeCun et al., 2015; Zhang C. et al.,
2021; Huang et al., 2023). It adopts a new BP neural network model,
combining instantaneous error function and error factor to improve
the learning process. The network relationship is established
through the input signal, output signal, error and step factor of
the adaptive filter, and the training optimization method suitable for
this relationship is determined. The experimental results show that
the neural network adaptive filtering algorithm (NNAF) shows
superior denoising ability, effectively reduces noise interference
and improves signal quality.

2 NNAF adaptive denoising algorithm

2.1 NNAF algorithm

The LMS algorithm is an adaptive filtering method, extensively
employed in the realm of signal processing and noise reduction.
Despite its broad application, its convergence rate remains relatively
slow. The schematic of the LMS principle is depicted in Figure 1. The
backpropagation (BP) algorithm is an optimization method used
within neural networks. It operates by calculating output errors and
backpropagating them through the network for weight adjustment.
The structure of the BP is illustrated in Figure 2. The BP algorithm
boasts significant competence in addressing non-linear and intricate
issues. However, during the early phases of training, weight
adjustments might render the network’s output exceedingly
sensitive. Noise at the inception can propagate throughout the
entire network, resulting in unstable training outcomes.
Therefore, by amalgamating the BP and LMS algorithms, a
neural network adaptive filter method (NNAF) is proposed.

The NNAF algorithm leverages the noise reduction benefits of
the LMS algorithm and the BP algorithm’s strength in optimizing
complex non-linear problems, incorporating a new BP neural
network model. During the backpropagation process,
instantaneous error functions and error factors are introduced to
optimize the learning procedure. The network relationship is
established using the adaptive filter’s input signal, output signal,

FIGURE 2
Diagram of the BP structure.

FIGURE 1
Schematic diagram of the LMS algorithm.

Frontiers in Chemistry frontiersin.org02

Wu and Zhou 10.3389/fchem.2024.1409527

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2024.1409527


error, and step factor, and an optimized training procedure tailored
to this relationship is identified. This algorithm successfully
combines adaptive filtering with neural network error
compensation. Through this approach, the NNAF algorithm
effectively minimizes noise interference and enhances signal quality.

2.2 Implementation of the NNAF algorithm

The implementation of the NNAF adaptive denoising algorithm
is primarily an efficient and intertwined process. This procedure
integrates the strategies of LMS filtering and BP optimization, fully
harnessing the strengths of both to enhance denoising performance.
The schematic of this algorithm is depicted in Figure 3.

Where x(i) and e(i) are the input signals for the BP neural
network, and u is the output of the neural network training results.
The NNAF algorithm establishes a learning network structure,
seeking the optimal learning step factor u through the error e(n)
and input signal d(n). By learning from given sample data, it
establishes a real-time data correlation model. The rules for
updating the parameters of the NNAF algorithm are Equation 1,
Equation 2 and Equation 3.

e n( ) � d n( ) −XT n( )W n( ) (1)
W n + 1( ) � W n( ) + ue n( )XT n( ) (2)

u �
umax, β> umax

umin, β< umin

β

⎧⎪⎨⎪⎩ (3)

To ensure the convergence of the neural network algorithm, β
must satisfy β< n

λmax
(where λmax is the maximum eigenvalue and is

positive). Using umin ensures that u is still influenced by the changes
in the output signal and error. In practical applications, umax and
umin can be determined experimentally. To speed up convergence,
instantaneous error function y and error factor ee proposed by this
algorithm are shown in Equation 4 and Equation 5.

y � b −0.5 + 1
1 + e−a x| |( ) (4)

In Equation 4, the steepness of the Sigmoid function is directly
determined by parameter a, which is inversely related to the speed at
which the function curve rises. b characterizes the range of values of

the dependent variable in the Sigmoid function, determining the
height of the curve.

ee � ex|
r − 1 (5)

In Equation 5, ee represents the error factor, and r represents
the rate of exponential growth. It can also be understood as the rate
at which the correction factor is adjusted. The larger r is, the
greater the instantaneous error, and the greater the correction to
the step factor. At this time, the step factor at the initial moment is
larger, which further updates the required weight vector value.
Through experimental simulation, the optimal value of parameter
a is 5, and the optimal value of parameter r is 6., as shown in
Equation 6:

u � −0.5 + 1
1 + e−5 x| |( ) e x| |6 − 1( ) (6)

The NNAF algorithm optimizes the learning process by
incorporating an instantaneous error function y and error
factor ee. It uses the input signal x(n), output signal y(n), error
e(n), and step factor u of the adaptive filter to establish a network
relationship and determines the training optimization learning
steps for this relationship. The flowchart of the NNAF algorithm is
shown in Figure 4. First, initialize the step vector u and process the
input signal x(n) with LMS filtering. Then, the error e(n) between
the target output and the filter output is backpropagated to BP. By
calculating the gradient of the error and then updating the step
factor in the negative direction of the gradient, the output of the
filter becomes closer to the expected output. This also further
reduces the error, achieving global optimization. Finally, the LMS
algorithm and BP algorithm interactively feedback. When the
error signal e(n) is less than 10−4, the iteration ends, and the
filtered signal is output.

3 Experimental

3.1 Simulated data

The simulation data is used to select the adaptive step factor of
the neural network adaptive filter algorithm (NNAF) and verify the
denoising performance. The pure signal uses sine wave signal
provided by MATLAB software, and then adds noise with signal-
to-noise ratio (SNR) of 15 dB. The original signal and noisy signal
are shown in Figure 5.

3.2 Experimental spectral signal

Add the standard solution of copper, cobalt and zinc, 7.5 ml of
acetic acid-sodium acetate solution and 5.00 ml of nitroso R salt
solution in turn into a 25 ml calibration flask and dilute with distilled
water. Shake well to complete the reaction of the elements to be
detected, and prepare a blank reagent reference in the same way. The
solution to be tested and the reference solution were placed in a 1 cm
cuvette and measured by the Optosky ATP2000 spectrophotometer
in the wavelength range of 200–1,100 nm. The final concentration
ranges were 0.5–5 mg/L for copper, and 0.3–3 mg/L for cobalt. All
measured spectra were the average of 5 replicates.

FIGURE 3
Schematic diagram of the NNAF algorithm.
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4 Results and discussion

4.1 Comparison of convergence
performance

In order to verify the effectiveness of NNAF algorithm, the
performance of NNAF algorithm is compared with other commonly
used algorithms. The comparison of the convergence error performance
of the three algorithms is shown in Figure 5. The input signal is a noisy
sine wave, and the simulation parameters are set as follows.

1) The order L of the filter is set 10. The initial weight w(n) of the
adaptive filter is defined as 0, and added noise v(n) is a zero-

mean independent Gaussian random sequence with a
variance of 0.04.

2) For the fixed-step LMS algorithm, its learning step factor u
is a small positive number, step factor u set to 0.008. For
the variable step-size algorithm, its step size is variable.
umax and umin are 0.009, 0.0006 in the algorithm
respectively.

3) Average statistical time is 20, and the sample size is 1,000. The
greed algorithm is used in the NNAF model to find training
samples, with some data shown in Table 1.

4) A BPmodel is established, which includes an input vector with
10 components (assuming the input signal of the adaptive filter
is 12 and the deviation is 2) and 25 hidden units. The model is

FIGURE 4
Flowchart of the NNAF algorithm.
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trained through the neural network to scan the output results,
thereby generating the optimal step size factor u.

It can be observed from Figure 6 that the NNAF algorithm
allows the adaptive filter to achieve higher convergence speed
compared with the other three algorithms.

4.2 Noise elimination of simulation data

The denoising effect of NNAF method was compared with that
of other denoising methods. The comparison of denoising effects
using different methods is shown in Figure 7. In Figure 7A, the
denoised signal using fixed step LMS method retained a lot of noise,

FIGURE 5
Simulated original signal and noisy signal. (A) Original signal. (B) Noisy signal.

TABLE 1 Partial training sample data of the BP model.

Input signal x(n) Error u

−1.1676 1.0718 1.1786 1.5808 -1.3713 -0.9793 -0.7802 1.7091 -0.0351 0.1680 0.3008 0.310

0.7880 0.7925 0.1972 -0.0696 -0.0867 -0.0277 -0.0048 0.0084 0.0157 -0.0065 0.6324 0.800

0.8307 0.8292 0.2088 -0.0964 -0.1078 -0.0334 0.0147 0.0242 0.0162 0.0068 −0.4133 0.5090

0.0070 0.0141 0.0212 0.0282 0.0352 0.0424 0.0494 0.0565 0.0636 0.0706 −0.2865 0.0037

0.7560 0.7489 0.7418 0.7348 0.6995 0.6924 0.6854 -1.9866-1.9364 -1.9601 0.0183 0.4396

FIGURE 6
Error convergence curve diagram.
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and the denoising effect was obviously poor. In Figure 7B, the
denoised signal using variable step LMS method was relatively
smooth, but the denoising effect at the beginning is not good. In
Figure 7C, the denoised signal using the proposed NNAF method is
smooth and retains the peak characteristics, which is in good
agreement with the original signal, so it has good denoising
performance.

In order to further verify the performance of the proposed
NNAF method, different signal-to-noise ratios are added to the
original signal. The signal-to-noise ratio (SNR) and root mean
square error (RMSE) of denoised signals obtained by different
methods are shown in Table 2. Compared with other methods,
the denoised signal using NNAF method has the highest SNR and
the smallest RMSE under different signal-to-noise ratios. Therefore,
the simulation results strongly show that the proposed NNAF
algorithm achieves superior denoising performance, which
verifies its theoretical feasibility.

4.3 Spectral processing

The proposed NNAF method was applied to the experimental
ultraviolet-visible spectral signal. Figure 8A shows absorption
spectra of copper (Cu) in the wavelength range of 200–1,100 nm,
where the concentration of copper ranged from 0.5 to 6.0 mg/L.

Figure 8B shows absorption spectra of cobalt (Co), where the
concentration of cobalt ranged from 0.3 to 3.0 mg/L. As can be
seen from Figure 8, the spectral signals of copper and cobalt are
seriously disturbed by noise. The maximum absorbance of copper
and cobalt are at the wavelengths of 484.66 nm and 503.47 nm,
respectively. In order to evaluate the linearity, the calibration curves
of copper and cobalt at the maximum absorbance were constructed.
As can be seen from Figures 8C, D, the linearity of copper and cobalt
is poor. The linear equation and linear coefficient of copper is: Abs =
0.1359 CCu+ 0.0061 (R2 = 0.9908). The linear equation and linear
coefficient of cobalt is Abs = 0.1834 CCo+ 0.5801 (R2 = 0.9926).
Therefore, it is necessary to denoise the experimental spectrum and
improve the detection accuracy.

The Optosky ATP2000 micro spectrometer has the advantages
of intelligence, miniaturization, modularization and fast detection
speed, but it adopts single beam structure and CCD detector,
which leads to noise affecting the detection performance of
spectrometer. Therefore, the spectral signal is disturbed by
noise, the accuracy of simultaneous detection of copper and
cobalt will be seriously affected if the spectral data is directly
modeled without denoising pretreatment. The proposed NNAF
method is used to process spectral signal and eliminate high-
frequency and low-frequency noise. Figure 9A shows the denoising
signal of copper. Figure 9B shows the denoising signal of cobalt. As
can be seen from Figures 9A, B, the denoised signals of copper and

FIGURE 7
Comparison of denoising effects using different methods. (A) Fixed step LMS algorithm. (B) Variable step LMS algorithm. (C) NNAF algorithm.

TABLE 2 The calculation results of the denoised signal by different methods.

Denoising methods 5 dB 15 dB 25 dB

SNR/dB RMSE SNR/dB RMSE SNR/dB RMSE

Fixed step LMS algorithm 7.1391 0.5493 22.4684 0.5391 29.2929 0.3634

Variable step LMS algorithm 9.7945 0.3545 27.5210 0.2987 32.4876 0.2514

NNAF algorithm 16.7149 0.2945 28.2662 0.2514 36.3937 0.1603
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cobalt are smooth, and the signal shape is consistent with the
expectation. In order to evaluate the performance of NNAF
method, Figures 9C, D show the calibration curves of the
denoised copper and cobalt signals at the maximum
absorbance. The correlation coefficients of Cu and Co are

0.9952 and 0.9967, respectively. The results show that the
proposed NNAF method significantly improves the linear
relationship between copper and cobalt, which is beneficial to
improve the accuracy of simultaneous detection of copper
and cobalt.

FIGURE 8
Acquisition of spectral signal. (A) Absorbance spectra of Cu. (B) Absorbance spectra of Co. (C) Calibration curves of copper. (D) Calibration curves
of cobalt.

FIGURE 9
Spectral processed signal using NNAF method. (A) Absorbance spectra of Cu. (B) Absorbance spectra of Co. (C) Calibration curves of copper. (D)
Calibration curves of cobalt.

Frontiers in Chemistry frontiersin.org07

Wu and Zhou 10.3389/fchem.2024.1409527

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2024.1409527


4.4 Simultaneous detection of copper
and cobalt

In order to evaluate the performance of NNAF algorithm in
experimental spectrum processing, we prepared 10 groups of mixed
solutions containing different proportions of copper and cobalt, in
which the zinc concentration was fixed at 20 g/L for reference. PLS
(partial least square method) and NNAF-PLS (neural network adaptive
filter algorithm combined with partial least square method) were used
to simultaneously detect copper and cobalt. The root mean square error

of prediction values (RMSEP) and average relative deviation (ARD) are
used as evaluation indexes, and the predicted concentrations of cop-per
and cobalt are shown in Table 3. It can be concluded from Table 3 that
the prediction performance of NNAF–PLS method is far superior to
that of PLS method. Using NNAF–PLS method to detect copper and
cobalt simultaneously, the RMSEP for copper and cobalt were 0.104 and
0.048, respectively; the ARD of copper and cobalt were 3.342% and
2.521%, respectively, which meets industrial production indicators.

Figure 10 shows the calibration curve between the predicted
value and the actual value of copper and cobalt. From Figure 10, it

TABLE 3 The predicted results of copper and cobalt by PLS and NNAF–PLS methods.

No. Actual value
(mg/L)

Predicted value
by PLS

Predicted value
by NNAF–PLS

Cu Co Cu Co Cu Co

1 2.0 1.5 1.902 1.563 1.963 1.519

2 3.0 1.2 3.284 1.302 2.884 1.241

3 5.0 2.7 5.425 2.535 5.106 2.668

4 4.0 0.6 4.361 0.641 4.145 0.612

5 1.5 3.0 1.417 3.212 1.436 3.109

6 3.5 0.3 3.287 0.322 3.397 0.311

7 4.5 0.9 4.922 0.944 4.703 0.931

8 1.0 2.4 0.934 2.142 0.962 2.345

9 2.5 2.1 2.773 2.251 2.556 2.145

10 0.5 1.8 0.531 1.907 0.521 1.839

The average relative deviation (%) 7.661 6.872 3.342 2.521

RMSEP 0.267 0.138 0.104 0.048

FIGURE 10
Predicted and actual values of copper and cobalt. (A) Copper. (B) Cobalt.
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can be seen that the predicted values and the actual values of copper
and cobalt are almost the same, and the correlation coefficient (R2)
of copper is 0.9975 and that of cobalt is 0.9987. The experimental
results show that this proposed NNAFmethod is suitable for on-line
detection of copper and cobalt in zinc hydro-metallurgy, and has
broad application prospects.

5 Conclusion

This paper presents a neural network adaptive filter algorithm
(NNAF) based on error backpropagation (BP) and the least mean
square (LMS). Through in-depth research and experimental
processing of actual signals, we found that this algorithm can
effectively reduce noise interference and improve signal quality,
showing great potential for application. The algorithm fully
leverages the advantages of both BP and LMS. It not only utilizes
BP’s efficacy in error backpropagation but also incorporates the
denoising characteristics of LMS, further enhancing the
performance of the denoising algorithm. The experimental
spectral results showed that the proposed neural network
adaptive filter algorithm (NNAF) combined with partial least
squares regression is suitable for simultaneous detection of
copper and cobalt based on ultraviolet-visible spectroscopy. The
work in this paper is an effective attempt to detect polymetallic ions
online in the process of zinc hydrometallurgy, and the proposed
neural network adaptive filter method is also suitable for other
spectral signals, such as infrared spectra, Raman spectra, and more.
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