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Introduction

Vinylogous systems have always been in focus of organic chemists due to their
unique reactivity, structure, and synthetic application (Curti et al., 2020).
Heterodienes are among the most simple and valuable vinylogous systems in
organic chemistry. The presence of heteroatoms in the conjugated diene induces
specific polarization of the π-system leading to versatile reactivity patterns (Lopes
et al., 2018).

Among the most widely utilized heterodienes in organic synthesis are α,β-
unsaturated carbonyl compounds (enones), 1- and 2-azadienes, 1,2-diaza-1,3-
butadienes (azoalkenes), nitro- and nitrosoalkenes, 2,3-diaza-1,3-butadienes, and
α-dicarbonyl compounds and α-diimines (Figure 1A). Although they are
chemically distinct species, their reactivity shares common features (Figure 1B).
First, most of heterodienes are reactive Michael acceptors in reactions with various
nucleophiles (Lopes et al., 2018; Weinreb, 2019). Second, similarly to normal dienes,
heterodienes enter [4 + 2]-cycloaddition reactions. Due to their electron-deficient
nature, heterodienes react only with electron-rich dienophiles via an inverse-electron
demand Diels–Alder reaction (Baiazitov and Denmark, 2013; Png et al., 2017). Third,
being highly polarized 1,4-synthons, heterodienes are convenient partners for stepwise
[4 + 1]- [4 + 3]- and [4 + 4]- and other [4 + n]-annulation processes involving ylides,
carbenoids, and related species (Selvaraj et al., 2020; Ushakov et al., 2022; Wang et al.,
2024). Additionally, they are commonly involved in multi-component condensation
reactions that lead to the formation of valuable heterocyclic scaffolds (Attanasi et al.,
2009; Lopes et al., 2018; Heredia-Moya et al., 2022). Heterodiene reactions can be
conducted using a variety of organo- and metal-based catalysts, enabling the
asymmetric synthesis of valuable products, especially those found in natural
sources and pharmaceuticals. Enantioselective Michael addition, hetero-Diels-
Alder, and cascade reactions with stable heterodienes (mostly, conjugated enones
and nitroalkenes) have been successfully developed in recent years (Jiang and
Wang, 2013).
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The Frontiers Research Topic “Heterodienes in Organic Synthesis”
comprises a Research Topic of original research articles dealing with the
chemistry and applications of heterodienes. This Research Topic

consists of four articles, which reflect on modern trends in the
synthetic chemistry of the azoalkenes, nitrosoalkenes, as well as α,β-
unsaturated carbonyl compounds and imines.

FIGURE 1
Chemistry and applications of heterodienes. (A) Common heterodienes. (B) Typical reactivity of heterodienes. (C) In situ generation of labile
heterodienes. (D) Heterodienes in biosynthetic pathways. (E) Heterodienes in bioconjugation chemistry.
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Stability of heterodienes

Heterodienes are known to be reactive and chemically labile species.
Thus, azoalkenes and nitrosoalkenes, unless stabilized with bulky or
strong EWG groups, are prone to dimerization and polymerization
reactions. These heterodienes are generated in situ from the
corresponding stable precursors (α-halohydrazones, α-halooximes
and their silyl ethers, ene-nitroso acetals, Figure 1C). In contrast,
conjugated nitroalkenes are normally bench-stable, yet highly
reactive heterodienes. Michael addition to nitroalkenes affords β-
functionalized nitro derivatives that can be further transformed into
amines (via reduction of NO2 group), carbonyls (via Nef reaction),
oximes (via interrupted Nef and Meyer reactions), and other useful
products (Ballini et al., 2007; Sukhorukov, 2023). Nitroalkenes are
recognized for their stability and versatile chemistry, making them
essential building blocks in organic synthesis along with enones
(Halimehjani et al., 2014).

Heterodienes in biosynthesis

Apart from organic synthesis, heterodienes play a crucial role in the
fields of biochemistry and biotechnology, with continuously expanding
applications. Recent research on the biosynthesis of natural compounds
has shown that Nature extensively exploits the versatile chemistry of
heterodienes. The biosynthetic machinery utilizes the conjugate
addition of enolate-type nucleophiles to α,β-unsaturated carbonyl
compounds to synthesize structurally diverse natural products, for
example, polyketides (Miyanaga, 2019). More surprisingly, the
hetero-Diels-Alder reaction of unstable ortho-quinone methides
(o-QMs) catalyzed by specific enzymes (in particular, hetero-Diels-
Alderases) was recently discovered to be a key stage in the biosynthesis
of cannabinoids (Purdy et al., 2022) and some sesquiterpenes (Chen
et al., 2019) (Figure 1D). Heterodiene chemistry offers extensive
possibilities for bioconjugation via fast and catalyst-free “click”-like
reactions compatible with in vivo conditions, for example, [4 + 2]-
cycloaddition of 1,2,4,5-tetrazines (s-tetrazines) (Oliveira et al., 2017;
Zare et al., 2022). Moreover, a reversible character of the Michael
addition to heterodienes has been utilized to design “clip” reactions for
controllable reversible bioconjugation chemistry (Diehl et al.,
2016) (Figure 1E).

Azoalkenes

Conjugated azoalkenes are highly promising intermediates in
organic synthesis since they are synthetic equivalents of enolonium
cation (reversely polarized synthon to enolate anion) (Attanasi et al.,
2009; Uteuliyev et al., 2015). Being powerful Michael acceptors,
azoalkenes react with a variety of nucleophiles leading to α-
substituted hydrazones that can be further hydrolyzed to ketones.
However, the use of P-nucleophiles in these reactions is very limited.
The report by Alexey Sukhorukov et al. describes a convenient protocol
for the Michael addition of phosphine oxides R2P(O)H to the in situ-
generated azoalkenes. The developed method provides a convenient
route to β-hydrazonophosphine oxides that are precursors to important
organophosphorus compounds, including phosphorylated
N-heterocycles, α-aminophosphonates, and vinylphosphonates.

Nitroso- and nitroalkenes

Nitroso- and nitroalkenes are extensively utilized as 4π synthons in
hetero-Diels-Alder reactions with electron-rich alkenes. This
methodology provides straightforward access to 1,2-oxazines and
their N-oxides (cyclic nitronic esters) that serve as intermediates in
the synthesis of highly functionalized natural products with multiple
stereogenic centers (Denmark et al., 2008; Malykhin et al., 2024). The
report by Teresa Pinho e Melo et al. deals with experimental and
theoretical studies on the regioselectivity of the [4 + 2]-cycloaddition of
ethyl nitrosoacrylate with pyrroles, indoles, and 1,6-dihydropyrrolo[3,2-
c]carbazoles leading to fuzed 1,2-oxazine systems. Using the developed
approach, a new heterocyclic system, namely, hexahydropyrido[4′,3’:
4,5]pyrrolo[3,2-c]carbazole, was assembled by the authors.

Other heterodienes

Multi-component one-pot reactions using heterodienes are
currently undergoing significant development. In this Research
Topic, Yue Zhang et al. report new photocatalytic trichloromethyl
radical-triggered annulative reactions of amide-linked 1,7-diynes with
polyhalomethanes. This process involves a cascade of Kharasch-type
addition/nucleophilic substitution/elimination reactions leading to
densely substituted polyhalogenated quinolin-2(1H)-one derivatives.
In another report in this field, Fabiana Nador et al. developed a Cu-
catalyzed A3-type coupling between pyridine-2-carbaldehyde, an
aromatic alkyne, and a substituted tetrahydroisoquinoline to give
new indolizine-dihydroisoquinoline hybrid dyes. The obtained
products exhibit pH-dependent changes in the UV-Vis spectra and
color which makes them attractive candidates to use as pH indicators.

Conclusion

The cutting-edge research articles published in this Frontiers
Research Topic highlight that the chemistry of heterodienes
continues to be an exciting and challenging research area, in
which many more discoveries will be made.
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