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Biomass and its derivatives have broad applications in the fields of bio-catalysis,
energy storage, environmental remediation. The structure and components of
biomass, which are vital parameters affecting corresponding performances of
derived products, need to be fully understood for further regulating the biomass
and its derivatives. Herein, tobacco is taken as an example of biomass to
introduce the typical characterization techniques in unraveling the structural
information, chemical components, and properties of biomass and its derivatives.
Firstly, the structural information, chemical components and application for
biomass are summarized. Then the characterization techniques together with
the resultant structural information and chemical components are introduced.
Finally, to promote a wide and deep study in this field, the perspectives and
challenges concerning structure and composition charaterization in biomass and
its derivatives are put forward.
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1 Introduction

In recent years, there has been a growing interest in the development and utilization of
biomass and its derivatives for various applications across different fields (Tang et al., 2017;
Karahan et al., 2020; Wang et al., 2021; Hou et al., 2022; Malode et al., 2023). These
derivatives, derived from renewable biomass sources such as plant residues, agricultural
waste, and algae, offer a sustainable and environmentally friendly alternative to
conventional nanomaterials. The unique properties of biomass and its derivatives make
them promising candidates for applications in catalysis (Chen et al., 2022; Zhang et al.,
2023), energy storage (Tang et al., 2017; Sawant et al., 2022), environmental remediation
(Chakraborty et al., 2022; Kumari et al., 2023). For example, biomass-derived nanoenzymes
have shown great promise for catalyzing a wide range of chemical reactions with high
efficiency and specificity (Ma et al., 2022; Sun et al., 2022; Yao et al., 2022; Yin et al., 2024;
Yue et al., 2024). The unique nanostructure and surface chemistry of biomass-derived
nanoenzymes allow for precise control over their catalytic activity and substrate specificity,
making them ideal candidates for various applications. Researchers have successfully
tailored the properties of biomass-derived nanoenzymes by modulating factors such as
particle size, morphology, and surface functionalization to optimize their catalytic
performance for specific reactions (Li et al., 2021; Ma et al., 2022; Yin et al., 2024).
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Characterizing biomass and its derivatives is essential for
understanding their structure-property relationships and
optimizing their performance for specific applications. As
these biomass and its derivatives exhibit complex
morphologies, compositions, and surface chemistries, special
characterization techniques are required to probe their
structural features at the nanoscale level. In this systematic
review, we focus on exploring the latest advancements in
typical characterization techniques that enable in-depth
analysis of biomass and its derivatives.

By employing the special characterization techniques,
researchers can gain valuable insights into the size, shape,
crystallinity, surface area, porosity, and functional groups of
biomass and its derivatives (Zhou et al., 2022; Yuan et al., 2023;
Zhong et al., 2023). Techniques such as X-ray diffraction (XRD),
transmission electron microscopy (TEM) and scanning electron
microscopy (SEM) play a crucial role in elucidating the structural
and chemical component of biomass and its derivatives. Moreover,
spectroscopic techniques such as energy-dispersive X-ray
spectroscopy (EDS) and nuclear magnetic resonance (NMR)
provide detailed information about the elemental composition
and molecular structure. These techniques help researchers
understand the mechanisms governing the synthesis, growth, and
properties of biomass and its derivatives.

In this systematic review, tobacco was taken as an example to
show the biomass and its derivatives. Also, typical characterization
techniques are introduced in unraveling the structural,
morphological, chemical, and properties of tobacco and its
derivatives. By providing a comprehensive overview of these
techniques and their applications in research of biomass and its
derivatives, we seek to pave the way for future advancements in the
development and optimization of sustainable nanostructures with
tailored properties for diverse applications.

2 Biomass and the derived products

Tobacco is a typical biomass and has become one of the most
important crops globally, extensively cultivated and consumed
(Geist, 2021; Sifola et al., 2023). Its main usage lies in the
production of various tobacco products, including cigarettes,
cigars, pipe tobacco, and chewing tobacco (Banožić et al., 2020;
Banožić et al., 2021; Huang et al., 2021; Manca et al., 2021). Nicotine,
the main active ingredient in tobacco leaves, possesses stimulant
effects but also carries potential health risks. Smoking is recognized
as a leading cause of various serious health issues, including cancer,
cardiovascular diseases, and respiratory disorders (Slomski, 2016;
Banožić et al., 2020;Wu et al., 2020; Banožić et al., 2021;Manca et al.,
2021; Yadav et al., 2024). Aiming at aiding smokers in overcoming
nicotine addiction, tobacco is also utilized in the production of
nicotine replacement therapy products, such as nicotine gum,
patches, and inhalers (Charlton, 2004; Slomski, 2016).

Apart from typical products, tobacco finds applications in the
production of fertilizers, insecticides, and the extraction of
beneficial bioactive compounds like phenols, solanesol,
polysaccharides, and proteins for human health (Banožić et al.,
2021; Bazok et al., 2021; Mandić et al., 2023). Additionally, as a
biomass resource, tobacco can be utilized in the energy and
chemical industries (Zhang et al., 2016), as shown in Figure 1,
we list the application model diagram of tobacco. For example,
Tobacco can be used to produce energy-related products such as
biooil, biochar, and pyrolysis gas through pyrolysis (Lin et al., 2016;
Yan et al., 2018; Ren et al., 2021; Muzyka et al., 2022). The chemical
applications of tobacco biomass mainly involve the production of
cellulose, hemicellulose, and lignin, which can be further
hydrolyzed to yield a broad range of chemicals (Tuzzin et al.,
2016; Sun et al., 2019). Yan et al. used a fluidized bed reactor to
pyrolyze tobacco waste such as leaves and stems, successfully

FIGURE 1
Carton model showing the applications of tobacco.
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producing bio-oil containing aromatic compounds for use as liquid
fuel. Sha et al. successfully prepared nitrogen-doped porous carbon
with a specific surface area of 1,104 m2 g−1 by simple pretreatment
of waste tobacco with melamine and applied it to electrochemical
capacitors and carbon dioxide capture (Sha et al., 2015). The
electrochemical performance study and carbon dioxide
adsorption results proved that the method is feasible and has
potential industrial applications. Using glutathione-assisted waste
tobacco leaves as a precursor, Yu et al. achieved the synthesis of
novel red fluorescence emission biomass-based carbon nanodots
via a one-pot hydrothermal method. These carbon nanodots were
then employed in the development of a sensing system capable of
detecting and removing mercury ions, achieving an impressive
removal rate of 99.4% (Yu et al., 2021; Yang et al., 2022b). Yang
et al. successfully synthesized C-dots from waste tobacco stems by a
simple pot hydrothermal method with the help of carbon black, and
constructed a sensing system for the detection of tetracycline
antibiotics, with a limit of detection for antibiotics of 1.328 nM
(Yang et al., 2022a). As shown in Table 1, we have summarized the
acquisition technologies and applications of tobacco biomass and
its derivatives.

3 The applications of tobacco biomass
and its derived materials

Tobacco is widely cultivated as an important non-food cash crop
worldwide, generating large quantities of biomass (Wang and
Bennetzen, 2015; Jassbi et al., 2017), during the vegetative and
post-harvest processes. When talking about the applications of
tobacco, we are not limited to its use as a source of smoking. In
fact, the composition of biomass is complex and diverse, and it has
many derivatives, so tobacco plants have broader application
prospects (Gui et al., 2024). Biologically, components such as
nicotine in tobacco are not only a major component of smoking,
but also possess medicinal uses. Nicotine is extracted for the
preparation of smoking cessation products (Baker et al., 2016;
Lindson et al., 2019), such as chewing gums and patches, which
provide smokers with an effective means of quitting smoking. In
addition, the bioactive compounds in tobacco can be used in the

preparation of biopesticides to replace traditional chemical
pesticides (Zhang et al., 2019), thereby reducing environmental
pollution and impact on human health. In terms of chemistry,
extracts and essential oils from tobacco contain a wide range of
chemical constituents (Bhisey, 2012; Zou et al., 2021) that can be
widely used in industries such as food, flavouring and cosmetics to
add unique flavours and functionality to products. In addition,
compounds such as lignin and cellulose in tobacco can be
converted into renewable energy sources (Grisan et al., 2016;
Barla and Kumar, 2019; Srbinoska et al., 2021), such as
bioethanol and biodiesel for power generation and transport
through biomass energy technology, providing a new direction
for the energy industry. These applications have enriched the
utilisation value of tobacco, providing a diverse source of
resources for medicine, agriculture, food and energy.

4 Characterization of morphological
and compositional information

The composition of biomass profoundly influences the
properties and applications of itself and its derivatives, such as
combustion performance, catalytic performance and degradability.
Therefore, advanced characterization techniques are needed to
investigate the composition of biomass (Demirbas, 2004). Firstly,
XRD can be utilized to study tobacco’s crystallinity. Secondly,
biomass comprises cellulose, hemicellulose, and lignin, where
NMR and high-performance liquid chromatography (HPLC) can
elucidate tobacco’s molecular structure, providing references for
further research into its derivatives. Morphology profoundly affects
biomass storage, distribution, accumulation, and energy conversion
efficiency within organisms (Leth-Espensen et al., 2020). On one
hand, nitrogen adsorption-desorption and mercury intrusion
porosimetry can be applied to analyze tobacco’s pore structure,
furthering research into its applications in adsorption, catalysis, and
energy fields. On the other hand, significant advancements in
electron microscopy characterization techniques enable more
intuitive observation of tobacco morphology through SEM and
observation of its microstructure through TEM (Inkson, 2016; Yu
et al., 2021), facilitating deeper research into related mechanisms.

TABLE 1 Access to tobacco derivatives and their applications.

Techniques Materials and
chemicals

Applications References

Pyrolysis Biooil; porous carbon;
pyrolysis gas

Liquid fuel; electrochemical capacitors Lin et al. (2016), Yan et al. (2018), Ren et al.
(2021), Muzyka et al. (2022)

Hydrothermal method Biomass-based carbon
nanodots

Sensing system Yu et al. (2021), Yang et al. (2022a), Yang et al.
(2022b)

Heating methods Biomass-derived carbon
materials; TS-biochar

Adsorption; achieving long-term stable restoration of heavy
metal-polluted soils

Kazmierczak-Razna et al. (2017), Yu et al. (2021)

Liquid–liquid
microextraction

Polyamines Nucleic acid metabolism, protein synthesis, cell growth, and
nicotine synthesis precursors

Cai et al. (2016), Deng et al. (2019)

Supercritical fluid
extraction

Nicotine Alkaloids and substances resistant to heat damage Saginovich-Ikhsanov et al. (2019), Djapic (2022)

Solid Phase Extraction Nitrosamines The role of important pathogenic factors in Lung,
Pancreatic, Oesophageal and Oral Cancers

Zhang et al. (2018), Ishizaki and Kataoka (2019)
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Finally, utilizing EDS technology combined with electron
microscopy provides compositional information from specific
local regions. Compared to other sample analysis methods, its
advantage lies in the ability to select a particular area and
visualize the distribution of components. We have summarized
the characterization techniques and instruments related to
tobacco discussed in this paper with a diagram, as shown in
Figure 2. In summary, based on the above characterizations,
opportunities are provided for a profound understanding of
biomass’s basic structure and underlying mechanisms of related
evolutions, thereby offering scientific references for more rational
biomass applications.

4.1 Crystal phase—X-ray diffraction (XRD)

Natural polymeric compounds in biomass have unique
structural characteristics such as crystal phases and crystallinity.
XRD, which is the result of mutual interference between X-rays and
crystalline samples, can be applied to analyze the natural polymeric
compounds in biomass based on the positions and intensities of the
diffraction peaks in the pattern, and thus infer the phase
composition and crystallinity of the samples.

Each crystalline phase in an XRD pattern has a unique set of
diffraction peaks and intensities, and diffraction peaks of different

phases may overlap but do not interfere with each other. Dallé et al.
investigated the changes in cellulose crystal type and crystallinity of
tobacco straw waste (TSW) before and after NaOH treatment
(exposure times of 3 and 5 h, respectively), as shown in
Figure 3A (Dallé et al., 2021). Miller index of (110) is related to
cellulose type I structure while miller index of (1–10) is related to
cellulose type II. With 10% NaOH processing for 3 and 5 h (named
TSW\10\3 and TSW\10\5, respectively), the cellulose type I
structure is still maintained as the original TSW without NaOH
treatment. After 15% NaOH treatment, miller index of (1–10)
corresponding to cellulose type II is appeared. The results
indicate that the conversion of cellulose I to cellulose II is higher
at higher concentrations of NaOH solutions, a process that typically
occurs during chemical treatment of natural fibers with NaOH due
to hydrogen bonding reactions that lead to decrystallization and
change the polycrystalline form of cellulose. This improves the
properties of the cellulose and provides the basis for applications
in tobacco stalks. Ning et al. studied the changes in the crystalline
structure of samples of different tobacco forms after microbial
fermentation and evaluated the effects of fermentation on these
characteristics, laying the foundation for a better understanding of
the correlation between microorganisms and tobacco quality (Ning
et al., 2023).

XRD can be used for qualitative analysis of phases, determining
grain size, lattice parameters, etc. In situations where the phase

FIGURE 2
Ilustration showing the characterization techniques.
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category is known, the phase can be quantitatively analyzed by
measuring the integral diffraction intensity of phase diffraction
peaks to estimate their relative contents. Zhao et al. studied the
quantitative characterization of the crystal structure characteristics
of plant cellulose fibers during the process, as shown in Figure 3B.
The results showed that the change in the crystallinity index (CrI)
during the beating process of cellulose presented a two-stage feature,
namely, an initial increase followed by a decrease (Zhao et al., 2017).
In the first beating stage, the increase in CrI may be due to the action
of beating on the amorphous region of cellulose, leading to a
reduction in the amorphous region and a relatively increase in
the crystalline region. In the second beating stage, the slight increase
in CrI may be related to the removal of lignin and hemicellulose
from cellulose, and the subsequent downward trend may be due to
the continued destruction of the crystal structure, providing a
research basis for the effect of mechanical stirring on cellulose
crystal structure (Zhao et al., 2017). Crystallinity calculated from
XRD data needs to be background-calibrated to obtain an estimate,
and the most widely used peak height method overestimates the true
crystallinity (Barnette et al., 2011).

4.2 Molecular structure—nuclear magnetic
resonance (NMR) and high-performance
liquid chromatography (HPLC)

Biomass is composed with many moleculars, such as lignin,
sugar and polyphenols. Among them, lignin is present in most
terrestrial plants and is derived from hydroxycinnamyl alcohols and
related compounds (monolignols). It is an oxidatively coupled
aromatic biopolymer (Lee et al., 2019; Tobimatsu and Schuetz,
2019). Studies have shown that lignin accounts for 25%–30% of
the biomass of most plants, making it one of the most abundant
renewable resources on earth (Norgren and Edlund, 2014;
Ragauskas et al., 2014; Schutyser et al., 2018). Lignin in tobacco
is mainly found in tobacco leaves, where it is abundant and may
serve as a valuable industrial material. It is not only used as a raw

material for the production of second-generation lignocellulosic
ethanol and biomass fuels but also possesses attractive properties
such as antioxidant, UV-blocking, and antimicrobial activities (Shin
et al., 2009; Kai et al., 2016; Roopan, 2017; Collett et al., 2019). Lignin
in tobacco also has a significant impact on the quality and safety of
tobacco products. In order to improve the quality of tobacco
products, the team led by Gao explored the chemical structure
and content of lignin in tobacco. Through two-dimensional
heteronuclear single quantum coherence nuclear magnetic
resonance (2D HSQC NMR) technology for structural
characterization, they identified 10 major lignin basic units in
tobacco lignin samples (Figure 4) and the bonding structures
between units, along with signals for 27 related structures. In 2D
HSQC NMR, the peaks of carbon and hydrogen nuclei directly
connected to functional groups are correlated, greatly improving the
resolution of the spectrum by obtaining hydrogen nucleus data, with
sensitivity more than 30 times higher than traditional 13C NMR
(Miao et al., 2022). Through semi-quantitative analysis of lignin in
tobacco samples, it was found that the lignin in tobacco samples is of
the SGH type, with guaiacyl units (G) being the predominant basic
units, ranging from 50.72% to 73.50% in content, while syringyl
units (S) range from 15.62% to 26.51%, and p-hydroxyphenyl units
(H) range from 5.66% to 28.90%. The β-aryl ether unit β-O-4 (A) is
the predominant interunit linkage, ranging from 72.93% to 92.97%
in content, followed by the resinol unit β-β (C), ranging from 3.88%
to 15.81% (Miao et al., 2022). 2D HSQC NMR technology provides
significant assistance in the analysis of complex lignin structures in
tobacco, as well as in the analysis of cellulose and hemicellulose, and
even in elucidating the fundamental properties of tobacco biomass.
It lays the groundwork for the analysis and application of
lignocellulose in chemical engineering and energy fields.

Polyphenolic substances in tobacco leaves mainly include
chlorogenic acid, rutin, scopolamine, among others. The content
of polyphenols varies with the genetic type of tobacco and
cultivation conditions. It is generally believed that polyphenols
make a significant contribution to the quality of smoke and are
one of the key components in producing the aroma of tobacco

FIGURE 3
(A) X-ray differentiation of tobacco stalk wastes samples with and without alkaline treatment (reproduced with permission from Dallé et al. (2021)).
(B) The Evolution of CrI of cellulose obtained from beaten tobacco stem pulp XRD patterns by peak height method (top) and deconvolution method
(bottom) (reproduced with permission from Zhao et al. (2017)).
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smoke. Therefore, researching polyphenolic substances in tobacco
can better complement and coordinate the chemical components of
tobacco leaves of different regions, types, and grades, thereby
obtaining products that meet quality requirements. Zhang Tian’s
team used solid-phase extraction for preseparation and HPLC to
determine ten kinds of plant polyphenols in tobacco samples,
including 5-O-caffeoylquinic acid, chlorogenic acid, 4-O-
caffeoylquinic acid, caffeic acid, esculin, scopoletin, scopolin,
rutin, kaempferol-3-rutinoside, and quercitrin (Figure 5). HPLC,
based on classical liquid chromatography, uses liquid as the mobile
phase and employs a high-pressure liquid delivery system (Xiao
and Oefner, 2001; Horváth, 2013). Different solvents with single
polarity or different proportions of mixed solvents, buffer solutions,
etc., are pumped into chromatographic columns containing
extremely fine particles of efficient stationary phases (Xiao and
Oefner, 2001; Horváth, 2013). Following the separation
of components in the chromatography column, they proceed to
the detector for subsequent analysis, thereby enabling
comprehensive sample examination (Xiao and Oefner, 2001;
Horváth, 2013). The standard recovery rate was 94%–105%; RSD
was 1.3%–1.5%. This method was used to determine the ten kinds
of plant polyphenols in tobacco samples, and the results were
satisfactory.

Sugars are another important class of compounds in tobacco.
Water-soluble sugars, especially reducing sugars, are closely related
to the aroma and taste of tobacco. Sugar compounds are also the
main precursors of harmful components such as tar, polycyclic
aromatic hydrocarbons, and acetaldehyde in tobacco smoke
(Sanders et al., 2003).

The HPLC-NMR coupling technique has matured with
technological advances, but further optimisation is still required,
especially to improve the sensitivity of NMR, e.g., for cellulose
analyses, which can be interfered with by other non-cellulosic
elements (Barnette et al., 2011).

4.3 Pore structure—gas adsorption and
mercury intrusion porosimetry

Biomass has a natural porous structure. Due to its wide
availability and low cost, biomass is considered an ideal
precursor for the preparation of biomass-derived porous
materials, such as porous carbon materials. Different biomasses
could produce channels with different sizes for transporting water
and nutrients, and the resulting porous carbon materials might
retain these original different channel structures. Therefore, they
could have various industrial applications due to these pores, such as
adsorption, separation, catalysis, and so on. For more appropriate

FIGURE 4
2D HSQC NMR spectra of lignin from middle leafs of flue-cured tobacco provide the molecular structures of lignin components (reproduced with
permission from Miao et al.).

FIGURE 5
Chromatogramof standard sample (A) and tobacco sample (B) (1.
5-O-cafoylquinicacid; 2. chlorogenic acid; 3. 4-O-caffoylquinic acid;
4. caffeic acid; 5. esculetin; 6. scopoletin; 7.scopoltin; 8. rutin; 9.
kaempferol-3-rutinoside; 10.quercitrin).
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applications, the study of the pore structure of porous materials is
very important.

According to the International Union of Pure and Applied
Chemistry (IUPAC) standard (Sing et al., 1985), porous materials
are classified into three categories based on pore size: micropores
(<2 nm), mesopores (2–50 nm), and macropores (>50 nm). For the
analysis of microporous or mesoporous pore structures, the gas
adsorption method is commonly used (Barrande et al., 2009; Vogt
et al., 2019; Benavente et al., 2021). Gas adsorbs on the surface of a
solid adsorbent, preferentially entering smaller pores to form a
monolayer adsorption. As the pressure increases, multilayer
adsorption occurs. By measuring the volume of gas adsorbed at
different pressures, an adsorption-desorption isotherm is obtained.
This data, combined with theory, allows for the analysis of the
porous material’s structure, providing information on the material’s
specific surface area, pore volume, and pore size (Sing, 2001), with
the Brunauer-Emmett-Teller (BET) theory being the most
widely used.

Tobacco, as an important porous biomass material, has a pore
structure that significantly affects its chemical and physical
properties. In cigarette production, the moisture retention and
equilibrium moisture content of tobacco are closely related to its
pore structure (Lou et al., 2014; Yin et al., 2015). During the flavoring
and casing process, the tobacco’s pore structure influences its
adsorption properties for flavorings and fragrances (XueYi et al.,
2012). Additionally, the pore structure of tobacco is an important
factor affecting its combustion and pyrolysis performance (Guo
et al., 2019). The adsorption gas commonly used for characterizing

tobacco pore structure is nitrogen at a temperature of 77 K. For
example, Liu et al. used the nitrogen adsorption method to measure
the specific surface area and porosity of three different types of
tobacco leaves (flavored tobacco, flue-cured tobacco, and burley
tobacco), finding a clear visual difference in structure among them at
the same sample volume: burley tobacco was more porous, flavored
tobacco relatively dense, and flue-cured tobacco in between (Liu
et al., 2015). In Section 2, Sha et al. obtained the specific surface area
of porous carbon (1,104 m2 g−1) using the same method (Sha et al.,
2015). Moreover, Tan et al. achieved excellent specific surface area
performance of 2,749 m2 g−1 with porous carbon prepared from
tobacco stems and leaves, laying the foundation for further
applications in catalysis and energy (Tan et al., 2023).
Furthermore, combining nitrogen adsorption-desorption with
other analyses can correlate the material’s structure and
properties. Yin et al. based on the BET theory, used nitrogen
adsorption to measure the specific surface area and volume of
different environmental flue-cured tobacco samples (Yin et al.,
2015). Combined with chemical composition analysis, they found
a direct connection between the physical structure and chemical
composition of tobacco and moisture diffusion, indicating that the
content of pectin, total sugars, water-soluble sugars, and specific
pore volume significantly contribute to the effective diffusion
coefficient of water.

The biomass-derived carbon materials are porous as well,
there are various types of pore shapes, as shown in Figure 6A.
Kazmierczak-Razna et al. used low-quality hay as raw material
and activated the resulting char with phosphoric acid to produce

FIGURE 6
(A) Modes of carbon materials derived from biomass. (B) Nitrogen adsorption isotherms and (C) pore size distributions of porous carbons
(reproduced with permission from Kazmierczak-Razna et al. (2017)).
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phosphorus-containing carbon materials (Kazmierczak-Razna
et al., 2017). They studied the effects of mild and conventional
heating methods on the physicochemical properties of the
materials. The BET method was used to characterize the
materials’ porous structures with nitrogen adsorption, as
shown in Figure 6B. All samples obtained Type I isotherms
with small hysteresis loops, indicating the presence of pores with
larger diameter, including mesopores of 2–4 nm, as well
elucidated by the pore volume distribution function
calculated by DFT (Figure 6C), which showed the differences
in porous structure due to heating methods.

In the characterization of pore structure, the mercury
intrusion method is considered as a complementary method
to gas adsorption. The gas adsorption method measures
relatively smaller pore sizes, while the mercury intrusion
method covers a broader range of pore sizes (4 nm–400 μm).
This method involves applying external pressure to force non-
wetting liquid mercury into the sample’s pores, obtaining a curve
of pressure versus mercury volume, thereby determining the
pore size parameters of the sample (Dim et al., 2016). Xu et al.
used the mercury intrusion method to investigate the changes in
pore size distribution of flue-cured tobacco and burley tobacco
during the drying process under different drying devices, such as
drum and moving bed dryers (Xu et al., 2015). The results
showed that the internal pore volume of the tobacco leaves
shrank noticeably under different drying methods, and their
volume shrinkage rate was linearly related to the moisture
content. Guo et al. utilized the mercury intrusion method to
measure the pore sizes of different types of tobacco, exploring
the relationship between the tobacco’s pore structure and its
physical moisture retention properties (Guo et al., 2019). They
found that under the same conditions, the water loss rate was
highest for reconstituted tobacco leaves and expanded stem,
followed by burley and flavored tobacco, with flue-cured tobacco
having the lowest water loss rate. Furthermore, the wettability of
various tobacco samples was negatively correlated with the

average pore size of their micropores. Gas adsorption and
mercury compression can clearly measure the pore size
distribution of materials, but there are some limitations, such
as gas adsorption has a low measurement accuracy for large pore
size materials, while mercury compression requires the use of
toxic mercury as a medium, which makes it more dangerous to
operate the process, and the fragile structure of the biomass is
susceptible to damage when mercury enters its pores.

4.4 Morphology—scanning electron
microscopy (SEM)

The morphology is an important parameter affecting the
catalysis and optical performance of biomass and its derivatives.
The morphology of biomass is greatly affected by the environment
and could be inherited by the derivatives. It is necessary to
investigate its morphological structure using advanced
characterization tools. SEM is a technique that utilizes signals of
secondary electrons and backscattered electrons to directly reflect
the surface morphology and pore structure of biomass and biochar
(Li et al., 2021). Yang et al. examined the upper and lower surfaces of
various tobacco samples using SEM (Figure 7) discovering that the
stomata of all three types of tobacco had similar shapes, with narrow
fusiform stomatal slits surrounded by a heart-shaped ring of bulges
(Yang et al., 2015). The study found that the upper surfaces of the
three types of tobacco samples were smoother with larger pleats and
gentler slopes, and had fewer stomata (Figures 7A–C). In contrast,
the lower surfaces had smaller and denser pleats, more stomata
(Figures 7D, E) (Yang et al., 2015). It is hypothesized that the
variation between the upper and lower surfaces of the leaves may be
linked to photosynthesis. The upper leaves need to participate in
more photosynthesis while the lower leaves less.

Biochar obtained from different heating temperatures exhibits
varying morphologic structures. Sha et al. (Sha Y. et al., 2015)
observed the structure of N-doped porous carbons prepared from

FIGURE 7
SEM images of (A–C) the upper surfaces and (D–F) the lower surfaces of spice, roasted, and white-ribbed tobacco samples, respectively
(reproduced with permission from Yang et al. (2015)).
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waste tobacco using SEM, which reveals that porous carbons obtained
from 500°C exhibited a smooth surface, while 700°C and 900°C
showed increased surface roughness. SEM allows observation of
biomass, but only the surface morphology of the sample can be
observed, while the structure below the surface cannot be detected.

4.5 Microstructure—transmission electron
microscopy (TEM)

The microstructure of biomass plays a crucial role in
determining its properties and functionalities, such as strength
and adsorption capabilities. Consequently, researchers have
increasingly focused on investigating the microstructure of
biomass. TEM enables the examination of ultrastructural changes
in biological samples under varying conditions, shedding light on
modifications in organelle structures and facilitating the study of cell
organelle alterations. Adeel et al. observed significant ultrastructural
changes in N.benthamiana leaf tissues following tobacco mosaic
virus (TMV) infection using TEM (Adeel et al., 2021). The study
revealed the emergence of multiple large starch granules, anomalous
distribution of plastoglobules, distortion of thylakoid membranes,
disruption of grana stalks, and invagination of vesicular membranes
(Figure 8A). They also noted a reduction in the number of
chloroplasts compared to healthy controls, exhibiting irregular

sizes and shapes, providing visual evidence for exploring leaf cell
responses to viral infections (Figure 8B).

The transformation of the carbon matrix derived from tobacco at
different temperatures showcases diverse microscopic details, with
TEM offering a valuable tool for visualizing the microstructure of
smoky charcoal. Baliga et al. examined the morphological changes of
pyrolyzed tobacco and its constituents—cellulose, pectin, and
lignin—in a helium environment (Baliga et al., 2003). High-
resolution TEM characterized the carbon matrix generated from
tobacco and pectin charcoal. As depicted in Figure 8C, the sample
displayed a uniformly amorphous nature after undergoing high-
temperature treatment at 350°C. With increasing temperature, the
presence of graphitic flakes gradually intensified. At 750°C, these
graphitic flakes were embedded within nearly amorphous material,
transitioning into a non-homogeneous mixed microcrystalline
structure from amorphous to graphiti, illustrated by the arrows in
Figure 8D. Furthermore,Miao et al. directly observed the morphology
and particle size distribution of C-dots prepared from tobacco using
TEM. They found that the C-dots existed in sizes of 2.14 ± 0.3 nm
without aggregation, demonstrating satisfactory uniformity (Miao
et al., 2018).

Three-dimensional imaging of tobacco cells using SEM and TEM
can yield volumetric data on organelles, enabling a comprehensive
visualization of tobacco ultrastructure. Zechmann et al. employed
TEM to reconstruct tobacco cells from 71 sections, revealing that

FIGURE 8
(A, B) TEM observation of N.benthamiana leaf tissues infected with TMV (SG, starch granule; PG, plastoglobule; TM, thylakoid membrane; VM,
vacuole membrane; CH, chloroplast) (reproduced with permission from Adeel et al. (2021)). (C) TEM images showing much of this sample displayed a
homogeneous, amorphous microstructure (arrows) at 350°C. (D) TEM images showing graphite sheets is formed at 750°C (marked in left side of image
with arrows) and the sample was heterogeneous, with mixed microstructures ranging from amorphous to graphitic (reproduced with permission
from Baliga et al. (2003)).
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vesicles dominate approximately 70% of the total cell volume
(Figure 9) (Zechmann et al., 2022). Despite the advancements,
conventional microscopy still leaves certain aspects of plant
meiosis unexplored. Addressing this gap, Mursalimov et al. utilized
serial block-face scanning electron microscopy (SBF-SEM) to delve
into tobacco male meiosis, facilitating three-dimensional
ultrastructural analysis (Mursalimov et al., 2021). Their discoveries
highlighted nucleus migration in 90%–100% of tobacco meiotic cells,
significantly advancing plant meiosis research. Notably, all
assessments presented are objective and backed by evidence. TEM
has a high resolution for revealing the microstructure, however the
development of low electron dose transmission electron microscopy
techniques is necessary because the samples required for TEM are thin
and highly susceptible to damage to the sample structure, especially
biomass is generally sensitive to electron beams.

4.6 Elements analysis—energy dispersive
X-ray spectroscopy (EDS)

Biomass is rich in elemental species, such as carbon, oxygen and
hydrogen. Processing and the induction under different conditions
produce corresponding changes in species and contents, which in
turn affects the form and content of elemental species in biomass
and its derivatives, and further affect the performance. Therefore, it
is of great importance to study the elemental species and their
contents. EDS, as one of the elemental analysis methods, can be used
to examine the elemental composition and content of samples to
obtain more comprehensive compositional information (Abd
Mutalib et al., 2017). To extract information on specific surfaces
and areas, EDS is generally used in conjunction with SEM and TEM,
which have local feature. Precisely because of this, EDS has
advantages that other compositional analysis methods lack; it can
analyze both the structure and the composition simultaneously, even
achieving nanometer-level resolution. Additionally, it can

investigate the local composition to explore its distribution
uniformity.

Yu et al. investigated the surface morphology changes of biochar
after Cd2+ ion adsorption, as well as the corresponding changes in
adsorption capacity (Yu et al., 2021). They found that the surface of
biochar became rough due to corrosion by heavy metal ion
adsorption. A new characteristic peak of Cd was observed in the
EDS spectrum (Figures 10A–F), which was absent in that of raw
biochar, indicating Cd2+ ion adsorbed on the tobacco stalk was
converted onto biochar. This phenomenon provides evidence for
studying the mechanism of Cd2+ adsorption by biochar. Sha et al.
observed the elemental distribution of nitrogen-doped porous
carbon, which were prepared from waste tobacco by a simple
melamine pretreatment process and calcination (Sha Y. et al.,
2015). The 19.08 wt% of N content and well-distribution in waste
tobacco suggests that pre-treatment of the melamine process is a
feasible way to produce fortified material from natural crops
(Figures 10G–I), which makes a transition from useless to useful.

Biomass combustion produces a large amount of gaseous and
particulate pollutants. Especially when incomplete combustion
occurs, a large amount of particulate matter (PM), CO and
polycyclic aromatic hydrocarbon are released (Bignal et al., 2008;
Yao et al., 2023). The main component of particulate pollutants is
carbonaceous particles, which greatly affect the health of human
beings and thus it is of great importance to study the elemental
composition and size. Slezakova et al. analyzed the chemical
composition and morphological parameters of 4,000 individual
particles by SEM combined with X-ray microanalysis, which
provided specific information on the elemental composition of
individual particles as well as their size and morphology
(Slezakova et al., 2011). The effect of tobacco smoke on PM was
investigated and the results showed that tobacco smoke mainly leads
to PM2.5. EDS is able tomeasure heavy elements with high accuracy,
but not for light elements, so it has some limitation for biomass
consisting of a large number of light elements such as C, H, and O.

FIGURE 9
(A, B) 3D reconstruction of tobacco leaf cell imaged with TEM. Cell wall (gray), chloroplasts (green), mitochondria (red), nucleus (brown), peroxi-
somes (purple), and vacuoles (blue). Cube = 2 μm3 in (A) (reproduced with permission from Zechmann et al. (2022)).
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5 Characterization for pyrolysis process
of tobacco

Studying dynamic processes is crucial for rational biomass
utilization. Combining thermogravimetry and infrared
spectroscopy, tobacco’s pyrolysis processes are characterized,
which deepens the understanding of their dynamic nature and
improving tobacco biomass resource development and energy
utilization efficiency (Marcilla and Berenguer, 2023).

Pyrolysis is one of the most widely used thermal conversion
techniques for biomass transformation, capable of decomposing
biomass into solid biochar, liquid bio-oil, and combustible gas to
meet different needs. Thermogravimetric analysis (TGA) is a
thermal analysis method that measures the relationship between
the mass of a substance and temperature or time under a controlled
temperature program in a certain atmosphere (Loganathan et al.,
2017). It uses thermogravimetric curves (TG curves) and differential
thermogravimetric curves (DTG curves) obtained during the
process to interpret the physical or chemical changes in the
thermal reaction process of the substance (Guo G. et al., 2019).
This method, known for its simple principle and sensitive detection,
has been widely applied in the qualitative and quantitative analysis
of biomass pyrolysis processes, as well as the determination of

kinetic parameters. It is also involved in the tobacco industry.
For example, Mu et al. used TGA to study the pyrolysis
characteristics of tobacco at a wide heating rate (10–500 K/min).
The TG curve in Figure 11A shows that tobacco begins to pyrolyze at
373.15 K and completes pyrolysis at 1,173.15 K. Analysis of the DTG
curve in Figure 11B reveals that the peak of the curve aggregates as
the heating rate increases. Then, by deriving and calculating the TG/
DTG curves for each component, kinetic parameters such as the
mass fraction of each pyrolysis product, pre-exponential factor, and
activation energy were obtained, finding that the activation energy of
each reaction component is not sensitive to the heating rate (Mu
et al., 2022). Traditional TGA has certain limitations in measuring
large particles due to the influence of heat and mass transfer
performance on pyrolysis analysis. Therefore, Guo et al. proposed
a method based on macro thermogravimetric analysis (MTGA) to
explore the pyrolysis differences among different tobaccos (Guo
et al., 2022). This method characterizes differences using the root
mean square error of the differential thermogravimetric curves,
comparing MTGA and TGA for tobaccos from different parts,
provinces, grades, and years. It was found that MTGA has the
characteristics of fast identification speed and strong identification
capability, able to accurately characterize the pyrolysis differences of
different tobacco samples.

FIGURE 10
(A–C) The SEM images and (D–F) EDS spectra of biochar that produced fromwaste tobacco before and after Cd2+ ion adsorption (reproduced with
permission from Yu et al. (2021)). (G–I) SEM image and corresponding elemental mapping of C and N elements of porous carbon that produced in 700°C
calcination of waster tobacco (reproduced with permission from Sha et al. (2015)).
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In practical material analysis, TGA is often used in conjunction
with other analytical techniques to provide amore comprehensive and
accurate characterization of material properties. Peng et al. utilized
thermogravimetric-mass spectrometry (TG-MS) and pyrolysis-gas
chromatography/mass spectrometry (Py-GC/MS) techniques to
analyze the effect of oxygen on the pyrolysis process of tobacco
(Peng et al., 2021). They found that the introduction of oxygen
changed the chemical structure of tobacco, making it more prone
to deoxygenation reactions and resulting in the formation of
more ordered char surfaces. Besides being used with mass
spectrometry, TGA can also be coupled with Fourier-transform
infrared spectroscopy. Barontini et al. used thermogravimetric-
Fourier transform infrared (TG-FTIR) spectroscopy to qualitatively
and quantitatively analyze the volatile substances produced during the
pyrolysis of tobacco (Barontini et al., 2013). They obtained
quantitative data for key volatile substances such as CH3CHO,
CO2, CO, nicotine, and water. They characterized the glycerol
produced during pyrolysis based on a fixed-bed reactor, thus
obtaining a complete compositional diagram of the gases formed
during the pyrolysis of tobacco in nitrogen and air.

Infrared absorption spectroscopy is a commonly used method for
determining and quantitatively analyzing substances. Its principle lies in
the interaction between infrared light and the molecules of the sample
being tested. This interaction causes changes in molecular dipole
moments due to vibration or rotation, leading to transitions of
vibrational and rotational energy levels from the ground state to the
excited state, thereby formingmolecular absorption spectra (Movasaghi
et al., 2008). Qualitative analysis is carried out by unfolding the position
and shape of the spectrum based on the characteristic absorption
frequencies of functional groups, used for identifying known
substances and detecting functional groups contained in unknown
substances. Quantitative analysis of the sample is performed based
on the intensity of characteristic peaks, thereby determining the
molecular structure of the substance (Movasaghi et al., 2008).

Tobacco belongs to the Solanaceae family, and there are
significant differences in the chemical composition of tobacco

from different regions and varieties. Wang et al. studied the gases
released during the pyrolysis of cigar filler tobacco (CFT), cigar
wrapper tobacco (CWT), and flue-cured tobacco (FCT) using FTIR
(Wang et al., 2021). They found that CFT released less CO2

compared to CWT, and the amount of CO2, CH4, CO, and
aromatic compounds released by flue-cured tobacco was lower
than that of cigar tobacco. Zhou et al. studied the pyrolysis of
regenerated tobacco slices (RTS)modified withmelamine phosphate
(MP) prepared by the papermaking process (Zhou et al., 2013). The
3D FTIR spectra (absorbance-wavenumber-minutes) of the gas
products obtained during the pyrolysis of pure RTS and MP-
modified RTS showed that the main gases released were H2O,
CO2, CO, NH3, carbonyl compounds (e.g., aldehydes, ketones,
and acids), alcohols, phenols, alkanes, and alkenes. At temperatures
above 400°C, the condensation of melamine phosphate groups in MP
gradually increased with the elimination of NH3, leading to a sharp
increase in NH3 release intensity in MP-modified RTS, far exceeding
that of pure RTS, which would affect the release of fuel gases and the
formation of coke during RTS pyrolysis (Zhou et al., 2013). This
provides reference for studying the mechanism of modified tobacco.
Wu et al. studied the effect of glycerol addition on the pyrolysis
characteristics and product distribution of cigar tobacco (CT). FTIR
analysis showed characteristic bands related to vibrational modes of
functional groups such as -OH, -CH2/-CH3, C=C, and C-O, and NH3

was identified at a low absorption band. At the same time, they found
that the absorption intensity of functional groups changed with
temperature during pyrolysis, indicating that glycerol may lower the
maximum release temperature and absorption intensity of pyrolysis
products. Methane and aromatic hydrocarbons formed by lignin
decomposition showed two-stage release characteristics for CT-G,
which was different from CT, indicating a significant influence
between glycerol and lignin. Glycerol not only affects the pyrolysis
characteristics but also affects its gas release behavior (Yu et al., 2021;
Wu et al., 2022). FTIR analysis can provide a deeper andmore intuitive
explanation of the characteristics and changes during the pyrolysis of
tobacco leaves, providing a basis for related principles research.

FIGURE 11
The TGA results of tobacco samples at 11 heating rates. The heating rates range from 10 to 500 K/min, with intervals of 50 K/min. Different heating
rates (A) TGA curves and (B) DTG curves (reproduced with permission from Mu et al. (2022)).

Frontiers in Chemistry frontiersin.org12

Shen et al. 10.3389/fchem.2024.1402502

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2024.1402502


In addition, FTIR spectra can also be used to identify and analyze
surface functional groups of samples. Yu et al. analyzed the surface
functional groups of tobacco stalks transformed into biochar (TS-
biochar) before and after adsorbing Cd2+ (Yu et al., 2021). They
found that after adsorption, the peak at 1,546 cm−1 in the FTIR

spectrum shifted to the right and increased in intensity, indicating
the complexation of carboxyl groups with Cd2+. There were
significant differences in the shape of the OH band before and after
Cd2+ adsorption, revealing the interaction between OH and Cd2+. These
results indicate that the complexation of oxygen-containing functional
groups (OH, C=O, and COOH) with Cd2+ is an important way for TS-
biochar to immobilize heavy metals, achieving long-term stable
restoration of heavy metal-polluted soils. The development of in-situ
infrared spectroscopy has made dynamic studies feasible (Yu et al.,
2021). Zhu et al. studied the structural properties of pyrolysis residues
and the reaction sequence of typical functional groups using in-situ
Fourier transform infrared and two-dimensional correlation infrared
spectroscopy (2D-PCIS) during pyrolysis (Zhu et al., 2022). Figure 12
shows the in-situ FTIR spectra of pyrolysis char during pyrolysis at
different temperatures (Zhu et al., 2022). Figure 13 shows the
synchronous and asynchronous spectra of pyrolysis char undergoing
pyrolysis at the target temperature (Zhu et al., 2022). To study the
evolution of molecular structure behavior in detail, FTIR bands in the
ranges of 3,700–2,700 cm-1 and 1,800–900 cm−1 were analyzed. Negative
crossover peaks indicate that the trend of carbonyl C=O in ketones
differs from the C-H bending of CH2/CH3 and the C-O bending of
alcohols. Positive and negative crossover peak results suggest that the
dehydration and ring-opening reactions of polysaccharides occur earlier
than the decomposition of carbonyl compounds such as ketones, esters,
and acids (Zhu et al., 2022). Through the analysis of synchronous and

FIGURE 12
In-situ FTIR spectra of pyrolysis char during pyrolysis at different
temperatures (reproduced with permission from Zhu et al. (2022)).

FIGURE 13
2D-PCIS synchronous and asynchronous spectra of pyrolysis char (reproduced with permission from Zhu et al. (2022)).
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asynchronous spectra and the evolution of surface functional groups of
pyrolysis char, it is inferred that the hydrogen bond cleavage and
dehydration of pyran rings occur simultaneously during low-
temperature pyrolysis (Zhu et al., 2022).

The calibration of FTIR for quantitative analysis is primarily
achieved through various mathematical methods, studying the
relationship between the concentration of substances (or other
physicochemical properties) and the response of the analytical
instrument. The Lambert-Beer law can be used for qualitative and
quantitative analysis of organic compounds, as well as for the
analysis of unknown substances. In addition to the simplest Lambert-
Beer law, there are two commonly used simple linear processing
methods based on the least squares principle: one is called the Least
Squares Method (CLS), and the other is called Multiple Linear
Regression (MLR). Common nonlinear quantitative calibration
models include Nonlinear Least Squares Model (NLS), Artificial
Neural Network Model (ANN), and Support Vector Machine Model
(SVM), among others (Mosorov, 2017). Barontini et al. obtained
emission curves and quantitative data for key compounds in tobacco
pyrolysis under different experimental conditions using advanced
multivariate deconvolution techniques, but further exploration is
needed for quantitative characterization of volatile product mixtures
(Barontini et al., 2013). Zhao et al. studied the changes in cellulose crystal
type and crystallinity during the mechanical pulping process of tobacco
fibers using second derivative FTIR spectra and deconvoluted spectra in
the OH stretching vibration region, revealing changes in hydrogen bond
mode structure, including hydrogen bond energy, distance, and
hydrogen bond content (Zhao et al., 2019). The results showed that,
in addition to bond distance, both hydrogen bond energy and hydrogen
bond content changed significantly with the increase in pulp beating,
indicating that in addition to the effects of water, hydration, and swelling,
the changes in cellulose hydrogen bond mode structure during
mechanical pulping are closely related to internal/external fibrillation
and stratification processes, providing a scientific basis for the deep
mechanism of leaf refining (Zhao et al., 2019).

Combining all the above content, we have summarized the
characterization techniques of tobacco and its derivatives, along
with their corresponding contents, which are summarized in Table 2.

6 Conclusion

In conclusion, the research contribution in developing
characterization techniques for tobacco and its derivatives has
been briefly summarized. Typical examples are illustrated to
demonstrate the corresponding structure and composition
features. In addition, the study progress in combustion and
pyrolysis products of tobacco is also present. For making further
achievement in characterizing the biomass and its derivatives, future
research directions for this field are proposed as follows. Firstly,
there will be a growing interest on developing in situ and operando
characterization methods to monitor dynamic processes in real time
from biomass to its derivatives. Furthermore, researchers may
explore new spectroscopic and imaging techniques to probe the
interactions between biomass components and nanomaterials,
advancing our understanding of complex materials systems.
Future research also waits for computational modeling and
artificial intelligence for further predictive analytics and biomass-
derived development.
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TABLE 2 Characterisation of tobacco derivatives.

Techniques Materials and chemicals Contents References

Gas adsorption and mercury intrusion
porosimetry

Porous carbon materials Pore structure Lou et al. (2014), Yin et al. (2015)

Scanning electron microscopy (SEM) Tobacco samples and porous carbons Surface morphology and pore structure Li et al. (2021b)

Transmission electron microscopy (TEM) Tobacco leaf tissues; cellulose; pectin;
lignin

Microstructure Adeel et al. (2021)

X-ray diffraction (XRD) Cellulose Crystal phase Dallé et al. (2021)

Nuclear magnetic resonance (NMR) Lignin; cellulose; hemicellulose Molecular structure Miao et al. (2022)

High-performance liquid chromatography
(HPLC)

Polyphenolic substances Molecular structure Xiao and Oefner (2001), Horváth
(2013)

Energy dispersive X-ray spectroscopy (EDS) Porous carbon Elements analysis Sha et al. (2015)

Thermogravimetric analysis (TGA) Tobacco Characterization for pyrolysis process Mu et al. (2022)

Fourier transform infrared spectroscopy
(FTIR)

Biochar (TS-biochar) Identify and analyze surface functional groups of
samples

Yu et al. (2021)
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