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Non-Small Cell Lung Cancer (NSCLC) is a prevalent and deadly form of lung
cancer worldwide with a low 5-year survival rate. Current treatments have
limitations, particularly for advanced-stage patients. P21, a protein that inhibits
the CCND1-CDK4 complex, plays a crucial role in cell proliferation. Computer-
Aided Drug Design (CADD) based on pharmacophores can screen and design PPI
inhibitors targeting the CCND1-CDK4 complex. By analyzing known inhibitors,
key pharmacophores are identified, and computational methods are used to
screen potential PPI inhibitors. Molecular docking, pharmacophore matching,
and structure-activity relationship studies optimize the inhibitors. This approach
accelerates the discovery of CCND1-CDK4 PPI inhibitors for NSCLC treatment.
Molecular dynamics simulations of CCND1-CDK4-P21 and CCND1-CDK4
complexes showed stable behavior, comprehensive sampling, and P21’s
impact on complex stability and hydrogen bond formation. A pharmacophore
model facilitated virtual screening, identifying compounds with favorable binding
affinities. Further simulations confirmed the stability and interactions of selected
compounds, including 513457. This study demonstrates the potential of CADD in
optimizing PPI inhibitors targeting the CCND1-CDK4 complex for NSCLC
treatment. Extended simulations and experimental validations are necessary to
assess their efficacy and safety.
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1 Introduction

Non-small cell lung cancer (NSCLC) is the most common type of lung cancer,
accounting for approximately 85% of all lung cancer cases (Niu et al., 2023). It is a
highly aggressive and lethal malignancy with limited treatment options, highlighting the
urgent need for innovative therapeutic approaches (Li et al., 2023). One promising avenue
for targeted therapy in NSCLC involves the intricate interplay between cell cycle regulatory
proteins and tumor development. Among these proteins, Cyclin D1 (CCND1), Cyclin-
dependent kinase 4 (CDK4), and p21 (also known as CDKN1A) play pivotal roles in
controlling cell cycle progression and cellular proliferation.

CCND1, together with its partner CDK4, forms a critical complex that drives cells from
G1 to S phase in the cell cycle, promoting cell proliferation (Qie and Diehl, 2016). The
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activity of CCND1-CDK4 complex is regulated by p21, which acts as
a cyclin-dependent kinase inhibitor (Nardone et al., 2021). When
p21 is upregulated, it binds to the CCND1-CDK4 complex and
inhibits its kinase activity, effectively halting cell cycle progression.
Consequently, p21 functions as a tumor suppressor by impeding
uncontrolled cell proliferation.

Given the significance of the p21-mediated regulation of
CCND1-CDK4 activity in suppressing tumor growth, it becomes
imperative to explore novel therapeutic strategies aimed at targeting
this specific pathway. Computer-aided drug design (CADD) has
emerged as a powerful tool in the discovery of small molecule
inhibitors (Luise and Robaa, 2018) that can modulate protein-
protein interactions, such as the p21-CCND1-CDK4 axis. By
computationally screening a large chemical space (Liu et al.,
2021), CADD allows for the identification of potential drug
candidates that could selectively bind to the target proteins and
disrupt their functional interactions (Danel et al., 2023).

The successful application of CADD in drug discovery has
revolutionized cancer treatment (Sobral et al., 2023), leading to
the development of several approved therapies targeting various
cancers. For instance, in breast cancer, the FDA-approved CDK4/
6 inhibitors, such as palbociclib (Lee et al., 2022), have demonstrated
substantial clinical benefits by inhibiting the activity of CCND1-
CDK4 complex and arresting tumor growth. Moreover, in
melanoma, the combination therapy of p21-activating kinase
(PAK) inhibitors and immunotherapies has shown remarkable
efficacy by overcoming tumor resistance and enhancing the anti-
tumor immune response (Ma et al., 2022).

In this study, we aim to elucidate the relationship between
CCND1, CDK4, p21, and NSCLC, with a specific focus on the
mechanistic role of p21 in inhibiting CCND1-CDK4 complex
activity. Leveraging computer-aided drug design, we will explore
the potential of designing novel therapeutic agents that could
modulate the p21-CCND1-CDK4 axis, offering new and exciting
avenues for targeted therapy in NSCLC. By harnessing the power of
computational methods, we strive to contribute to the development
of more effective and personalized treatments for NSCLC and other
malignancies.

2 Method

2.1 Protein preparation

The 3D structure of CCND1-CDK4-P21 (6P8H) (Guiley et al.,
2019) CCND1-CDK4 (2W9Z) (Day et al., 2009) were downloaded
from the RCSB PDB database (https://www.rcsb.org/). Before
docking, the Protein Preparation Wizard of Maestro was used for
protein preparation. This process included the protonation of atoms,
removal of water molecules, fixation of atoms, and an energy
minimization step using OPLS4 at pH 7 ± 2. Specifically, the
PROPKA program was employed to predict the pKa values of
the protein residues. By selecting “Use PROPKA” and “Label
pKas” in the Refine tab, residues were labeled with their
respective pKa values. The optimization of hydrogen bond
networks included altering residue ionization and tautomer
states, considering relative penalties for different protonation
states derived from pKa estimates. Additionally, the Interactive

Optimizer was used to manually adjust the protonation state of
individual residues if necessary, refining the protonation states
further based on specific requirements or observations from the
simulation.

2.2 Gromacs MD simulation

Part of molecular dynamics (MD) simulations presented in this
study were conducted using the GROMACS 23.1 package (https://
www.gromacs.org/). The AMBER 99SB-ILDN (Lindorff-Larsen
et al., 2010) and explicit solvation were employed, and each
system was placed in a rectangular box of SPC water molecules
with a minimum distance of 10Å between any solute atom and the
edges of the periodic box. Counter ions were added to neutralize the
total charge of the system. The system underwent an energy
minimization process using the steepest descent method, with the
maximum set to 1000.0 kJmol−1nm−1. Subsequently, the system was
equilibrated in two steps: (1) canonical ensemble (NVT, 1 ns) and
(2) isothermal–isobaric ensemble (NPT, 1 ns). Following
equilibration, the MD simulations were run for 500ns. To ensure
numerical stability, all bonds involving hydrogen atoms were
constrained using the default linear constraint solver algorithm
(LINCS) (Hess, 2008). The Vrescale thermostat and
Parrinello–Rahman barostat were utilized with the temperature
set at 300K and pressure at 1.0bar, with time constants of 0.
1 and 2ps, respectively. The Particle-Mesh Ewald (PME) method
was employed to handle long-range interactions, and a 10Å cutoff
was utilized for van derWaals interactions (Darden et al., 1993). The
time step was set to 2 fs, and a snapshot was collected every 1.0ps.
The topology files for the 513457 was obtained from Sobtop (Tian
Lu, Sobtop, Version 1.0, http://sobereva.com/soft/Sobtop)

Based on the results of MD simulation, we calculated Root
Mean Square Deviation (RMSD); Root Mean Square Fluctuation
(RMSF), Radius of gyration (Rg), and hydrogen bond
interactions, hydrogen bond autocorrelation function (C(t))
(Dixit and Taniguchi, 2023), Principal Component Analysis
(PCA) (Campitelli et al., 2021; Chen et al., 2021; Bao et al.,
2023), Free Energy Landscape (FEL) (Malmstrom et al., 2015),
and vector movements. Dynamic cross-correlation matrices
(DCCM) (Ghosh and Vishveshwara, 2007) were drawn
byBio3D (Grant et al., 2006). RMSD was calculated using
C-alpha atoms. For RMSF, PCA, and DCCM, residue
positions were used. RMSD, RMSF, Gg, H-bond, and FEL
results were visualized by Matplotlib (https://matplotlib.org/).

2.3 Atom-based 3D-QSAR modelling
and screening

Receptor-ligand complex based pharmacophore model was
developed using PHASE (Dixon et al., 2006) module of
Schrödinger 2023-2 software. PHASE has a built-in set of six
pharmacophore features, i.e., hydrogen-bond acceptor (A),
hydrogen-bond donor (D), hydrophobic group (H), negatively
ionizable (N), positively ionizable (P), and aromatic ring (R).
1,640,000 compounds were retrieved from TargetMol (https://
www.targetmol.cn/). The compounds were added to a phase
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database and screened based on the selected
pharmacophore models.

2.4 Desmond MD simulation

Part of molecular dynamics (MD) simulations presented in this
study were conducted using the Desmond package in the
Schrödinger 2023-2 software. Firstly, 200 ns MD simulation was
run for the top 20 compounds with the best binding affinity to
CCND1, then the best four stable complex proceeded for 500 ns
simulation time. TIP3P water model was used for system builder,
and orthorhombic box shape was assigned with distances 10Å and
force filed OPLS4. Then ions were neutralized by additions of
required charges. During MD simulation at each 500ps interval,
snapshots were recorded, the nose-hover thermostat method was
specified with a relaxation time of 1ps and 2fs time step. The system
was minimized at 2000 iterations, NPT temperature was at 300 K,
then Maestro was used for visualization of trajectories.

2.5 Protein docking

HDOCK (http://hdock.phys.hust.edu.cn/), a hybrid algorithm
of template-based modeling and ab initio free docking (Yan et al.,
2017), was employed to execute molecular docking between the
513457-effected CCND1 and CDK4. The workflow of HDOCK
consists of five steps: (1) uploading of input receptor and ligand
molecules in the PDB file format, (2) selection of the best receptor
(HHSearch) and ligand (FASTA) templates by sequence similarity
search against the PDB sequence database, (3) structure homology
modeling usingMODELLER for receptor and ligand, (4) fast Fourier

transform (FFT) based HDOCK lite global docking, and (5)
visualization of docking models and template-based model as an
output (Huang and Zou, 2008; Yan and Huang, 2020).

3 Results

3.1 Initializing the structure of
CCND1 through molecular dynamics
simulations

In the presented investigation, we conducted a comprehensive
molecular dynamics simulation of CCND1 in its apo form (An et al.,
2019), derived from the crystal structure of CCND1 in complex with
CDK4-P21 (Guiley et al., 2019). The analysis, which spanned over a
500 ns timeframe, was instrumental in observing system stability
through the critical parameters: RMSD and Rg (Yu et al., 2023),
including the distribution across the x, y, and z-axes (Figure 1A).

The RMSD trajectory initiated at 0 nm and progressively
climbed to a peak of 0.41 nm at the conclusion of the simulation,
indicating the structural variations occurring throughout the
simulation. Notably, a plateau reached post-200 ns attested to a
stabilized system. Concurrently, the Rg and its axial components
Rg(x), Rg(y), and Rg(z) displayed comparable trajectories. The Rg,
commencing at 1.89 nm, underwent mild oscillations, ultimately
settling at 1.93 nm at the 500 ns mark, reflecting minor
modifications in the system’s compactness.

To substantiate our claims of comprehensive sampling of
CCND1 apo, we executed PCA (Fu et al., 2023) on the
simulation trajectory and calculated the Gibbs free energy at
various time points. Given that PC1 and PC2 encapsulated 48%
of the dynamical changes during the CCND1 simulation, as shown

FIGURE 1
Acquisition of the Resting State of CCND1. (A) Dynamic changes of RMSD and Rg of CCND1 during the simulation process. (B) 2D free energy
landscape constructed based on PC1, PC2, and Gibbs free energy. (C) Lowest energy conformation of CCND1 obtained from the free energy landscape.
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in Supplementary Figure S1, these principal components were
considered to be aptly representative of significant dynamical
variations (Nyamai and Bishop, 2020). Further calculations of the
Gibbs free energy, based on PC1 and PC2, facilitated the
construction of a free energy landscape for CCND1 apo
(Figure 1B). This landscape revealed that the conformations with
the lowest energy first appeared at 189 ns and last at 474.3 ns,
substantiating our claim of comprehensive sampling of
CCND1 based on the RMSD and Rg analyses.

Importantly, the identification of these low-energy
conformations (Figure 1C) had immense practical implications.
They served as the most stable structures of CCND1 in its apo
state, making them particularly suitable for subsequent virtual
screening studies. Utilizing these conformations as target
structures could enhance the accuracy and efficiency of the
virtual screening process, potentially accelerating the discovery of
novel ligands or drugs (Zheng et al., 2017).

In summary, the concurrent trends in RMSD and Rg values over
the 500 ns simulation period attested to satisfactory conformational
sampling of the CCND1 apo system. These findings confirmed system
stabilization and served as a solid foundation for additional structural
and functional analyses, including potential applications in virtual
screening strategies (Errasti-Murugarren et al., 2021).

3.2 Analysis of the dynamic mechanism of
P21 inhibition on the CCND1-CDK4 complex

To shed light on the inhibitory mechanism that P21 exerts on the
CCND1-CDK4 complex, a 500 ns molecular dynamics simulation for
both CCND1-CDK4 (Day et al., 2009) and CCND1-CDK4-P21 was
performed. The dynamic shifts in RMSD and Rg during the simulation,
suggesting a substantial conformational stability of the complexes. The
PCA and eigenvector proportions for both simulations are illustrated in

FIGURE 2
DynamicMechanism Analysis of P21 Inhibition on the CCND1-CDK4 Complex. (A) RMSF Analysis: Different colors represent the distribution of RMSF
across residues for different structures, and the colored blocks illustrate the differences in RMSF among different structures. (B) Covariance Matrix of
CCND1 over 500 ns: Positive values indicate positive correlated motions between residues, while negative values indicate anticorrelated motions
between residues. (C)Covariance Matrix of CCND1-CDK4 over 500 ns: Positive values indicate positive correlatedmotions between residues, while
negative values indicate anticorrelated motions between residues. (D) Covariance Matrix of CCND1-CDK4-P21 over 500 ns: Positive values indicate
positive correlated motions between residues, while negative values indicate anticorrelated motions between residues.
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Supplementary Figures S2, S3.With the sum of PC1 and PC2 exceeding
50% in both simulations, the data indicates a high level of
representativeness and hence suitability for further evaluation.

With this foundation, the RMSF of CCND1 was assessed under
three distinct states, as delineated in Figure 2A. This analysis highlighted
that the N- and C- termini of CCND1 were subjected to diverse degrees

FIGURE 3
Impact of P21 on Intermolecular Hydrogen Bonds in the CCND1-CDK4 Complex. (A) Changes in the number of intermolecular hydrogen bonds
between CCND1 and CDK4 in the CCND1-CDK4 and CCND1-CDK4-P21 complexes over time. (B, C) Distribution of the lifetimes of intermolecular
hydrogen bonds between CCND1 and CDK4 in the CCND1-CDK4 and CCND1-CDK4-P21 complexes. (D, E) Autocorrelation functions of intermolecular
hydrogen bonds between CCND1 and CDK4 in the CCND1-CDK4 and CCND1-CDK4-P21 complexes. Note that the 250 ns corresponds to the
normal value calculated during the 500 ns simulation process.

Frontiers in Chemistry frontiersin.org05

Tang et al. 10.3389/fchem.2024.1404573

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2024.1404573


of restriction upon their interaction with CDK4, thereby enhancing the
structural stability of the CCND1-CDK4 complex. The 50-150 and 220-
240 peptide segments demonstrated a range of RMSF increases,
indicating these areas of CCND1 structural flexibility are pivotal for
the successful binding and dynamic stability with CDK4. Upon the
engagement with P21, RMSFwas curtailed to varying extents within the
50-130 peptide segment. As a result, we inferred that P21 chiefly curtails
the activity of the CCND1-CDK4 complex by restraining the flexibility
of this particular peptide segment.

Moreover, DCCMs of CCND1 under varying conditions were
composed to scrutinize the dynamic characteristics within the
CCND1 molecule (Biagini et al., 2022), as depicted in Figures 2B–D.
Due to a technical limitation in Bio3D, all residues were indexed from 1,
while in reality, each DCCM started from residue 22. Observations
revealed that the positively and negatively correlatedmovements within
the 40-150 peptide segment were constrained to differing extents after
the engagement of P21 with the CCND1-CDK4 complex. Conversely,
the negatively correlated movements between the 50-130 and 170-
260 peptide segments intensified, aligning with the peptide segment
regions influenced by P21 as disclosed in the RMSF analysis. Hence, the
peptide segment spanning from 50 to 130 may serve as the primary
region where P21 curtails the activity of the CDK4-CCND1 complex.

In a bid to unravel the dynamic shifts in intermolecular interactions
between CCND1 and CDK4 in the presence and absence of P21’s
involvement with the CCND1-CDK4 complex, we conducted a series of
calculations. These included quantifying the count of intermolecular
hydrogen bonds between CCND1 and CDK4 (Figure 3A), ascertaining
the persistence duration of these intermolecular hydrogen bonds
(Figures 3B, C), and determining the autocorrelation function of the
intermolecular hydrogen bonds (Figures 3D,E).

Comparisons were drawn regarding the count of intermolecular
hydrogen bonds between CCND1 and CDK4, pre and post the
attachment of P21. This comparison clearly indicated P21’s role in
effectively restraining the quantity of intermolecular hydrogen
bonds, thus impairing the binding stability between the two
entities. Subsequent duration and autocorrelation function
analysis of the intermolecular hydrogen bonds lent support to
P21’s disruptive influence over the intermolecular hydrogen
bonds between CCND1 and CDK4 from a temporal perspective
(Naz et al., 2019).

During the phase preceding P21’s attachment, the hydrogen
bonds between CCND1 and CDK4 could be sustained for as long as
65 ns. Conversely, following P21’s attachment, this duration
witnessed a significant curtailment, with the longest persistence
only lasting for 37 ns. The autocorrelation function analysis of
intermolecular hydrogen bonds exhibited constant fluctuations in
the phase preceding P21’s involvement. This signified a continual
cycle of formation of new hydrogen bonds and rupture of old ones
during the simulation, thus illustrating the dynamic nature of the
thermal motion within the complex (Lentz and Garofalini, 2018).

However, following the involvement of P21, the autocorrelation
function of hydrogen bonds between CCND1 and CDK4 embarked
on a consistent descent beginning at 100 ns, denoting a steady
reduction in intermolecular hydrogen bonds. In summary, the
dynamics of P21’s activity constraining the CCND1-CDK4
complex manifested in the form of reduced stability of the
intermolecular hydrogen bonds and a diminished count of
hydrogen bonds formed between the two entities.

3.3 Pharmacophore generation and virtual
screening based on partial peptide segments
of P21

To discover compounds with P21-like inhibitory effects on
CCND1, we utilized a pharmacophore model based on the P21-
CCND1 loop structure (Supplementary Figure S4) for virtual
screening of 1.63 million compounds. Guided by MMGBSA
scoring (Tuccinardi, 2021), we selected compounds with scores
below −60 kcal/mol (Table 1).

TABLE 1 Scoring and interacting residues of the selected compounds.

Compound ID MMGBSA Interacted residues

108586 −61.04 Gln-
100

Tyr-
127

203037 −60.07 Gln-
100

Tyr-
127

221050 −60.79 Trp-63 Glu-66 Glu-70 Tyr-
127

329311 −60.69 Trp-63 Gln-
100

Tyr-
127

513457 −60.87 Gln-
100

Tyr-
127

724885 −60.67 Trp-63 Gln-
100

Tyr-
127

852175 −64.05 Gln-
100

914014 −60.99 Trp-63 Gln-
100

1073277 −63.93 Trp-63 Tyr-
127

1081460 −63.3 Trp-63 Glu-66 Glu-70 Gln-
100

1124644 −62.31 Trp-63 Gln-
100

Tyr-
127

1127615 −61.66 Trp-63 Gln-
100

Tyr-
127

1218445 −60.31 Trp-63 Gln-
100

Tyr-
127

1255883 −62.56 Trp-63 Glu-66 Tyr-
127

1287941 −62.22 Trp-63 Gln-
100

Tyr-
127

1302891 −63.03 Trp-63 Gln-
100

Tyr-
127

1326859 −63.74 Trp-63 Gln-
100

Ile-126

1336634 −60.35 Trp-63 Gln-
100

Tyr-
127

1347373 −60.43 Trp-63 Gln-
100

1478579 −61.85 Gln-
100
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Notably, all compounds exhibited MMGBSA values
below −60 kcal/mol, indicating strong binding affinities with
CCND1. Compound 852175 stood out with the highest
MMGBSA value (−64.05 kcal/mol), representing an exceptionally
favorable binding affinity. Conversely, compound 203037 displayed
the lowest MMGBSA value (−60.07 kcal/mol), indicating a
comparatively less potent but still favorable binding affinity.

Interactions with common residues, such as Gln-100 and Tyr-
127, were observed in compounds 108586, 203037, and 513457.
Additionally, Trp-63 and Gln-100 were recurrently involved in
compounds 329311, 724885, and 914014. However, the
interactions varied among compounds. Some compounds
interacted solely with Gln-100 (852175 and 1478579), while

others engaged with multiple residues, such as compounds
221050 and 1081460, which interacted with four residues each
(Trp-63, Glu-66, Glu-70, and either Tyr-127 or Gln-100,
respectively). Compound 1326859 demonstrated unique
interactions with Trp-63, Gln-100, and Ile-126, distinguishing it
from other compounds in the table.

These findings underscore the diverse interactions and potential
inhibitory effects of the selected compounds on CCND1-CDK4. Our
virtual screening approach provides valuable insights and holds
promise for identifying potential therapeutic agents. Similar
techniques have proven successful in different cancers drug
discovery (Okamoto et al., 2011; Zolek et al., 2023), leading to
the development of effective anti-cancer drugs. Likewise, our

FIGURE 4
Stability analysis of the structural and energetic aspects at 200 ns timescale. (A)Dynamic changes of RMSD over time, with dashed lines representing
trend lines for the dynamic changes of RMSD for different compounds. (B)Dynamic changes of MMGBSA over time, with dashed lines representing trend
lines for the dynamic changes of MMGBSA for different compounds.
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approach may offer new avenues for cancer treatment by targeting
CCND1-CDK4.

3.4 Binding stability analysis based on
molecular dynamics simulation

Considering the virtual screening strategy we adopted involved
semi-flexible docking, where the docking region was designated as a
rigid area, assessing the stability of the bond between the target and
the compounds was not feasible. Therefore, we first performed
200 ns molecular dynamic simulations on 20 compounds,

preliminarily evaluating the stability of the complexes via Ligand
fit on Protein RMSD, depicted in Supplementary Figure S5. If the
RMSD fluctuation range remained within 1-2 Ång, the simulation
system was deemed to have achieved initial stability (Koska et al.,
2008). According to this standard, we inferred that compounds
513457, 1073277, 1124644, and 1255883 may exhibit stable binding
with CCND1(Rathod et al., 2023), as illustrated in Figure 4A.

To conduct a dimensional reduction analysis of RMSD, we
charted trend lines of RMSD’s dynamic changes over time for
these four compounds. Interestingly, both 1073277 and
1255883 exhibited an upward trend, while 513457 and
1124644 maintained a flat line, suggesting the possible

FIGURE 5
Stability analysis of the structural and energetic aspects at 500 ns timescale. (A)Dynamic changes of RMSD over time, with dashed lines representing
trend lines for the dynamic changes of RMSD for different compounds. (B)Dynamic changes of MMGBSA over time, with dashed lines representing trend
lines for the dynamic changes of MMGBSA for different compounds.
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occurrence of off-target effects with 1073277 and 1255883 (Giatti
et al., 2021).

Considering other angles to analyze the potential for off-target
effects with 1073277 and 1255883, we calculated the MMGBSA
dynamic changes over the 200 ns simulation period for the four
compounds, as shown in Figure 4B. Contrary to expectations, none
of the four compounds showed an upward trend in MMGBSA values.
Instead, they seemed to continually enhance their affinity with
CCND1 through thermodynamic motion. Thus, we initially
speculate that the upward trend in RMSD exhibited by 1073277 and
1255883might represent these compounds undergoing conformational
adjustments, transitioning towards optimal binding conformations.
However, due to the relatively short simulation time, we still need to
extend the simulation time for these four sets of compounds.

In pursuit of a more comprehensive analysis, we extended the
simulations to 500 ns for four sets of compounds, adding an analysis of
the protein’s own RMSD and the compound’s own RMSD. As depicted
in Figure 5A, considering the fluctuation threshold range of two Ång,
only 513457 and 1073277 seemed to exhibit the kinetic characteristics of
stable receptor-ligand binding after a series of conformational changes
in the later stages of the simulation. Compared to 1073277,
513457 exhibited more pronounced fluctuations in its Fit on
CCND1 RMSD, indicating weaker binding stability. However, when
considering the compound’s own RMSD, the structural stability of
513457 far surpassed that of 1073277.

Taking into account the inherent properties of small molecular
compounds, the fluctuation range of 1-2 Ång for 1073277 typically
indicates certain conformational changes in the molecule, even

surpassing three Ång at one point. This implies that it
continually undergoes conformational changes to achieve stable
binding with the pocket of CCND1. However, when 1073277 can
no longer accommodate changes in the CCND1 pocket through its
own conformational changes, there is a risk of off-target effects.

To address this, we also performed dynamic MMGBSA
calculations for the two 500 ns simulations, as illustrated in
Figure 5B. Through the trend lines, it is not difficult to discern
that during the dynamic simulation process of the 513457-CCND1
complex, the binding energy between the two continually increases
(inversely proportional to the numerical changes). In contrast,
during the dynamic simulation of the 1073277-CCND1 complex,
the binding energy exhibited a downward trend, further
corroborating our previous speculation about the potential off-
target risks associated with 1073277.

Upon executing 500 ns simulations for the four sets of
compounds, only 513457 unveiled potential for enduring binding
with CCND1. Consequently, the ensuing analysis will concentrate
solely on the 513457-CCND1 complex.

3.5 Comparative protein-ligands contact
analysis of 513457-CCND1 complex

For further development of 513457, we conducted a series of
analyses on the receptor-ligand interaction between 513457 and
CCND1 in the simulation process. Figure 6A shows an array of
amino acids, their engagement with the ligand, and the associated

FIGURE 6
Interaction analysis between 513457 and CCND1. (A) Distribution of RMSF for different residues, with a red dashed line indicating residues that
interact with 513457. (B) Types of interactions between different residues and 513457, along with the percentage of each interaction type during the
simulation. (C) 2D plot illustrating specific interactions between CCND1 and 513457, displaying only interactions with a frequency exceeding 30%.
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RMSF values (Yu et al., 2019). The amino acids ranged from Asp-19
to Ala-262. However, only a select few amino acids established
contact with the ligand, namely, Met-56, Ile-59, Val-60, Thr-62,
Trp-63, Glu-66, Val-67, Lys-96, Gln-100, Tyr-127, Thr-128, and
Asp-129. These contacts had relatively low RMSF values, indicating
a more stable interaction. On the other hand, the remaining amino
acids did not engage with the ligand, and their RMSF values
fluctuated between a minimum of 0.550 Ångand a maximum of
9.018 Ång. The pronounced RMSF values, especially towards the
end of the sequence, indicated higher fluctuation and lower stability
in those regions.

In the subsequent interaction analysis, as shown in Figures 7B,
C, we found that the interaction between 513457 and CCND1’s Met-
56 and Trp-63 persisted throughout the simulation, indicating a
highly stable structure-activity relationship between 513457 and
these two residues (Zhao et al., 2016). Following that, Val-67, Gln-
100, and Tyr-127 were identified, although their proportions were all
below 0.4. However, by examining the Protein-Ligand Contacts
count, as shown in the Supplementary Figure S7, it was evident that
513457 established contacts with Val-67, Gln-100, and Tyr-127
throughout the simulation, albeit at a slightly lower frequency
than Met-56 and Trp-63.

3.6 Uncovering the potential mechanism of
513457 action

To investigate the potential of 513457 as a novel CCND1-
CDK4 complex protein-protein interaction (PPI) inhibitor, we

conducted a series of molecular dynamic simulations and
docking experiments. Comparing the conformation of
CCND1-513457 with CDK4 to the crystal structure of the
CCND1-CDK4 complex (Porter et al., 2019), we observed
significant conformational differences in the presence of
513457 (Figure 7A). Notably, 513457 reduced the number of
hydrogen bonds between CCND1 and CDK4, a pattern
consistent with the effects observed with P21 (Supplementary
Figure S6). However, it is important to note that the docking
results only permit comparisons before and after 513457’s
binding to CCND1.

To explore an alternative mode of action, wherein 513457 binds
to the pre-formed CCND1-CDK4 complex, we performed two sets
of molecular dynamic simulations. The CCND1-513457-
CDK4 model involved CCND1 binding to 513457 first and then
to CDK4, while the CCND1-CDK4-513457 model involved
CCND1 binding to CDK4 first and then to 513457. Figure 7B
revealed that the hydrogen bond changes in CCND1-CDK4 and
CCND1-CDK4-513457 were quite similar, but notable differences
were observed with CCND1-513457-CDK4. Specifically, during the
later stages of the simulation (around 450-500 ns), the three
complexes displayed distinct variations in the number of
hydrogen bonds, with CCND1-CDK4 forming more hydrogen
bonds than CCND1-CDK4-513457 and CCND1-513457-CDK4.
This finding indicates that 513457 can influence the interaction
strength of both complexes, regardless of its binding order to
CCND1 and CDK4, a dynamic characteristic akin to that
influenced by P21. Intriguingly, binding to CCND1 before
CDK4 resulted in a stronger inhibitory effect.

FIGURE 7
Analysis of the potential inhibitory mode of 513457. (A) Structural comparison of the complex formed by CCND1 with 513457 before and after
binding to CDK4. The brick-red cartoon structure represents the complex formed by 513457 binding to CCND1 and CDK4, while the gray cartoon
structure represents the crystal structure of the CCND1-CDK4 complex. (B) Dynamic changes in the number of hydrogen bonds formed between the
complex formed by CCND1 with 513457 before and after binding to CDK4 and the crystal structure of the CCND1-CDK4 complex, as a function of
time. (C)Distribution of hydrogen bond lifetimes between CCND1 and CDK4 after preferential binding of 513457 by CCNA1. (D) Autocorrelation function
of hydrogen bonds between CCND1 and CDK4 after preferential binding of 513457 by CCND1. (E) The trend of residue motion during the
simulation process.
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Furthermore, we conducted hydrogen bond half-life and
autocorrelation coefficient analyses, specifically focusing on
the scenario where 513457 preferentially binds to CCND1
(Figures 7C,D). The hydrogen bond half-life was notably
lower than that of the CCND-CDK4 complex, and the
autocorrelation coefficient trend resembled that of the
complete inhibition of P21 binding to the CCND1-CDK4
complex. These findings suggest that 513457 effectively exerts
a function similar to P21 in inhibiting the activity of the CCND1-
CDK4 complex, thereby curbing tumor cell proliferation.
Additionally, modevectors (Kagami et al., 2020) derived from
the simulation trajectory revealed a dynamic dissociation of the
dimer, with CCND1 and CDK4 moving in opposite directions
upon 513457 binding (Figure 7E).

In conclusion, our theoretical calculations strongly indicate that
513457 holds great promise as a potential CCND1-CDK4 PPI
inhibitor, capable of effectively replacing P21 and significantly
limiting tumor cell proliferation, particularly in scenarios with
lower P21 levels. These findings open up new avenues for
potential therapeutic interventions targeting the CCND1-CDK4
complex in cancer treatment.

4 Discussion

Designing drugs targeting the CCND1-CDK4 complex presents
several challenges and complexities. The formation of this complex
involves intricate protein-protein interactions between CCND1,
CDK4, and P21, forming a complex signaling network (Dey
et al., 2023). Understanding and navigating these interactions are
crucial to avoid potential side effects and adverse reactions (Zhong
et al., 2019). In addition, ensuring target specificity is essential, as
CDK4 plays a significant role in cell cycle regulation and has
multiple essential functions within cells. However, the known
CCND1 inhibitor, CMLD010509, does not achieve this specificity
(Manier et al., 2017). The drugs must be carefully designed to
specifically target the CCND1-CDK4 complex, avoiding
interference with other critical cell cycle proteins and minimizing
potential toxic side effects (Nasrollahzadeh et al., 2020).

In this study, we aimed to investigate the inhibitory mechanism
of P21 on the CCND1-CDK4 complex using MD simulations.
Additionally, we performed virtual screening to identify potential
compounds with P21-like inhibitory effects on CCND1 and further
analyzed the binding stability of selected compounds with
CCND1 through MD simulations.

The MD simulation results for CCND1 in its apo form provided a
stable foundation for our subsequent analyses (Brewitz et al., 2023). By
delving into the dynamicmechanism of P21 inhibition on the CCND1-
CDK4 complex, we uncovered intriguing insights. P21 primarily
restricts the flexibility of the 50-130 peptide segment, leading to a
decrease in the activity of the CCND1-CDK4 complex. Additionally,
P21 disrupts intermolecular hydrogen bonds between CCND1 and
CDK4, further compromising the binding stability between the two
proteins. These findings deepen our understanding of the inhibitory
mechanism of P21 and shed light on potential avenues for designing
targeted therapies (Bartling et al., 2021).

To identify potential compounds with P21-like effects on
CCND1, we employed a pharmacophore model based on the

P21 loop structure. This approach enabled us to identify several
compounds exhibiting strong binding affinities to CCND1,
thereby suggesting their potential as promising candidates for
developing anti-tumor drugs. The selection process was
meticulously validated through extensive MD simulations to
assess the binding stability between these compounds
and CCND1.

Among the compounds tested, 513457 emerged as a standout
performer, displaying enduring binding with CCND1 over an
extended period. This observation makes 513457 an attractive
and robust candidate worthy of further exploration and
development. Notably, further analysis of the 513457-CCND1
complex uncovered stable interactions with specific amino acids,
such as Met-56 and Trp-63. These findings underscore a strong
structure-activity relationship (Kirchmair et al., 2012),
enhancing our confidence in 513457’s potential as an effective
inhibitor of the CCND1-CDK4 complex protein-protein
interaction.

Moreover, through in-depth molecular dynamic simulations
and docking studies, we gained valuable insights into the
potential inhibitory mode of 513457. Our findings indicate that
this compound can effectively disrupt the interactions between
CCND1 and CDK4, leading to inhibition of tumor cell
proliferation. These exciting results highlight the promise of
513457 as a potential anti-tumor drug, particularly in scenarios
where P21 levels are lower, pointing towards its potential to address
critical unmet medical needs in cancer treatment.

The innovative design of our research approach, integrating MD
simulations, virtual screening, and detailed binding stability
analyses, provides a valuable framework for identifying and
characterizing potential anti-tumor drugs targeting CCND1-
CDK4 interactions. By elucidating the inhibitory mechanism of
P21 and uncovering the exceptional properties of 513457, our study
contributes to the advancement of cancer research and drug
development. Future studies can leverage these findings to
optimize 513457 and explore its therapeutic efficacy in preclinical
and clinical settings, ultimately bringing us closer to more effective
and targeted treatments for cancer patients. The combination of
molecular dynamics simulations and virtual screening holds great
promise for accelerating drug discovery and design, and our work
provides valuable insights into the development of innovative and
potent anti-cancer therapeutics.

5 Conclusion

In this study, we employed molecular dynamics simulations
and computational drug design to investigate the crucial
interactions between CCND1, CDK4, and p21 in the context
of non-small cell lung cancer (NSCLC). Our findings reveal that
p21 exerts its inhibitory effect on the CCND1-CDK4 complex by
curtailing the flexibility of specific peptide segments. Moreover,
we identified a potential novel inhibitor, compound 513457,
which disrupts CCND1-CDK4 interactions similarly to p21,
offering a promising avenue for targeted therapy in NSCLC.
These results illuminate the intricate dynamics of this critical
pathway and provide new insights into potential therapeutic
interventions for NSCLC.
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