
Plasmon-enhanced fluorescence
for biophotonics and
bio-analytical applications

Souradip Dasgupta1 and Krishanu Ray1,2*
1Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine,
Baltimore, MD, United States, 2Department of Biochemistry and Molecular Biology, University of
Maryland School of Medicine, Baltimore, MD, United States

Fluorescence spectroscopy serves as an ultrasensitive sophisticated tool where
background noises which serve as a major impediment to the detection of the
desired signals can be safely avoided for detections down to the single-molecule
levels. One such way of bypassing background noise is plasmon-enhanced
fluorescence (PEF), where the interactions of fluorophores at the surface of
metals or plasmonic nanoparticles are probed. The underlying condition is a
significant spectral overlap between the localized surface plasmon resonance
(LSPR) of the nanoparticle and the absorption or emission spectra of the
fluorophore. The rationale being the coupling of the excited state of the
fluorophore with the localized surface plasmon leads to an augmented
emission, owing to local field enhancement. It is manifested in enhanced
quantum yields concurrent with a decrease in fluorescence lifetimes, owing to
an increase in radiative rate constants. This improvement in detection provided by
PEF allows a significant scope of expansion in the domain of weakly emitting
fluorophores which otherwise would have remained unperceivable. The concept
of coupling of weak emitters with plasmons can bypass the problems of
photobleaching, opening up avenues of imaging with significantly higher
sensitivity and improved resolution. Furthermore, amplification of the emission
signal by the coupling of free electrons of the metal nanoparticles with the
electrons of the fluorophore provides ample opportunities for achieving lower
detection limits that are involved in biological imaging and molecular sensing.
One avenue that has attracted significant attraction in the last few years is the fast,
label-free detection of bio-analytes under physiological conditions using
plasmonic nanoparticles for point-of-care analysis. This review focusses on
the applications of plasmonic nanomaterials in the field of biosensing, imaging
with a brief introduction on the different aspects of LSPR and fabrication
techniques.
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1 Introduction

Light–matter interactions manifested by absorption, emission, and scattering have
paved the way for the design and applications of fluorophores in a variety of real-time
problems such as organic electronics, biosensors, and photocatalysis (Spitzberg et al., 2019;
Rivera and Kaminer, 2020; Peng et al., 2022a; Kumar et al., 2022; Zhang et al., 2023; Zhang
et al., 2024). The wavelength of light in the solar spectrum typically ranges in a few hundreds
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of nanometres. However, the size of the fluorogenic molecules or the
plasmonic nanoparticles under investigation posed a serious lacuna
to the extent of these interactions and, consequently, their
applications. With the advent of nanomaterials, these could be
subsided to a certain extent. When organic fluorophores are
irradiated by monochromatic light, a section of the molecules
lying in the ground state gets excited, and the extra energy is
finally released as photons; the process is defined as
photoluminescence. The augmented spectral intensity observed in
metal nanoparticles is attributed to the excitation of the localized
surface plasmon resonance (LSPR) that results in the higher-
extinction cross sections of the plasmonic nanoparticles (Luk
yanchuk et al., 2010). The above discussion necessitates a very
brief overview of plasmons and plasmonic nanoparticles. When
metal surfaces are irradiated with light, which is known to be an

electromagnetic wave, there is an oscillation of the free electrons
because of the formation of a dipole. These combined oscillations are
defined as plasmons. In the dipole so formed, the electrons migrate
to restore its initial configuration, but the electromagnetic waves
which still oscillate force the electrons of the material to oscillate at
the same frequency as that of the irradiating light (Figure 1). This is
when the fundamental condition of resonance is achieved. The
prerequisite is that the wavelength of the irradiating light has to
be greater than or equal to the frequency of the plasmons. The easiest
and most convenient way to modulate the plasmon resonance of a
metal nanoparticle is to engineer the shape and size of the particles
or shelling it with a non-conducting material like silica of varying
thicknesses. Randomly distributed arrays of homogenous or
heterogeneous nanostructures with variable sizes ranging up to
tens of nanometres are much smaller than the wavelength of the
interacting electromagnetic radiation and, thus, provide further
scope of modulation in their optical properties (Lakowicz, 2005;
Lakowicz et al., 2008; Ray et al., 2009a; Szmacinski et al., 2009;Wurtz
et al., 2011; Li et al., 2017; Nicholls et al., 2017; Vestler et al., 2018).

Now, if a fluorophore molecule comes in the vicinity of the
plasmonic nanoparticles, then there might arise a condition where
resonance is achieved between the frequency of the fluorophore
emission and that of the plasmon resonance. Under such
circumstances, because of elastic scattering, an enhanced
emission at the same frequency as that of the fluorophore could
be observed. This phenomenon is defined as plasmon-enhanced
fluorescence (Figure 2). Ideally, a significant overlap between the
LSPR of the metal nanoparticle and the absorption/emission spectra
of the fluorophore is a prerequisite condition to achieve optimal PEF
(Lu et al., 2011). With an aim of providing amplified signals for
advanced techniques like surface-enhanced Raman scattering
(SERS), tip-enhanced fluorescence (TEF), and other single-
molecule fluorescence methods, this tool has proved its
omnipresence (Hartschuh, 2008; Schmid et al., 2013; Li et al.,
2021; Sim et al., 2022; Li et al., 2023). As discussed earlier, the
entire phenomenon of plasmon-enhanced fluorescence is based on
the fundamental principle of the enhancement of the
electromagnetic field, owing to the coupling of the incident light
frequency with the frequency of the surface plasmons, and it has a
very strong dependence on the shape, size, and interparticle
separation distance in the metal nanostructures (Laible et al.,
2021; Yang et al., 2023). There are specific domains within the
nanostructures where the electric fields are intensely confined within
the noble metal (Au, Ag, etc.) nanostructures, and these regions are
defined as plasmonic “hotspots.” Engineering the interparticle gap
proved to be an efficient pathway to modulate the plasmon
resonance and, consequently, the electromagnetic fields. It has
already been established that with the decrease in interparticle
gap size, the localized electromagnetic field shows an exponential
increase. Since this interparticle gap and topography play a vital role
in LSPR, this gap has sparked significant interest in recent years
(Laible et al., 2018; Dai et al., 2020; Laible et al., 2020).

The distance between the fluorophore and the metal
nanoparticle plays a vital role in PEF (Ray et al., 2007). Before
the advent of PEF, it was widely established that when metal surfaces
are in close proximity of excited fluorophores, there is an ample
chance that the excited fluorophores lose their excess energy by
availing a non-radiative channel, i.e., resonance energy transfer, and

FIGURE 1
Schematic representation of the interaction of the
electromagnetic light wave with the instantaneously created dipole
post-photoexcitation leading to localized surface plasmon
resonance (LSPR).

FIGURE 2
Schematic representation of plasmon-enhanced
fluorescence (PEF).
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as a consequence, quenching could be observed (Alivisatos et al.,
1987; Yeltik et al., 2013; Wang et al., 2020a). In a recent report, this
phenomenon of quenching in the presence of metal nanoparticles of
Pd was successfully exploited to develop and design the
ultrasensitive detection of fluorescently labelled DNA and
proteins (Li et al., 2015). In some cases, a fluorophore attached
directly to a metal surface may form an entirely separate entity with
different photophysics altogether. The surface plasmon-enhanced
electromagnetic field hence presents a situation where the PEF may
be superseded by surface plasmon-induced quenching, and hence,
an optimization is necessary. Thus, an appropriate spacer of specific
thickness is needed to balance these two counterintuitive
phenomena. In another recent report, polyelectrolyte multilayers
were efficiently used as spacers to achieve enhanced fluorescence
signals from lanthanide-doped conversion nanoparticles (UCNPs)
with AuNRs. The enhancement in emission was demonstrated to be
dependent on both the thickness of the dielectric polyelectrolyte
multilayer spacers and the size of the AuNRs (Feng et al., 2015).
Another contemporary report demonstrated that for randomly
oriented fluorophores, maximum enhancement in fluorescence
could be observed for substrate side detection with spacers
having a low refractive index viz. Teflon, SiO2, etc. (Akimov and
Sun, 2017). The discovery of surface plasmon polaritons in the 1950s
provided the necessary impetus that led to the development of SERS
in the mid-1970s (Fleischmann et al., 1974). The last couple of
decades have witnessed a significant growth in this field, with
applications demonstrated in various domains viz. optical and
photovoltaic devices, bioanalytics, etc. (Liu et al., 2018; Spitzberg
et al., 2019; Peng et al., 2022a; Kumar et al., 2022). This review
primarily focusses on the bio-analytical applications of plasmonic
nanoparticles in fluorescence in the last 20 years.

2 Basics of plasmon-enhanced
fluorescence

When an ensemble of molecules is irradiated with light, a certain
fraction of the molecules residing in the ground state absorbs the
energy and is promoted to the higher excited states. Excited-state
depopulation occurs mainly by two pathways, namely, radiative and
non-radiative. The non-radiative pathways, which usually involve
internal conversion (IC) and intersystem crossing (ISC), are usually
faster and occur in the femtosecond–picosecond time regime.
Emission efficiency or fluorescence quantum yield is defined as
the ratio of the radiative rate constants and sum of all rate constants
(Eq. 2). Physically, it is a measure of the probability of the
depopulation of the excited state by fluorescence rather than any
other non-radiative pathway (Eq. 1).

ϕsample
f � ϕreference

f .

Fsample

1−10−Asample

Freference

1−10−Areference
.

nsample

nreference
( )

2

. . . . . eqn, (1)

ϕf � kr
kr + knr

. . . . . . eqn, (2)

where Fsample and Freference are the integrated emission intensity and
Asample and Areference are the absorbance at the excitation wavelength
of the sample and reference, respectively. ϕreff is the emission
quantum yield of the reference. n is the refractive index of the

medium used for sample and fluorescence. kr and knr are the
radiative and non-radiative rate constants, respectively.

Fluorescence lifetime is another intrinsic parameter which is
defined as the average time a molecule spends in the excited state. It
is mathematically coined as the reciprocal of the sum of all rate
constants (Eq. 3):

τf � 1
kr + knr

. . . . . . eqn. (3)

For dilute solutions, the Lambert–Beer law holds good,
i.e., absorbance is a linear function of concentration,
i.e., A � ϵcl � log P0-log P, where A is the absorbance or optical
density, ϵ is the molar absorption coefficient, c is the concentration
of the sample, l is the path length through which the light traverses,
and P0 is the excitation power. Emission intensity, which is defined
as F � QP0 (1–10

−ϵcl), is directly proportional to the power of the
excitation light and the concentration of the sample until an inner-
filter effect crops in. The point is that quantum yield and lifetimes
are better parameters than intensity since both are independent of
the power of excitation light.

When the plasmon nanoparticle–fluorophore conjugate is
irradiated with light of a specific wavelength having power P0, both
the metal nanoparticle and the fluorophore absorb the energy, which
results in a molecular excited state of the fluorophore and an LSPR in
the plasmon nanoparticle, provided the conditions discussed above are
met. Now, if the placement of themolecule is beyond the energy transfer
distance, then possibilities of excited-state relaxation by non-radiative
pathways like Forster resonance energy transfer (FRET) are eliminated.
If the electromagnetic local field generated by the LSPR couples with
that of the fluorophore, PEF could be observed. This enhancement in
near-field intensity (E) leads to a change in the excitation power <|E|2.
P0> in the region of the local field, which, consequently, results in an
increase in the radiative rate constant (kr) (Aroca, 2006; Koya et al.,
2021). Thus, experimentally, the parameter we end up recording is
enhanced emission intensity concomitant with a decrease in
fluorescence lifetime (τf) in the near-field region of the plasmonic
nanoparticle. On the contrary, in the far field, scattered frequencies
from the plasmons interact with frequencies of the emitters, resulting in
an enhanced electromagnetic field.

3 Fabrication of plasmonic
nanomaterials

The role of shape, size, and interparticle distances in influencing
the plasmonic hotspot and, in turn, the enhanced electromagnetic
field has been briefly discussed in the Introduction section of this
report. In order to achieve tunability and often periodicity in the
placement of the metal, atoms play a vital role. Attaining
nanometer-scale sensitivity demands state-of-the-art fabrication
technologies.

3.1 Top-down approaches

3.1.1 Electron beam lithography
Conventional lithographic techniques have limitations in spatial

resolution, which restricts their use in fabricating subwavelength-scale
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features, a necessity for their use in the visible-wavelength domain. The
diffraction limit of light used in conventional photolithography is
usually in the order of hundreds of nanometres, which in electron
beam lithography (EBL), significantly improves to tens of nanometres,
allowing the fabrication of detailed structures (Qin et al., 2021;
Roccapriore et al., 2022). After covering the surface of the substrate
with a resist, the electron beams are allowed to impinge on specific areas
of the sample that results in directing writing on the resist layer
(Figure 3A). Part of the resist layer is then etched with a developer
viz. acetone. A subnanometermetal film is then deposited on the etched
structure, followed by lifting-off to obtain the metal plasmonic
nanomaterial (Figure 3B).

3.1.2 Focused ion beam lithography
In focused ion beam (FIB) lithography, heavy-mass atoms viz.

Ga are usually used to bombard the substrate surface for direct-write
patterning. FIB mainly relies on high-energy, short-range secondary
electrons instead of both the primary and secondary electrons,
which plays a role in EBL. Thus, “resists,” which constitute a
very important component of EBL, are not required in this case.
The ions which are used in this method are massive compared to
electrons used in EBL. Hence, the wavelength is smaller, which
consequently results in less scattering than in the former. It can be
used to directly mill a pattern on a substrate for prototyping of
plasmonic nanomaterials (Morimoto et al., 1986). However, in some
cases, there is Ga ion contamination that alters the very nature of the
plasmonic nanomaterials. Recent technologies using He- and Ne-
based FIBs have been proven to be successful in reducing this issue
(Boden et al., 2011).

3.1.3 Direct laser writing
Direct laser writing (DLW) or multiphoton lithography relies on

the principle of two photon absorptions that induce a drastic change
in the solubility of the resist. In this case, well-desired structuring is
carried out by irradiating photoresists with a monochromatic beam
of light. It serves as a diverse, efficient technology for the fabrication
of sub-micron-resolved 3D nanostructures (Bernardeschi et al.,

2021). Coupling DLW with electrochemical metal deposition
serves as a very efficient methodology to fabricate complex 3D
plasmonic nanomaterials. However, a point to note in this case is the
spatial resolution that can be achieved here, i.e., 100–150 nm.
However, when combined with stimulated emission depletion
microscopy, the best achievable resolution can be up to 50 nm
(Fischer and Wegener, 2011; Elmeranta et al., 2016).

3.2 Bottom-up self-assembly approaches

In addition to top-down approaches, another relatively
convenient way of the preparation of plasmonic materials
involves the use of building blocks in order to achieve complex
nanostructures of homogenous chemical composition in the
solution itself. Molecular interactions like hydrogen bonds, van
der Waals forces, and stacking interactions constitute the major
forces that cause self-assembly of the building blocks at the
nanoscale. Because of their much lower cost and intrinsically
additive nature, bottom-up approaches have been widely used in
the past decade for the fabrication of plasmonic nanomaterials (Ozin
et al., 2009; Tang et al., 2020). Plasmon coupling is a process which
heavily relies on the spatial arrangement of the nanostructures
within the assembly, and hence, a very brief discussion on the
complex interplay of underlying entropic and other interparticle
forces mentioned becomes relevant in this context. Some of the
commonly used bottom-up approaches involve sol–gel processing,
chemical vapour deposition (CVD), laser pyrolysis, and colloidal
self-assembly. The sol–gel process involves the mixing of dispersed
solid nanoparticles in a homogenous liquid to invoke the formation
of three dimensional agglomerates of specific morphologies (Kumar
et al., 2019). Electrotuneable voltage-controlled self-assembly of
plasmonic nanoparticles at the interface of two immiscible
electrolyte solutions was successfully evoked to obtain
nanoplasmonic liquid mirrors (Montelongo et al., 2017). In
CVD, one of the substrate surfaces is exposed to a volatile
precursor to obtain nanomaterials of varied shapes, sizes, and

FIGURE 3
(A) Schematic representation of the electron beam lithography (EBL) technique. (B) Example depicting structural modifications in FSn:In2O3

nanoparticles using EBL (Roccapriore et al., 2022).
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thicknesses. Using vanadyl acetylacetonate (VO(acac)2) powder as a
volatile precursor, nanomaterials with different morphologies were
prepared utilizing CVD (Wang et al., 2010). Trimeric and
heptameric clusters of Au nanoshells exhibiting pronounced Fano
resonance were obtained on drying polymer-coated nanoshells (Fan
et al., 2010). In colloidal self-assembly, for example, the plasmonic
nanoparticles are usually capped by a layer of passivating ligands
known as stabilizers or capping agents, which prevents chemical
changes. There is a solvation layer surrounding the nanoparticles
because of electrostatic interactions, and these interactions counter
the van der Waals attractive forces (Bishop et al., 2009; He et al.,
2012; Li et al., 2020). The mechanism of the aggregation of
plasmonic nanoparticles is analogous to polymerization reactions.
In some cases, oligomers that are formed from the aggregation of
individual plasmonic monomers serve as the repeating unit, whereas
in others, particle assembly at very low rates favours long-chain
formation, following the chain growth pathway. It has been found
that the side bonding sites on the individual repeating units of the
plasmonic oligomers are more than the terminating sites, and hence,
side chain polymerization becomes kinetically favoured (Wang et al.,
2012). These techniques for the preparation of plasmonic
nanoparticles directly from solution have been extensively used
over decades. In a recent report, using an electrochemically
driven self-assembly process, trimeric Au nanolenses having an
interparticle size of sub 2 nm were synthesized (Lloyd et al.,
2017). The first report on the synthesis of Al nanocrystals using
oleic acid as the capping agent and (CH3)2C2H5NAlH3 as the
precursor varied the relative proportion of the solvents viz.
tetrahydrofuran (THF) and dioxane to achieve size tunability
(McClain et al., 2015). The concept again is to moderate the
electrostatic interactions operating out of solvation and the van
der Waals forces (Jacobson et al., 2020). In recent days, modified
DNA structures are widely being used as templates for the synthesis
of plasmonic nanomaterials (Liu and Liedl, 2018; Wang et al.,
2020b). In a seminal work by Rothemund, a 7-kilobase single-
stranded DNA scaffold was efficiently twisted into several 2D
nanostructures using a technology which he termed as “DNA
origami” (Rothemund, 2006).

4 Plasmonic nanomaterials: role
of metals

Plasmonic nanomaterials have generated significant interest in
the past decade because of their diversified applications, owing to
plasmonic coupling spanning the entire wavelength, i.e., from
ultraviolet to infrared (Alivisatos et al., 1987). It has been
discussed earlier (Section 2) that in plasmonic nanostructures,
free-space electromagnetic energy is confined to ultrasmall
regions defined as “hotspots.” The LSPR can be effectively tuned
by engineering the size and structure of the nanomaterials (viz.
nanoparticles of various sizes and shapes, nanodiscs, nanorods, etc.)
and also the dielectric properties of the metals. Because of the ease in
the modulation of the LSPR, the optical properties can also be tuned
to cover the entire range of the spectrum. Nanoporous gold
nanomaterials had been, for a very long time, used for tunability
in the visible-to-IR range. Varying the size of a monolayer of
polystyrene beads over Au nanodiscs prepared by the deposition

of gold and silver alloys on a Si wafer helps in tuning the diameter of
the Au nanoparticles (Zhao et al., 2014). In another report, a silver
halide electroreduction process was utilized to achieve tunability in
pore size and diameter (Seok et al., 2018). However, in recent days,
the focus is on Al-based plasmonic nanostructures owing to their
natural abundance and long range of tunability, ranging from the
UV to the IR region of the spectrum (Jacobson et al., 2020).
However, preparation of size-controlled Al nanocrystals did not
receive initial impetus, owing to the very high reactivity of this
alkaline earth material in the presence of ambient oxygen (O2) and
water (H2O). Hallas et al. synthesized crystalline Al nanocubes by
using a transition metal catalyst viz. Tebbe’s reagent with an excess
of AlH3 in THF. This was one of the first reports that expanded the
use of a conventional transition metal catalyst in tuning the shape of
metal nanoparticles (Clark et al., 2019). Al may prove to be a
successful alternative to Au and Ag plasmonic nanomaterials,
owing to its natural abundance and higher plasmon tunability
(Tian et al., 2017). However, the unstable nature and very high
reactivity have impeded the real-time applications of these
plasmonic nanomaterials. Another metal that has been
investigated very recently in this line is rhodium (Rh). Clavero
et al. demonstrated chemical reduction on self-assembled micelles
with trisodium hexachlorodate (Na3RhCl6) as the Rh precursor to
obtain nanoporous Rh nanostructures (Clavero, 2014).

5 Substrates for PEF

The first report of PEF involved the enhancement of the emission
intensity of fluorescein isothiocyanate (FITC) and rhodamine 6G on
rugged silver islands (Chen et al., 1980). Later studies by Glass et al.
delineated the role of the degree of overlap of the emission and
absorption spectra on the enhancement of the fluorescence intensity
(Glass et al., 1980). Following these developments, many different
fabrication techniques were brought to light. We broadly categorize
these into two subsections. The first section provides a brief overview of
the physical modifications that have been effective in bringing about
PEF. The second section elaborates a few of thewet chemical techniques
that are broadly being used.

5.1 Physical modifications

5.1.1 Metal islands and hybrid nanostructures
PEF for fluorophores emitting in the visible region of the

spectrum has been widely studied using silver nanoparticles. In
one of the initial reports on the enhancement of tryptophan
emission in proteins, the enhancement of the emission intensity
of N-acetyl-1-tryptophanamide (NATA), a tryptophan analogue
could be observed close to the Ag nanostructured surfaces
(Figure 4A) (Ray et al., 2008a). In one of the initial reports on
the enhancement of the emission of semiconductor quantum dots in
the presence of plasmonic nanoparticles, Ray et al. demonstrated a
several-fold enhancement of the emission intensity of CdTe
quantum dots on silver island films (SIFs). This, coupled with
single-molecule blinking experiments, delineated the intricacies of
heterogeneity in the emission enhancement on glass and SIF
surfaces (Ray et al., 2006).
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5.1.2 Plasmonic nanoparticles with a capping layer
The spatial proximity between the fluorophore and the

plasmonic nanoparticles is a vital factor to induce PEF
(Section 2). The easiest way to achieve that is to deposit a
layer of the fluorophores on the plasmonic surface. However,
there are a couple of drawbacks in this case; first, there is always a
possibility of Forster resonance energy transfer leading to
quenching instead of enhancement (Section 2) (Glass et al.,
1980). Second, a simple mixing might lead to the formation of
an entirely different species. To prevent these, plasmonic
nanoparticles are coated with a layer of organic polymers,
which prevents them from coalescing. It has a major influence
on the self-assembly process of the plasmonic nanomaterials and
also helps in modulating the distance between the plasmonic
surface and the exciton material. In a recent report, the role of
capping layers was demonstrated using a library of gold
nanourchins (NUs), where the observed coupling values were
higher in the presence of the capping layer. The formation of the
plexitonic hybrids was also significantly influenced by the extent
of dye aggregation (Peruffo et al., 2021). Yoshida et al. efficiently
synthesized hetero-nanostructures consisting of a Au-nanorod
core with an inner spacer and an outer spacer of J-aggregated
cyanine dye. They demonstrated that such double-layered
composite structures provide flexibility in controlling the
plasmon–exciton coupling (Figure 4B) (Yoshida et al., 2009).

5.2 Wet chemical modifications

5.2.1 Nanoprisms
In a simple, robust, and cost-effective technique, silver (Ag)

nanoprisms were reportedly synthesized by reducing Ag+ in
AgNO3 using a solution of sodium borohydride (NaBH4)
(Figure 5A). The reaction time and colour were indicative of
the size of the nanoprisms (Frank et al., 2010). Other
photochemical techniques can also provide a meticulous
control of the prism size.

5.2.2 Nanowires
The Ag nanowire is another exotic plasmonic nanocrystal that

has been used widely in various applications. One of the initial
reports of synthesis demonstrated a seed-assisted route, where a
platinum (Pt) nanoparticle seed was first synthesized by the
reduction of platinum chloride (PtCl2) with ethylene glycol,
followed by the addition of AgNO3 and polyvinyl pyrollidone
(PVP), which allowed the formation of Ag nanoparticles. The
pre-synthesized Pt nanoparticles acted as the template for the
epitaxial growth of the Ag nanoparticles. When these
nanoparticles were heated at high temperatures, because of
Ostwald ripening, they could not retain their spherical shape and
gradually started forming wires of size ranging from 30 to 40 nm
(Figure 5B). A meticulous control over the size of the wires could be
achieved by varying the reaction temperature and also the
proportion of PVP to AgNO3 (Sun et al., 2002).

5.2.3 Core–shell plasmonic nanomaterials
In core–shell nanomaterials, the core (typically a metal

nanoparticle) is coated by another dielectric compound, which
prevents the core from coming into direct contact with the
surrounding environment and, hence, increases its stability. This
broadens its scope by enabling the modulation of the plasmonic
properties of the core. Optically transparent SiO2 is one of the widely
used shelling materials. The prerequisites of an ideal shelling
material include a uniform, ultrathin layer that prevents the
plasmonic core from coming into direct contact with the
solution. Using (3-aminopropyl)trimethoxysilane (APTMS) as the
linker and Na2SiO3 as the Si precursor, thin (2 nm) shelling was
demonstrated efficiently at higher temperatures (100 C). The
reaction duration was varied to obtain shells of varied thicknesses
(Krajczewski and Kudelski, 2019).

5.2.4 Nanotriangles
In recent years, truncated triangular pyramid-shaped

plasmonic nanomaterials have attracted significant interest,
owing to the anisotropic distribution of the LSPR and

FIGURE 4
(A) Emission spectra of the 15-nm PVA film containing NATA on quartz and silver island films (SIFs) (Ray et al., 2008a). (B) Change in the absorption
spectra of shelling Au nanorods with J-aggregated cyanine dyes (Yoshida et al., 2009).
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generation of a strong electromagnetic local field, which
consequently results in spectral tunability from the visible to
the IR domain (Section 2). In a recent report, gold nanotriangles
(AuNTs) were synthesized using the time-tested seeded growth
technique in which Au (III) in HAuCl4 was first reduced to Au
using NaBH4 as the reducing agent. Subsequently, the Au
nanocrystal seeds thus obtained were aged and diluted in a
cetyltrimethylammonium chloride (CTAC). The seeds were
subsequently transferred into two growth solutions of CTAC,
NaI, and HAuCl4, which ensures the formation of AuNTs
(Figure 5D) (Scarabelli and Liz-Marzán, 2021).

5.2.5 Nanospheres and nanorods
The most widely used plasmonic nanomaterials in

biomedicine and photonic devices involve the use of spherical
gold nanoparticles (AuNPs) and nanorods (AuNRs) (Ruan et al.,
2014; Zheng et al., 2021). The reason behind the choice is their
ease of synthesis, stability, and fairly strong LSPR couplings in
the visible and NIR ranges. However, AuNRs have spherical
symmetry, which limits their LSPR response only to the
visible range. This problem was, however, bypassed in AuNRs,
where, because of anisotropic LSPR, increased flexibility in the
modulation of the LSPR could be achieved. In a modified seeded
growth method, AuNPs were prepared with a surfactant CTAB in
the seed formation phase, followed by a growth solution in which
the Ag content was changed to obtain NRs with modulated aspect
ratios (Nikoobakht and El-Sayed, 2003).

6 Examples of fluorescence
enhancement

6.1 Role of hyperbolic metasurfaces in the
enhancement of spontaneous emission

Nitrogen vacancy (NV) sites in nanodiamonds are a distinct
example of solid-state nanoemitters displaying a broadband emission
spectrum. Owing to their significant stability, they can serve as a unique
and robust single photon source. The spin-selective optical transitions
in nanodiamonds diversify their scope of applications in various fields.
However, the extraction of the generated photon from the NV centres
becomes a strenuous task, owing to longer fluorescence lifetimes and
fewer numbers of photons. A recent report demonstrated the use of
alternately layered, stacked silica–silver thin films in a pyramidal shape
that aided in Purcell enhancement due to plasmonic coupling (Figure 6)
(Zheng et al., 2023). In a contemporary report, resonance indicators of
nanodiamonds and gold (RING) nanoassemblies were fabricated by
modifying biotin-capped nanodiamonds and Au nanoparticles by the
hybridization of complementary DNA sequences (Liang et al., 2023). It
was demonstrated that the transition dynamics of the nitrogen-vacancy
centres aids in higher local density of states and correspondingly
enhances the oscillator strength because of a closed nanocavity.
Using the concept of DNA assembly, RING nanoassemblies with
different proportions of nanodiamonds and AuNPs were prepared
to decipher the role of closed nanocavity in the enhancement of
fluorescence of the NVs (Liang et al., 2023).

FIGURE 5
(A) Ag nanoprisms having an average lateral dimension of 40 ± 5 nm and an average thickness of 8.5 ± 1.4 nm; the bar corresponds to 100 nm (Frank
et al., 2010). (B) SEM images of Ag nanowires with nPVP/nAgNO3 = 1.5 (Sun et al., 2002). (C) TEM images of AuNP@SiO2 of uniform thickness (Gogoi et al.,
2021). (D) TEM images of 60-nm gold nanotriangles (Scarabelli and Liz-Marzán, 2021). (E) TEM images of gold NRs with plasmon band energies at
1,250 nm; the bar corresponds to 50 nm (Nikoobakht and El-Sayed, 2003). (F) TEM AuNS with diameters 24 ± 2 nm (Ruan et al., 2014).
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6.2 Applications in fluorescence imaging

Fluorescence imaging is an excellent non-invasive method for
the real-time monitoring of various physiological processes with the
best spatial and temporal resolutions (Ntziachristos, 2010).
However, small penetration depths and a moderate signal-to-
noise ratio are an impediment to many such applications. The
augmentation of the fluorescence signal because of the coupling
of free electrons on the nanomaterial surface and the excited-state
fluorophore not only leads to a plasmon-enhanced fluorescence but
also contributes to better detection limits (Hong et al., 2014).
Spatiotemporal properties of fluorescein-conjugated Au
nanoparticles were delineated using a combination of
fluorescence-lifetime imaging microscopy (FLIM) and direct
reflectance (DR), which paved the way for multimodal
bioimaging. A decrease in the fluorescence lifetime of fluorescein
due to a change in the radiative rate constant in the near-field region
of the AuNPs was successfully exploited to detect tumour surfaces
(Section 2; Figure 7) (Fixler et al., 2014).

However, until very recently, the concept of plasmon-enhanced
fluorescence for fluorescence imaging in the NIR region was limited.
By the electrostatic assembly of fluorescent polymer dots on the
surface of silica-coated gold nanorods, PEF could be observed. Since
it was already established that PEF is a distance-dependent
phenomenon, where the spatial distance between the plasmonic

nanoparticle and the fluorescent probe plays a vital role, the
thickness of the Si coating was varied to optimize the maximum
enhancement (Anger et al., 2006). It was finally employed to probe
the cerebral vasculature in live mice (Peng et al., 2022b). However,
only two NIR probes, indocyanine green (λem = 828 nm) and
methylene blue (λem = 686 nm) nm, have been clinically
approved. So, the recent focus is on imaging in the short-wave
infrared (SWIR) (900–1,700 nm) window. First, reduced
autofluorescence and, second, lesser photon scattering have
enabled SWIR imaging at significantly better depths within the
tissue. Utilizing the concept of plasmon-enhanced fluorescence,
commercially available SWIR dye IR-E1050-AuNR composites
were successfully used for the in vivo imaging of ovarian cancer
(Huang et al., 2021).

6.3 In molecular sensing

PEF is a phenomenon that is associated with augmented
fluorescence concomitant with an increase in the radiative rate
constant. Using this very concept, PEF has been very effectively
used in the past decade as a tool for sensing different analytes,
biomolecules, nucleic acids, etc. (Gao et al., 2023; Lu et al., 2023;
Rippa et al., 2024). The present technique of specific RNA
quantification involves complementary base pairing between a

FIGURE 6
(A) Temporal parameters of the pyramidal metasurface: (A) fluorescence decays of the nitrogen vacancies (NVs) on different surfaces: black (Ag
pyramid), blue (quartz), and yellow (pyramidal heterostructure) (B,C). SEM images of the fabricated heterostructures at different magnifications (D,E,F).
The fluorescence intensity images of NV centresmeasured on the pyramidalmetasurface, the Ag nanopyramid, and the quartz substrate, respectively, in a
dimension of ≈14 μm × 14 µm with an excitation wavelength of 532 nm (Zheng et al., 2023).
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target RNA and the nucleic acid probe. However, sensitivity and
rapidity are two major challenges in this methodology. In a PEF-
based technique, a target RNA is first annealed, followed by labelling
with a fluorogenic probe, and finally adhered to the SIFs, where
enhanced fluorescence was observed because of PEF (Aslan et al.,
2006). Using fluorescence lifetime correlation spectroscopy (FLCS)
as an efficient tool, a 5-fold enhancement in the emission of cyanine
5 (Cy5) was reported in the presence of 50-nm Ag colloidal particles
(Ray et al., 2008b). In another report, the deposition of a 10-nm Ag
film on Klarite, a commercially available SERS substrate, resulted in
the 50-fold enhancement in fluorescence of streptavidin-conjugated
Alexa 674 (A647) (Ray and Lakowicz, 2013). The
biotin–streptavidin host–guest system immobilized on an Au
surface showed an enhancement in the fluorescence of the
labelled streptavidin moiety, owing to plasmon-enhanced
fluorescence. Utilizing this concept, a unique DNA chip was
engineered using a biotinylated catcher probe that can track the
DNA-binding kinetics (Tawa and Knoll, 2004). Utilizing the same
concept, a solid surface-based immunoassay was developed, which
could detect human chorionic gonadotropin (hCG) hormone in
serum with LOD as low as 0.3 mIU mL–1 (~6 × 10−13 mol L–1)
(Vareiro et al., 2005). An ultrasensitive biochip for surface
plasmon-enhanced fluorescence assays was developed, which
could detect IgG molecules at concentrations as small as 11 pM
(Toma et al., 2013). Silver island films were used to enhance the
fluorescence intensity of myoglobin immunoassay if labelled with
the Alexa Fluor 647 dye (Matveeva et al., 2007). The concept of
plasmon-enhanced fluorescence was exploited to develop an Au@
polymer dot-based fluorescent immunoassay platform that can
detect a prostate-specific antigen (PSA) with as less as 10 μL of
the blood sample within 10 min (You et al., 2019). The proposition
of thin Al films can also serve as an efficient substrate for metal-
enhanced fluorescence with probes like NATA and tyrosine
(Chowdhury et al., 2009). Another label-free approach of
detecting tryptophan-containing proteins involved the
augmentation of the tryptophan fluorescence in the presence of
Al nanostructures (Ray et al., 2009b). In the last few years, there has
been immense progress in the direction of label-free bioassays and
sensing using the concept of plasmon-enhanced fluorescence
(Figure 8) (Reinhard et al., 2007; Dai et al., 2022; Roy et al.,
2023). The absolute quantification of membrane protein
expression on cell surfaces is imperative to early cancer detection.

For example, peptide–AuNP nanoprobes were designed and
developed for the quantitative estimation of integrin GPIIB/IIIa,
which, using NIR two-photon microscopy, could be directly
visualized (Gao et al., 2015). Similarly, Ag–aptamer clusters were
developed, which could provide significant quantitative insights into
mIgM in live cells (Liu et al., 2014). In a recent report, a TiO2 cluster-
based biosensing platform was demonstrated, which could track the
expression levels of N-cadherin, an important biomarker of
epithelial-to-mesenchymal transition (EMT) in malignant cells
(Han et al., 2021). The use Au-Se-peptide nanoprobes in
mapping the role of drugs viz. curcumin and 7-ethyl-10-
hydroxycamptothecin in apoptosis in malignant cells was another
significant advancement in this domain (Pan et al., 2019). The
design and development of label-free assays is another field that
attracts significant attraction. A highly controlled assembly of
peptide-functionalized Au nanoparticles was demonstrated to be
a sensitive label-free assay for the detection of blood coagulation
factor XIII (Chandrawati and Stevens, 2014). The fabrication of a
plasmonic nanogap cavity using colloidal Ag nanocubes on top of
Au films resulted in field enhancements, which, when coupled with a
PED4 assay, resulted in an ~100-fold enhancement in fluorescence,
which aided in the detection of an important cardiac biomarker viz.
B-type natriuretic peptide (BNP) (Cruz et al., 2020).

6.4 Plasmon-enhanced fluorescence:
DNA origami

DNA origami is a technique based on the molecular self-
assembly, which can serve as a template for the fabrication of
discrete, complex nanostructures using a bottom-up approach.
The complex interactions between the plasmonic nanoparticles
and fluorophores can be engineered by immobilization on a 3D
origami structure. The specificity of nucleic acid binding makes
DNA origami an efficient tool for tuning the arrangement of
plasmonic nanomaterials for enhanced emission. The DNA
connector configuration plays a vital role in controlling the
placement of a plasmonic particle. In the shear configuration,
after antiparallel hybridization of the same terminal ends, a
perpendicular orientation of the duplex with respect to the
bound surface is achieved. On the contrary, in the zipper
configuration, protrusion of the different terminal ends is

FIGURE 7
FLIM images of phantoms containing 50 μM fluorescein with (A) 0, (B) 2, and (C) 4 mg/mL of GNRs (D). FLIM image of a phantom containing 50 μM
fluorescein with 20 μg/mL of GNSs. The grayscale bar represents fluorescence intensity in counts/ms. The coloured scale bar displays the fluorescence
lifetimes in nanoseconds (Fixler et al., 2014).
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observed, which, on binding, results in a tangential orientation.
Schreiber et al. used hybrid nanostructures with varying distances
between the fluorescent probe and metal nanoparticles to
demonstrate a 1/d4 distance-dependent quenching model
(Schreiber et al., 2014). The use of Au nanoparticles for
fluorescence enhancement is restricted to the NIR region, which
was overcome by fabricating gold nanorod dimers on a DNA
origami template. Using ATTO 655 as the fluorescent probe and

engineering the distances between the nanorod tip and the probe, it
was shown that an optimum distance of 6.1 nm was most favourable
for achieving a 473-fold fluorescence enhancement (Figure 9)
(Zhang et al., 2015). Similar studies were subsequently carried
out using AgNPs having a higher scattering cross section (Vietz
et al., 2017). In another report along the same line, different hybrid
nanoparticle–DNA origami assemblies were used to explore the
distance dependence on local field enhancement in monomeric and
dimeric AuNPs (Pal et al., 2013).

6.5 Single-molecule detection

Another important domain where PEF finds significant use is
single-molecule detection. One of the major issues with single-
molecule fluorescence is the low signal-to-noise ratio. In biological
systems, coupled with that is the issue of undesired analyte molecules
contributing to spurious signals. Thus, the fluorescence from the target
analyte must be isolated from the erroneous contributions (Ray et al.,
2006; Ray et al., 2008c; Ray et al., 2015). In a seminal work using self-
assembled dimeric nanoantennas (DNs) with a modified DNA origami
template, higher fluorescence enhancement could be achieved
compared to antennas fabricated by top-down lithography
approaches. Even in the presence of a quencher like NiCl2, a 5,468-
fold fluorescence enhancement with ATTO 647N could be observed,
which aided in single-molecule detection at concentrations of 25 μM
(Puchkova et al., 2015). In another work, Au bowtie nanoantennas
fabricated using electron beam lithography on 50-nm-thick ITO-coated
quartz coverslips were used for the fluorescence enhancement of a NIR
emissive TPQDI probe. A 1,348-fold fluorescence enhancement was
reported (Kinkhabwala et al., 2009). Orrit et al. reported the single-
molecule fluorescence enhancement of crystal violet (CV) up to

FIGURE 8
Schematic representation of fluorescence being used as a parameter to track the enzymatic cleavage of Au-tethered dsDNA (Reinhard et al., 2007).

FIGURE 9
(A) SEM images of AuNR dimers with different gaps. (B)
Dependence of fluorescence enhancement on distance (Zhang
et al., 2015).
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1,100 times in the presence of AuNRs (Figure 10). The underlying
concept is that a molecule prefers diffusing through the ideal position
where the enhancement is maximum. Using high-fluorophore
concentrations, the fluorescence enhancement of a single CV
molecule in the presence of AuNRs was demonstrated (Yuan
et al., 2013).

6.6 Devices based on plasmon-enhanced
fluorescence

Small optical reading devices have recently proved to be
indispensable, providing rapidity and cost effectiveness to certain
diagnostic assays and conventional laboratory tests. Exploiting the
computational capabilities and imaging abilities of commercially
available smartphone devices, early diagnosis of diseases and
quantitative detection of viruses like HIV and other chronic
ailments have been developed recently (Inci et al., 2013; Rad et al.,
2015; Nguyen et al., 2023). A handheld miniature microscopy device
based on the principle of plasmon-enhanced fluorescence, coupled with
a smartphone, could efficiently image 50-nm fluorescent beads. In the
same report, the detection of 80 fluorophores was demonstrated in each
diffraction-limited spot using the handheld microscope, which paved
the way for the design and development of nanophotonic devices (Wei
et al., 2017). An assembly of ZnO nanorod arrays in a microfluidic
system, along with a photodetector, was successfully used for the point-
of-care (POC) detection of cancer biomarkers viz. carcinoembryonic
antigen, α-fetoprotein, etc. (Hu et al., 2013). A similar kind of assembly
using ZnO nanorods with cyanine 3 (Cy3) and Cy5 served as an
immunoassay for the detection of carcinoembryonic antigens (Liu et al.,
2016). In brief, many different plasmonic nanostructures can be widely
utilized in different biosensing platforms including point-of-care
diagnostics (Semeniak et al., 2023). Plasmonic Au-nanoparticle
platforms allow for the accurate detection and quantification of type
1 diabetes antibodies, overcoming the shortcomings of non-specific
binding in ELISA, which makes it an important contender for point-of-
care diagnostics (Zhang et al., 2014). A plasmonic gold nano-island chip
was designed and fabricated for the efficient diagnosis of myocardial
infarction (MI). The serum biomarkers viz. cardiac troponin I showed
~130-fold enhanced NIR fluorescence in the presence of the plasmonic
nanomaterial, which leads to quantitative detections with superior
sensitivity to standard immunoassays (Xu et al., 2020).

7 Summary and perspective

This review delves into the recent advancements in plasmonic
materials, with a specific focus on their ability to amplify fluorescence
through near-field interactions and placing particular emphasis on the
potential of utilizing plasmon-enhanced fluorescence for various
photonic and analytical applications. The augmented spectral
intensity in metal nanoparticles owing to the excitation of the LSPR
results in the higher-extinction cross sections of the plasmonic
nanoparticles, which leads to an enhancement in emission. This has
been successfully employed in the domains of single-molecule
detection, imaging, and the development of fluorescence-based
biosensors. The theory will continue evolving and probe into the
intricate details of molecular-level interactions between the
plasmonic metamaterial and the quantum emitter. The past decade
has witnessed a growth in the development of novel plasmonic
materials, particularly focussing on semiconductors and conducting
oxides. This exciting frontier holds immense promise for extending the
spectral range of plasmonic effects beyond the limitations of traditional
noble metals like gold and silver and other metals like aluminium.
Accordingly, all of these plasmonic materials offer exciting possibilities
for manipulating light across a broader spectrum of the UV-vis-IR
regimes. This expanded range opens doors for innovative applications
in the areas of enhanced biosensing and advanced optoelectronics. By
enabling plasmonic interactions with biomolecules in UV-vis-IR
regions, these materials could lead towards more sensitive and
specific detection techniques for medical diagnostics. Tailoring the
spectral response of plasmonic materials could potentially pave the
way for the development of miniaturized and high-performance optical
devices with functionalities like light modulation and switching.

Point-of-care testing is poised to benefit significantly from
the development of planar plasmonic substrates. These
plasmonic substrates can be fabricated using two main
approaches: top-down nanofabrication techniques for precise
patterning and the bottom-up nanoparticle assembly for
potentially scalable production. Both approaches have shown
promise in creating surfaces that enhance fluorescence for
protein or DNA/RNA microarrays. This advancement could
lead to rapid, portable diagnostic tools with increased
sensitivity for detecting various diseases and biological
markers. Despite a growth in research on plasmonic structures
designed to enhance fluorescence for diagnostic and biosensing

FIGURE 10
SEM image of (A) drop of the gold nanorod. (B) Map of the near-field optical intensity. (C) Single-molecule imaging of SMD enhanced by AuNRs
(Yuan et al., 2013).
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applications, there remains a significant gap between these
promising tools and their translation into clinically relevant
platforms that can effectively navigate the complexities of real-
world biological systems. Even though plasmonic structures face
some limitations, continued research and development hold
promise towards notable improvements in the fields of
photonics and optical sensing. By overcoming these
challenges, a plethora of possibilities in manipulating light at
the nanoscale can be accomplished, leading to advancements in
the areas of ultrasensitive biosensing, ultracompact photonic
circuits, and enhanced light-harvesting technologies.
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