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Introduction: The coverage of a makeup foundation is a perceived attribute
which is not captured by opacity or any other single optical property. As previous
instrumental measurements do not allow us to consistently compare one
product to another, we have begun exploring new parameters and analysis
methods made available by hyperspectral imaging. Presumably, the coverage
ofmakeup comes from the change in color, homogeneity, and evenness over the
face after application, and the ability of the product to hide spots and
other blemishes.

Methods: As a starting point to unravelling this complex topic, we define a
homogeneity factor αHF which measures the change in the homogeneity of the
spectra using the distribution of spectral angles in the face. We likewise define a
spectral shift factor βSF which indicates the degree of spectral change after
product application. To test these new parameters and the overall analysis
method, we applied them to the HSI validation dataset which contains data
for three makeup foundation products of different coverage levels applied to
9 models.

Results: We find that αHF correlates with the sensory ranking of coverage.
Similarly, the parameter βSF correlates with the visible color change induced
by the product, and we canmap the three products into distinct categories based
on their effect on αHF and βSF.

Discussion: Nevertheless, the homogeneity factor αHF does not fully describe
coverage, and in the variability in the product effect frommodel to model we find
evidence that we must also account for the relative color difference between the
model’s skin tone and the product shade among other factors.
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1 Introduction

The coverage of a makeup foundation is a perceived attribute which goes beyond opacity
or any other single optical property, and, as with many such attributes in the cosmetics field,
the appreciation of a given coverage effect varies with age, culture, and trends. To date,
makeup coverage is generally ranked by expert sensory evaluation, which works well when
product differences are large and it is sufficient to test only one or two products on a small
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number of models. The goal in connecting coverage to a set of
instrumental measurements is to provide a repeatable and reliable
evaluation which we can apply systematically to a number of
products throughout large studies. To do this, we must first
address the question, “What is coverage?”.

Focusing on the visual aspects only, we expect that the perceived
coverage of a product such as makeup foundation relates to the color
change caused by the product, the change in color homogeneity and
evenness over the face after application, and the ability of the
product to hide spots and other blemishes. While it is likely
distinct from the overall coverage effect, the color change itself is
important with regard to the perception of the product effect being
more or less desirable. For example, some trends or consumer
segments emphasize a “natural” appearance with little visible skin
color change, but at the same time these users might want a good
blemish-hiding effect. On the other hand, other trends might
emphasize a more “made-up” appearance as being desirable.

Separated from the color change, the color homogeneity is likely
to be the most closely linked to a simple notion of coverage. When
we speak of homogeneity it is important to keep in mind two distinct
properties, the homogeneity of the color space, that is the number of
distinct colors in a region, and the evenness of the spatial
distribution of colors in the area, that is the texture or color
evenness. If we conceive of coverage as an attribute which is
about the hiding of blemishes, spots, pores, or wrinkles and the
smoothing out of the skin tone, then understanding the product
effect on the color and spatial homogeneity are the first entry points
to decoding it.

In addition, the degree of perceived coverage effect will likely
also depend on the initial skin condition. What we mean by this is
that if coverage is an improvement in condition rather than the
obtaining of a certain state, the perceived coverage is in a sense the
degree of difference between the bare skin and the made-up effect.
Naturally then, the perceived coverage effect will depend on how
much there is to cover in the first place, and so will depend on the
user and the matching of the product to the user, as much as on the
product itself.

With all of this in mind, we nonetheless would like to find some
instrumental measurement(s) which we can use to decode the
coverage ability of makeup products. Fundamentally, this analysis
method must correlate with the sensory evaluation results, and also
be sensitive enough to distinguish small differences in product
action with a reasonable sample size. The previous generation of
methods for coverage analysis relied on parameters such as the
volume of the L*a*b* distribution in a defined Region Of Interest
(ROI), σL*σa*σb*, which we refer to as the Coxello Index. The
advantage of this measurement is that it is easily available from
existing color images, and it intuitively relates to the color
homogeneity within the region. In practice, however, the change
in Coxello Index after product application is not strongly correlated
to the sensory evaluation of coverage and we are not able to
consistently separate product effects with this parameter.

There are other attempts to develop a color-based parameter for
coverage evaluation in the literature. For example, in (Batres et al.,
2019) they compared the results of an image scoring test for “skin
evenness” with two different measures of homogeneity, the Haralick
homogeneity (Haralick et al., 1973) based on the distribution of L
values and their own parameter, similar to the variance of the L*a*b*

values added in quadrature, over ROI covering the cheek and
forehead. They did not find a correlation between the skin
evenness scoring and Haralick homogeneity, and they found that
their L*a*b*-based homogeneity correlated with the skin evenness,
but only on the cheek (not on the forehead). Their newly introduced
parameter is similar to the Coxello Index, which we know can
distinguish between before and after product application, but not
consistently between the effect of different products, and their
results are consistent with our own experience of evaluating
coverage using L*a*b* measurements.

The use of imaging spectrometers, sometimes referred to as
hyperspectral imaging, opens up novel possibilities for the
evaluation of cosmetic products (see, for example, (Zonios et al.,
2001; Nishidate et al., 2004)). First, as a hyperspectral imagermeasures
the reflectance spectrumwithin each pixel in the field of view, it allows
us to analyze optical properties without the loss of information
inherent in color imaging, or the bias of working under an
arbitrary illumination. At the same time, having the pixel-by-pixel
spectra allows us to also use the spatial distribution of the spectra in
our analysis, which distinctly separates the analyses possible with a
hyperspectral camera from what was capable with non-imaging
spectrometers. Perhaps more importantly, the difficulty of working
with large volumes of spectral data forces us to create a comprehensive
data analysis system. With such a system in place, we have a
framework in which to implement analysis methods that are up to
the task of decoding complex attributes like coverage.

In this paper, we will discuss a new method for evaluating
makeup foundation coverage based on the analysis of the
distribution of spectral differences within a region. We will first
discuss the basis of this method and demonstrate its use in some
example cases. We then test the evaluation power of the developed
method on data from a study in which we applied a set of 3 different
makeup foundations, with different degrees of coverage, to a panel of
9 models. As each of the products in that test where also evaluated by
sensory experts in terms of coverage, we can directly compare the
results of our instrumental method to those from sensory evaluation.

2 Materials and methods

Our standard setup for in-vivo skin color measurement is the
Chromasphere system (De Rigal et al., 2010; De Rigal et al., 2007;
Huixia et al., 2012; Flament et al., 2017). The Chromasphere itself is
an 80 cm diameter integrating sphere combined with a fiber-
coupled light source, providing a diffuse illumination for color
photography. In the past configuration, the Chromasphere
mounts three 3CCD color cameras capturing evaluation images
from a front, left-side, and right-side view of the face.

As an update to the capabilities of the Chromasphere system, we
have designed and constructed a custom imaging spectrometer
suitable for full-face in-vivo photography. This Hyperspectral
Imager (HSI) replaces one or more of the 3CCD cameras in the
standard Chromasphere setup and is a spectrally scanning
instrument based around a Liquid Crystal Tunable Filter (LCTF).
Functionally, the HSI combines the spectrum-measurement
capabilities of a spectroradiometer with the spatial resolution of
the previous 3CCD color camera. It therefore provides a color
measurement which is independent of the illumination, while its
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spatial resolution allows for post hoc selection of ROI as well as for
analyses of the spatial variance of the reflectance spectrum. We
previously reported the complete design and performance
evaluation of this prototype (Blaksley et al., 2021), and here we
will give only a brief overview of the instrument.

The tunable filter used in our prototype instrument provides
three selectable bandwidth ranges of 32 nm, 18 nm, and 10 nm Full
Width at Half Maximum (FWHM) (measured at λ � 555 nm) with a
continuously variable central wavelength from 420 to 730 nm at a
tuning accuracy of ±FWHM/10 nm. The spectral range of the HSI is
from 420 nm to 730 nm with a measurement step of 10 nm. In this
configuration, instrument acquires 32 spectral bands for one
hyperspectral image in less than 9.8 s. The 32 cm2

field of view
maps onto a 2016 by 2016 pixel (4.1 Megapixels) monochromatic
CCD camera, giving a spatial resolution on the order of 160 μm, and
the Signal-to-Noise Ratio (SNR) is better than 47 across the majority
of the working spectral range.

We developed a custom data acquisition software in C++ (ISO,
2003) and QT (QT, 2020) to operate this instrument and capture
hyperspectral images, or datacubes, which encode the spatial and
spectral information from the field of view into 3-dimensional
voxels (two spatial and one spectral dimension). In Figure 1, we
present a selection of spectra measured with this instrument, taken
from the dataset of this study. The HSI exists as part of a complete
data ecosystem combining the instrument with a comprehensive
data analysis tool chain, and we do all data treatment and analysis
using our own hyperspectral image analysis framework written in
Python 3 (Python, 2020).

2.1 Dataset

The data which we will use in this study comes from the HSI
validation test carried out inMarch 2019. At that time, we conducted
a study consisting of 3 foundation formulas applied to a group of
9 models as an end-to-end test of the HSI system. As products, we
selected 3 makeup foundation products each with a different level of
coverage as evaluated by expert sensory evaluation, and for the
models we selected 9 models with a higher density of spots from our
regular panel of models. We did not attempt to select the models
based on skin tone.

For each product, we captured a hyperspectral image of each
model before (T0) and immediately after (Timm) product
application according to the test protocol which we show in

FIGURE 1
An selection of measured spectra from the data example presented in Figure 3. “Bare Skin” is the average spectrum from an area of clear skin on the
model’s left cheek. “Spot” and “Blemish” are the average spectra from the dark spot and melasma on the model’s right cheek. “Foundation” is the “Bare
Skin” area after application of makeup foundation (Timm). Similarly, “Spot + Fnd” and “Blemish + Fnd” show the spectra of the respective regions after
foundation application. The “Bare Skin” and “Foundation” spectra provide the reference spectra for further spectral angle comparisons, depending
on the analysis being performed. Error bars indicate the standard deviation of the spectra across their respective ROI. Markers indicate actual measured
wavelengths.

TABLE 1 Test protocol used in the HSI validation study.

1 Wash with cleansing oil and foaming cleanser (no moisturizer)

2 Moisturize with cosmetic water and milky lotion

3 Wait for 15 min

4 Perform T0 measurement

5 Product application by operator

6 Wait 10 min for product to dry

7 Perform Timm measurement
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Table 1. In order to test the repeatability of the instrumental results,
we studied each product twice, on different days. In addition, at each
repetition two different operators took the same data in order to
assess the reproducibility of the results. We organized these twelve
tests (3 formulas × 2 repetitions × 2 operators) on 3 days over the
course of 3 weeks. The end result of this study is a dataset of
216 hyperspectral images including both bare and made-up skin
conditions. We previously presented an analysis of the repeatability
and reproducibility results from this test, including a cross-
comparison against measurements taken with other instruments
in (Blaksley et al., 2022).

2.2 A new method for analyzing coverage

The HSI validation dataset contains a large amount of data in
which we applied makeup foundation products with known
coverage levels, and so it provides the perfect stage on which to
develop new methods for the analysis of makeup coverage. As
discussed in the introduction, we propose a new method for
evaluating makeup foundation coverage based on the analysis of
the distribution of spectral differences within the face before and
after the product application. We show real examples of the spectra
of various skin features before and after application of a makeup
foundation in Figure 1.When we speak of the difference between the
spectra of such features, the first parameter which we can look to is
the spectral angle, θ. Here the “angle” is that between the two spectra
treated as n-dimension vectors:

θ � cos−1
Sa · Sb
|Sa‖Sb|( ) (1)

where Sa is some reference spectrum and Sb is the spectrum under
test, Sa · Sb is the dot product of the two vectors, and |S| is the vector
length. The angle θ functions as a measure of the difference between
the two spectra (here in units of degrees).

In this respect θ is similar to the color difference metric ΔE, but
without the influence of the illumination spectrum, nor the added
weighting for the perceptual non-uniformity of Human vision (as is
the case for the ΔE94* and ΔE00* , see (CIE, 2018)). Like ΔE, however,
the interpretation of θ depends on the reference spectrum, that is the
initial spectrum against which we compare the target spectrum. The
greater the spectral angle, the further away from the reference
spectrum the tested spectrum is. Conversely, if the angle is near
zero then the spectra are similar. In the broader field of hyperspectral
data analysis, such spectral features such can be used for
classification of regions into different categories (e.g., (Vane and
Goetz, 1988; Kruse et al., 2003)).

2.2.1 Analysis of spectral angle distribution in
an ROI

Aside from classification, another way in which to use the
spectral angle is to analyze the appearance of spots and
the homogeneity of the skin over a given area by looking at the
distribution of spectral angles within the region. This is not
dissimilar from the idea behind using the volume of the L*a*b*
color distribution (Coxello index), but benefits from the increased
sensitivity and specificity of the spectral angle as a parameter which

measures the degree of difference between spectra. As a thought
experiment, imagine that we take a bare skin hyperspectral image of
a model, and that we select ROI on the model’s right and left cheeks.
We then take the average spectrum from those regions as an
estimation of the model’s average skin spectrum. If we take the
spectral angle between each spectra in the ROI and this average
spectrum and create a histogram of the number of pixels within a
given range of spectral angles, we will get a distribution as shown in
blue in Figure 2.

First, there will be a peak near zero containing all the pixels
which have a spectrum near the average bare skin, labeled “Skin” in
the figure. The peak will not be at zero, because the dot product
between two spectra in Equation 1 must be positive valued, meaning
that only pixels with a spectrumwhich is exactly the average will give
a spectral angle of zero. The greater the typical difference between
each spectrum and the average bare skin spectrum, the higher will be
the mean value. At the same time, the wider the range of spectra in
the ROI, the greater the width of the distribution. The peak position
and the peak width therefore tell us about the homogeneity of the
skin in the ROI.

At the same time, the areas which have distinctly different
spectra from the average will give a larger spectral angle, creating
one or more peaks to the right of the skin peak. We have labeled this
peak as spots as it corresponds to the features such as pigmented
spots, moles, etc. In principle, there will be one peak for each type of
feature in the ROI, but in practice the ability to separate them will
depend on their distance from one another and on the width of the
feature spectral distribution, that is the variation of spectra within
each feature. Importantly, the separation of the skin and spots peaks
gives us information about the degree of contrast between the spots
and the base skin.

Now let us consider what happens when we apply a makeup
foundation. First, the foundation changes the apparent color of the
bare skin. At the same time, the hope is that the spots become less
visible, that is to say closer in spectrum (color) to the skin. If we
again take the spectral angle between each spectra in the ROI and
this average spectrum, we will get a distribution of angles like that
shown by the orange-yellow curve in Figure 2. As the base skin color
changed, this registers as an increase in θ relative to the bare skin
spectrum, and so the change in the mean value of the spectral angle
peak tells us about the magnitude of the spectral change caused by
the makeup.

In addition, as the spots are now closer to the base skin color, the
spots peak begins to merge with the skin peak. If we consider the
limit of a perfect spot hiding product, there would be only one peak
after product application, as the spots would be indistinguishable
from the skin. The most powerful way to analyze this effect is to
characterize the entire spectral angle distribution. Doing that, we can
estimate parameters such as the area of spots before and after
product application, the contrast between the spots and the base
skin, the relative change in color of the spots and the skin, etc.

At the same time, this distribution is only for one, arbitrarily
selected, region. Looking at a different region will give us a different
distribution, say, for example, if the there are more spots in one area
than in another. The degree of difference in the spectral angle
distribution from one region to the next tells us about the
evenness of the skin at the scale of the region size. So, in order
to truly characterize the product effect we should in principle also
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study how the distribution changes over the face. We will come back
to this topic later in our discussion.

For a first, simple, evaluation of makeup foundation coverage,
on the other hand, we can attempt to use the width of the spectral
angle histogram in one ROI. Functionally, we will focus on the
number of different spectra over a large ROI and ignore the spatial
evenness of the color. The standard deviation of the spectral angle
histogram would be the natural choice to do this, but we would then
not benefit from the additional knowledge of the shift in the mean of
the distribution.

To make use of that information, we can use a different
reference spectra to ask a slightly different question. We
previously compared the spectra in the ROI at T0 to the
average bare skin spectra. The mean value of the distribution of
this spectral angle relates to the number of colors in the ROI,
i.e., the homogeneity of the bare skin and the distance between the
skin spectral angle peak and the spots peak, that is the contrast
between the spots and the skin. A larger value of μθ indicates a
wider distribution and/or greater contrast between the spot and the
base skin. At Timm, we can repeat the same question and take the
spectral angle with the average spectrum in the ROI at Timm. If the
product improves the homogeneity of the skin color or decreases
the spot contrast, then the mean spectral angle in the region will
decrease relative to the value at T0.

We therefore have two measurements using two different
reference spectra:

• Spectral homogeneity: by comparing to the average spectrum
within the ROI at each time-point.

• Spectral change: by comparing to the average bare skin
spectrum at T0.

In the next sections, we will apply this approach to the analysis of
actual data from the HSI validation study. Doing so, we will see that
the change in the spectral angle distribution caused by a makeup
foundation looks like the theoretical example we considered so far
and that we can indeed see a clear difference between the effect of
different products.

2.2.2 Spectral homogeneity
So far we have discussed a theoretical model for coverage

analysis based on the distribution of θ in a chosen ROI. We will
now test this model on examples from the HSI validation study
dataset. On the left side of Figure 3, we show an analysis of the
spectral angle distribution on the right cheek of one model at T0

(some example spectra from the same model are shown in Figure 1).
Here we use the average spectrum from the 12 by 12 mm2 (75 × 75
pixels2) “Right Cheek” ROI, outlined on the figure in red, as the
reference spectrum to compute θ for each pixel in the 35 by 35 mm2

(223 × 223 pixels2) “Large Right Cheek” ROI. We define each of
these ROI by first locating 68 facial landmark points using the DLIB
(King, 2009) Histogram-Orientation-Gradient (HOG) based face
detector and then defining the ROI relative to the location of
those landmarks.

We show these spectral angle results overlaid on a reconstructed
color image (under CIE D65 illumination (ISO/CIE, 1999)) at the
top of the figure. In the overlay, more blue values indicate lower
spectral angles, while more yellow values indicate higher spectral

FIGURE 2
Conceptual example of the spectral angle distribution in a ROI. The blue peak is the distribution of spectral angles θ referenced to the average
spectrum in the ROI at T0. Different features in the ROI give distinct values of θ. This results in multiple peaks in the distribution corresponding to each
feature, the largest of which correspond to the base skin. Secondary peaks at higher spectral angles corresponds to features such as pigmented spots. The
homogeneity of each feature determines the width of each peak, and the contrast between the features determines the distance between peaks.
The orange peak shows the distribution of θ in the same ROI at Timm. The color shift of the product results in an increase in θ for the base skin. If the
homogeneity of the bare skin increases, then the width of the main peak will decrease. At the same time, if the product brings the features closer in
spectra to the base skin, then distinct peaks may begin to merge.
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angles, i.e., regions which are more different from the reference
spectrum. At the bottom of the figure, we show a histogram of the
spectral angles in the ROI with the same color map applied. Before
application of any product, at T0, there is a large peak in the
distribution at low values of the spectral angle corresponding to
the base skin. Above that, there are smaller peaks corresponding to
the different pigmented spots in the ROI. The average value of θ in
the ROI, μθ , is 2.88°, indicated on the plot by the solid black line, and
the standard deviation, σθ , is 0.81°.

Now, we do the same analysis after application of the High
coverage product using the average spectrum at Timm as the
reference and show the result on the right side of Figure 3. First,
we can note the clear made-up appearance of the model’s skin in the
color image, and in the spectral angle overlay we can no longer see
the large pigmented spot on the upper left (the model’s right side)
which was visible before application. As for the effect on the θ

histogram, whereas before application there were multiple peaks at
θ > 3.5°, there are now almost no pixels which give a spectral angle in
this range. The pixels with the most different spectra from the
average, for example, the center of the small dark mole on the upper
right, were at a spectral angle of between 5° and 5.5° before
application (δskin−spot ≈ 3°), but these same pixels are now at a

spectral angle of approximately 3° (δskin−spot � 1°). The difference
in spot contrast is therefore about 66%. At the same time, the
standard deviation of the total distribution has decreased to 0.31,
and so too μθ down to 2.40°. The difference of the mean values Δμθ �
μθ(Timm) − μθ(T◦) is −0.48°. As a negative value this indicates an
increase in the homogeneity within this ROI after product
application as the number of pixels with a spectrum which is far
away from the average is lower after we apply the product.

The natural question which follows is whether we can
differentiate the products using this approach, and to answer this
question we show the same analysis for the Low and Medium
coverage products in Figure 4. At first glance, the product effect
on the θ distribution appears to be similar for the Low andMedium
coverage products. The histogram for theMedium coverage product
however shows a shorter tail and a smoother transition from 2° to 3°

than the Low coverage product. In addition, the T0 distribution of
the Medium product is also different from the Low product T0

measurement, which is due to the differences in bare skin condition
of the model between tests. As a result, the difference Δμθ is lower for
the Medium product (−0.49°) than for the Low coverage product
(−0.43°), indicating a greater improvement in homogeneity for the
Medium coverage product.

FIGURE 3
On the left, we show the T0 measurement for the High coverage product test. The top pane shows the reconstructed color image with the
calculated spectral angle overlaid on the “Large Right Cheek” ROI. The reference spectrum is the average within the smaller red rectangle. Below that, we
show a histogram of θwithin the ROI. We can seemultiple peaks in the distribution corresponding to the base skin and different types of pigmented spots.
On the right side is the same analysis after application of the High coverage product. The width of the spectral angle distribution has greatly
decreased, and, where before there was a long tail, the overall distribution is now more compact.
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2.2.3 Spectral change–Color shift
Aside from the color homogeneity, we can also look at the color

change. In Figure 5, we show a similar analysis of the spectral angle
within a given ROI as in the last section. The key difference here is
that instead of taking the average spectrum from the “Right Cheek”

ROI at each time point as the reference spectrum, we instead use the
average spectrum at T0 as the reference at all time points. In the
figure, we see that the distribution of the spectral angles at T0 is the
same as before, but the histogram of θ at Timm now differs. As the
application of the product has modified all the spectra from what

FIGURE 4
Top pane: Spectral homogeneity effect for the Medium coverage product. Bottom pane: Low coverage product.
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they were at T0, the entire distribution shifts towards higher values
of spectral angle. The magnitude of this shift is similar to ΔE, and
informs us about the total spectral change in the ROI. For the High
coverage product shown here it is 3.22°.

At the same time, we can also see that the difference in spectral
angle between the base skin and the spots has reduced, as evidenced
by the decrease in σθ. In this case, the degree of change for the spots
and the skin can give us insight into the product effect. For example,
the lowest peak, corresponding to the skin, shifts from a spectral
angle of ≈ 2.3° to around 5.5°, a difference of 3.2°. The features at the
upper end of the T0 distribution, however, shift from around
5.5°–7.3° at Timm, for a difference of 1.8°. We therefore see that
the product covers the spots by shifting both them and the skin
towards a new color, and the action on the skin is greater than on
the spots.

As before, it is important to compare the effect of different
products to sharpen our understanding. We show the same color
shift analysis for theMedium and Low coverage products in Figure 6.
Focusing on the Medium result, we can immediately see that the
total color change effect is lower than that of the High coverage
product (Δμθ of 0.66° vs. 3.22° for the High coverage product). Again,
we can look at the shift of the skin color vs. the spot color, and for the
skin we see here a change from ≈ 2.3° to 3.5°, a change of 1.2°. At the
same time, the spot in the upper right of the ROI went from around
6°–5.5°, giving a decrease of 0.5°. What we see in this case is that this
product does modify the color of the base skin, but at the same time

brings certain spots closer to the original skin color. This effect is in
contrast to the action of the High coverage product, and we see that
by analyzing the product effect on the spectral angle distribution we
can gain insight into action of different products.

2.2.4 Towards the evaluation of coverage
Our goal is to apply this methodology to a large dataset. Ideally,

we would conduct a full analysis of the spectral angle distribution for
each study sample, but doing so requires us to develop methods for
automating the analysis (including the non-trivial handling of edge
cases) and agglomerating results over samples. As a short term
approach, we propose the creation of simple parameters which we
extract from each spectral angle distribution in order to compare
one product to another.

In this context, we propose a Homogeneity Factor defined using
the spectral angle distributions at Timm and T0, referenced to the
average skin spectrum at each time point. In this analysis, we define
this as the percentage shift in the mean value of the spectral angle
distribution:

αHF � 100 1 − μθROI Timm( )
μθROI T0( )( ) (2)

where μθ is the mean spectral angle at each measurement time.
Defined in this way, αHF will range from −∞, indicating a drastic
decrease in the homogeneity, to 100, indicating perfect homogeneity
(all spectra in the ROI equal to the average).

FIGURE 5
Analysis of the spectral change effect for theHigh coverage product. On the left, we show the T0 measurement for theHigh coverage product test.
The top pane shows the reconstructed color image with the calculated spectral angle overlaid on the “Large Right Cheek” ROI. Contrary to the previous
analysis of the homogeneity in Figure 3, here we use the average within the smaller red rectangle at T0 as the reference spectrum at all time points. Due to
this, the histogram of θwithin the ROI shows the change in spectral distribution over time (due primarily to the application of the product under test).
As for the homogeneity analysis, we can also see the decrease in overall distribution width as all areas in the ROI move towards a new color.
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We would like to note that, even if the improvement of the
homogeneity of the skin over the face due to a product is the main
driver of what is typically called coverage, it is certainly not the sole
factor influencing this attribute. For one, we expect not only the
homogeneity of the color, by which wemean the number of different
colors present in the region, to play a leading role, but also the color

evenness, or the change of color from area to area, to impact the
perception of coverage. Since attributes like homogeneity and
evenness are objective measurements, while coverage is a loaded
term with significant differences in user preference and perception
between groups, it is also therefore best to avoid giving the latter
label to an instrumental measurement. We have therefore chosen to

FIGURE 6
Top pane: Analysis of the spectral change effect for the Medium coverage product. Bottom pane: Low coverage product.
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call αHF the homogeneity factor as an indication of what it
fundamentally measures. The degree to which αHF correlates with
the coverage is a question which we must address by comparing the
instrumental results with sensory or consumer evaluation.

As a measure of the overall change in spectra within the region
after product application, we will likewise define a Spectral Shift
Factor, which for nowwe will simply define as the difference inmean
spectral angle referenced to the average spectrum at T0:

βSF � μθROI@T0 Timm( ) − μθROI@T0 T0( ) (3)

Our expectation is that this parameter will follow closely the ΔE
results, with the key difference that it is not influenced by the
illumination and does not account for the transfer function of the
human visual system. In the next section, we will apply these two
new parameters to evaluate the products included in the HSI
validation study.

3 Results

In the original validation study analysis, we ranked the products
according to the values of ΔL, Δa*, Δb*, ΔE96, and ΔICoxello (the
change in L*a*b* color distribution width as a volume), between
Timm and T0, averaged over models for each sub-test. We calculated
L*a*b* coordinates from the measured spectra for the CIE 1964 10°

observer (Stiles and Burch, 1959; Speranskaya, 1959; ISO/CIE, 2019)
under D65 illumination (ISO/CIE, 1999). In order to test the new
spectral angle based parameters for coverage analysis, we will
calculate αHF and βSF for each product and model from one
validation sub-test (one repetition, for one operator). We will
also report ΔE96 and ΔICoxello, to compare our new parameters
for coverage evaluation with past methods.

For each model, we define a “Large Right Cheek” ROI of 35 by
35 mm as our working ROI, and a 12 by 12 mm “Right Cheek” ROI
as the source of the reference spectrum to compute θ for each pixel
in the working ROI. We define both of these ROI relative to the
location of each model’s facial features using automatic landmark
recognition, as we summarized previously. As we extract the ROI
automatically, we of course have both the right and left cheek regions
available. The results from the two sides are comparable, but
individual models do show differences between sides depending
on their individual arrangement of spots and other skin
imperfections. This is because both the initial skin homogeneity
and the ROI selected affect the results. We will discuss these points
later and at the moment will focus on only the right side data
for brevity.

After defining the ROI, we calculate the spectral angle for each
pixel in the working ROI for each time point. The spectral angle with
reference to the average spectrum in the “Right Cheek” at that time
point gives us θROI(t), and the spectral angle referenced to the
average spectrum in the “Right Cheek” at T0 gives us θROI@T0(t). We
then calculate the mean value of the spectral angle distributions in
the working ROI, as in Section 2.2.2, to obtain μθROI(t) and
μθROI@T0(t), from which we calculate αHF and βSF according to
(Equations 2, 3).

We show box plots of the ΔICoxello, αHF, βSF and ΔE96 results
over the nine models of one validation sub-test in Figure 7. In these
plots, the box extends from the first quartile (Q1) to the third

quartile (Q3) of the distribution, and the solid colored line in the
box denotes the median value (Q2) of the set. The dashed line, on
the other hand, shows the mean value, which is more strongly
influenced by extreme values in the set, and the whiskers denote
the full range of the data. To make it easier to directly compare it
to the αHF results, we have reported a decrease in ΔICoxello,
indicating an increase in the color homogeneity in the ROI as
a positive value.

As we expect, the overall trend in the two parameters is the same.
The width of the distribution of ΔICoxello results are higher than
those of the αHF results for all three products, and the interquartile
ranges (Q1 − Q3) overlap for the Low and Medium coverage
products. In particular, these two products give almost the same
median value of ΔICoxello, and only a slightly different mean.

The αHF results, in contrast, show a reduced distribution width,
and the first to third quartile (Q1 − Q3) ranges of the Low and
Medium product results are smaller than for ΔICoxello. We also see
that the median and mean values of these two products no longer
overlap, indicating that we can differentiate these two products using
the homogeneity factor. We give a summary of the mean results by
parameter in Table 2.

The βSF and ΔE96 parameters follow one another, as expected,
and we can distinguish the three products in terms of their spectral
(and color) change effect. The High coverage product gives the
greatest spectral change and theMedium coverage product gives the
least spectral change. This is interesting as it shows that the
perceived coverage is distinct from the magnitude of the color
change caused by the product. There are some differences in the
distribution widths between ΔE96 and βSF which likely relate to the
relationship of a given spectral difference to the apparent color shift
under a D65 illumination.

Next, we evaluated the statistical significance of the difference in
measured values between products using the Python Statsmodel
(Seabold and Perktold, 2010) library implementation of the Analysis
of Variance (ANOVA) algorithm (Fisher, 1921) to determine if we
can reject the null hypothesis (that no difference exists), followed by
pairwise Multiple Comparison of Means (Tukey HSD) (Tukey,
1949) to group the products into statistically distinct subsets (if
warranted). Here we used a test significance of 0.05 for both the
ANOVA and the Tukey HSD tests. We give the result of this
statistical analysis in Table 3. We find three distinct and
consistent statistical groups for ΔE96 and βSF (Medium, Low,
High), while we find no significant difference between the
ΔICoxello results for the three products.

For αHF, on the other hand, we find that the difference between
the products is statistically significant, but the multiple comparison
of means analysis classifies theHigh andMedium coverage products
in the same group, due to the overlap of the (Q1 − Q3) ranges of each
combined with the sample size. The p-value for the αHF results is
2.1 · 10−2 vs. 1.4 · 10−1 for ΔICoxello, indicating that αHF offers greater
statistical power in this study.

The grouping results depend on the order in which we construct
the samples, however, indicating that the model-to-model variability
in the homogeneity effect is important. This raises the question of
whether the variability between models is a inherent feature of
attempting to correlate coverage with spectral homogeneity, or if
there are some confounding effects for which we are not accounting.
We will discuss this point further in the next section.
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4 Discussion

We find that, when averaged over all models, the sensory
coverage evaluation correlates well with the change in spectral

homogeneity after application, parameterized by αHF. On a
model-to-model basis the effect is more varied, however, and it is
therefore worth looking at the results for each model. We show a
complete analysis of the spectral homogeneity for the models who

FIGURE 7
Box plots of (from top-left, clockwise) ΔICoxello, αHF, βSF, and ΔE96. We plot the values from the “Large-Right-Cheek” ROI by product in abscissa. The
box extends from the first quartile (Q1) to the third quartile (Q3). The solid colored line in the box denotes the median value (Q2) of the set, while the
circle marks the mean. The whiskers denote the full range of the data. In this plot, we inverted the ΔICoxello results (positive value indicates an increase in
homogeneity) to make it easier to directly compare with the αHF results.

TABLE 2 Summary of results for the Large-Right-Cheek ROI after product application. We report each value as the mean ± the standard deviation of the
result over samples (models).

Product Time ΔE ΔICoxello αHF βSF

Low Timm 2.08 ± 0.64 3.26 ± 1.68 4.06 ± 3.98 1.15 ± 0.49

Medium Timm 0.94 ± 0.38 3.44 ± 1.40 7.39 ± 2.26 0.76 ± 0.31

High Timm 4.38 ± 1.10 4.61 ± 1.40 9.13 ± 4.27 2.97 ± 0.83

TABLE 3 Statistical analysis of products grouped by ΔE96, βSF, ΔICoxello, and αHF.

Parameter NGroups Ranking Results Significant p-value

ΔE96 3 M,L,H 0.94, 2.08, 4.38 Y 5.4 · 10−9

βSF 3 M,L,H 0.76,1.15,2.97 Y 4.8 · 10−8

ΔICoxello 1 (L,M,H) (3.26,3.44,4.61) N 1.4 · 10−1

αHF 2 L, (M,H) 4.06, (7.39,9.13) Y 2.1 · 10−2

For each parameter, we show the ANOVA p-value results, as well as the Multiple Comparison of Means grouping analysis. We list the product with the smallest value first, with parentheses to

indicate groups, and give the means for each product in the “Results” column in order of the grouping. The “Significance” column indicates if we can dismiss the null hypothesis (no difference in

the products) at the test-threshold of 5%.
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gave the maximum, minimum and (closest to the) mean effect for
each product in the Supplementary Material, and we plot the αHF

and βSF results for each product by model in Figure 8. We see from
these plots that, while the magnitude of αHF varies from model to
model, the relative ranking of the High,Medium, and Low coverage
products is consistently in that order for two thirds of the sample set
(6 of 9). For model “G” we see the greatest effect for the Medium
product, while for model “H” the Low coverage product gives the
best effect. For model “B”, on the other hand, theMedium and High
coverage products give almost the same effect, and the Low coverage
product decreases the spectral homogeneity.

If it seems difficult to envision that the addition of a color-
correcting film on top of the skin can decrease the homogeneity, it is
important to keep in mind that the homogeneity we are talking
about is the number of spectra in the region and their degree of
difference. This determines, but is distinct from, the number of
colors in the area and the ΔE between them, both of which depend
on the illumination spectrum.

To further understand the αHF results across models, we note
that the magnitude of αHF varying from model-to-model is in line
with the fact that αHF measures the change in spectral homogeneity
in a region. Due to this, the magnitude of the change will depend on
the level of inhomogeneity in the area at T0, e.g., the number and
visibility of spots on the model’s skin, etc. To check this relationship,

we plot αHF in ordinate vs. μθ(T0) in abscissa in Figure 9. Although
the dependence is not linear, the correlation coefficient result r � 0.6
indicates a relation between the degree of homogeneity change and
the initial homogeneity. Along these lines, αHF also implicitly
depends on what region we chose, an important point which we
will return to later.

The fact that the ordering (ranking) of the products by αHF

changes for some models may indicate a dependence on the
model’s skin tone relative to the product shade. First, we note
that the three models where the αHF ranking changed also showed
the greatest values of βSF for the High coverage product. This may
indicate a poor match between these model’s skin tone and that
product. To further investigate this, we show a plot of the average
bare skin color of each model in Figure 10. Here we see that the
model “G” had the lowest L* value, and this may account for the
poor effect of the High coverage product, which is in a light shade
(see the Supplementary Material for a full analysis of this model’s
result). Likewise, model “H” had the second lowest L* value, with a
correspondingly poor result for theHigh coverage product, but this
model also had among the highest b* value and a* values in the set,
which may be responsible for the good effect from the Low
coverage product. Finally, model “B” had the highest a* value,
and showed a better than typical result for the Medium coverage
product (in comparison to High).

FIGURE 8
Plot βSF, and αHF results by model for each product. The ranking between the products by homogeneity increase is consistent with the coverage for
two thirds of the samples. The ranking by spectral change is the same for all models but one. See text for further discussion.
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It is important to keep in mind here that the L*a*b* values
occupy a three dimensional color space and so the correlation
between αHF and any single coordinate does not fully
characterize their relationship. Fully understanding the product
effect as a function of the bare skin color and the product shade
requires us to consider their relative location in the L*a*b* color
space and the distance (ΔE) between them. We intend to further
explore the correlation between these two parameters and the
homogeneity result in the future.

Looking at the spectral shift, βSF, we see that the ranking is the
same for all models except model “H”, for whom the Medium
coverage product gave a slightly higher spectral change than the
Low coverage product. This model had the lowest a* value of the set,
and we note that each of the βSF results for this model are the lowest
for their respective products. Along these lines, a key advantage of βSF
in contrast to ΔE is that a given ΔE is true under one illumination,
whereas the spectral shift βSF is true under all possible illuminations. If
we accept that the product coverage effect depends on the matching of
the product shade with the model skin tone, then working with the
spectral matching rather than illumination-dependent L*a*b* color
matching can be an important consideration.

Considering that, it is interesting to look at the relationship
between αHF and βSF, which we show in Figure 11, in order to better
characterize these three products. Although there is significant
overlap between the groups due to the model-to-model
variability, we can see the emergence of three distinct product
categories. The High coverage product is concentrated in the
upper right side of the plot, indicating that this product gives
both a strong spectral change (depending on the direction of the

effect and the user preference we can characterize this as a color
correction) and increase in homogeneity. The Medium coverage
product, on the other hand, is at the upper left of the plot, indicating
a weaker spectral change effect, but with good homogeneity increase.
Finally, the Low coverage product is at the bottom left of plot,
indicating a middling spectral effect (stronger than the Medium
product) with a smaller increase in homogeneity.

As we discussed so far, these results are when applied to the
average bare-skin L*a*b* values (corresponding to one spectrum
under fixed D65 illumination) of the models in this dataset and for
the product shades used in this test. The evidence of non-negligible
dependence of the product coverage result on the relationship
between the model skin tone and the product shade suggests that
we consider a change in test design for makeup foundation
screening, as, ideally, we should separate the product and
shade variables.

As a concrete example, the current study design applied
3 products to 9 models of various skin tones, giving 9 samples
per product with minimal control over shade matching effect. A
possible future test design could instead apply 3 products to
3 models of the same skin tone over 3 shade groups to give
9 samples per product, grouped by shade. We could then
construct a relative ranking between products and map them for
a constant panel of models. As the magnitude of the homogeneity
change varies from model to model, however, it is difficult to
conclude an absolute coverage value for a product independent
of its application to at a specific model (just as an object under a
specific light determines color, a product on a given skin determines
absolute coverage).

FIGURE 9
Plot of correlation between μθ(T◦) in abscissa vs. αHF in ordinate. The black line shows the result of a least-squares linear fit to the full dataset.
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This leads us back to a previous point, that the magnitude of the
homogeneity effect depends on where we look, that is the ROI which
we use for the measurement. Consider simply that the result from an
ROI which includes a strongly pigmented spot and another nearby
ROIwhich does not include the spot will be different. Concretely, if we
re-do our analysis over the validation dataset using the smaller “Right
Cheek” region as our working ROI, we find that the magnitudes of the
αHF effect are lower on average (roughly a factor of 2) and that there is
less difference between the mean effect of the Medium and Low
coverage products. This raises the natural question of which ROI is the
most representative of the “true” coverage effect. At the same time, we
know that the perception of coverage is likely related not only to the
improvement in homogeneity, but also to the apparent texture or

evenness of the skin. The αHF parameter does not measure this aspect,
and although it may not be obvious at first, these two issues of texture
and measurement area are interrelated.

In order to answer the question of which ROI is the correct one in
which to evaluate the coverage, we should in principle repeat our
analysis for every possible ROI and compare the result from each, that
is to say that we should effectively look everywhere on the face and at
all scales. Practically, we can do this by drawing a large enough
number of ROI of random size at random positions throughout the
working region (such as the full cheek). The different sizes of these
ROI allows us to check the dependence of the homogeneity change on
the size scale, while the randomized location accounts for the
variability of features, such as spots, within the face. The variance

FIGURE 10
Plot of bare skin L*a*b* values for each model. We have take the average color over the working ROI, averaged over the independent T0

measurements from each product. The error bars indicate the standard deviation over the three T0 measurements taken at different times.
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of results (whether homogeneity, color, etc.) across ROI at a selected
size scale tells us about the texture or evenness of the skin at that scale.
For example, if we have a model with dense freckles, the variance of
color for ROI of the same size as the freckles will be much higher than
at a larger size ROI where we would be taking the average over a
number of freckles and areas of skin.

As a final note, in this study, we explored only a univariate
analysis approach. Given the relationship between the initial skin
color and homogeneity and the homogeneity and color effect of the
products, this data will benefit from an approach using multivariate
analysis. In addition, while for this first attempt we used the mean
value of the spectral angle to construct a simple homogeneity
parameter, we expect analysis of the complete distribution of
spectral angles within each ROI to provide greater discrimination
and explanatory power. For this reason, we are currently working on
combining analysis of the spectral angle histograms and additional
statistics calculated from them with a multi-ROI analysis of the type
discussed above.

5 Conclusion

In this study we have started unravelling the complex topic of
makeup coverage. In the fullest sense, coverage is a perceived

attribute, but from a purely optical perspective, we expect that
the perception of coverage for makeup products comes from the
color change caused by the product, the change in color
homogeneity and evenness over the face after application, and
the ability of the product to hide spots and other blemishes. As
the previous instrumental measurements do not consistently
correlate with coverage in a way which allows us to compare one
product to another, we have begun exploring the new parameters
and analysis methods made available by hyperspectral imaging.

As a starting point, we defined a homogeneity factor αHF as a
percentage change inmean spectral angle over an area after application
of the product (Timm), referenced to the average spectrum in the area.
This parameter serves as a measurement of the change in the
homogeneity of the spectra, which we expect to be one component
of coverage. We likewise defined a spectral shift factor βSF, taking the
absolute change in mean spectral angle over an area, referenced to the
average spectrum in the area before product application (T0). This
parameter indicates the degree of spectral change after product
application, which characterizes the color change effect of the product.

To test these new parameters and the overall analysis method, we
applied them to an existing dataset, containing data for three makeup
foundation products of different coverage levels (based on sensory
evaluation) applied to nine models.We found that αHF correlates with
the sensory ranking of coverage when averaged over the dataset, and

FIGURE 11
Correlation of the αHF results in ordinate vs. the βSF results in abscissa, labeled by product. Functionally, this plot is a map of foundation homogeneity
vs. color change effect. Square markers indicate the High, circle markers the Medium, and diamond markers the Low coverage product. The High
coverage product gives a significant homogeneity improvement, but also a strong spectral (color) change. The Medium coverage product gives a good
improvement in homogeneity with the least spectral shift, this makes it clear that the coverage and the color change are distinct effects. The Low
coverage product gives the least homogeneity increase while also changing the spectra more than theMedium coverage product on average. However,
we can also see that there are cases where βSF or αHF are higher or lower than the typical result for that product, perhaps indicating a particularly good or
poor match between the foundation shade and model’s skin tone.
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the distinct effect of the three products is clear on a model-by-model
basis. Similarly, the parameter βSF correlates well with the visible color
change induced by the product, but, unlike ΔE, is constant under all
illuminations. By comparison of the homogeneity change (αHF) and
spectral change (βSF) for each product applied to each model, we find
that we can map the three products into distinct groups by effect.
Nevertheless the homogeneity factor αHF does not fully describe
coverage, and we find significant variability in the effect of each
product from model to model.

This variability in product effect manifests as both a change in
the magnitude of effect from model to model with the relative
ranking between the products preserved, and as a change in the
ranking between products for some models. In the latter, we see
hints that this is the influence of the relative color different
between the model’s skin tone and the product shade. As a next
step in understanding this, we propose to assign each model a skin
tone classification according to their average skin color, and look at
the homogeneity effect vs. skin tone vs. product shade. If we indeed
see a relationship between the model’s skin-tone and the
homogeneity effect then this has clear implications for the
design of future tests.

Likewise, the change in effect magnitude between models relates
to the simple fact that the degree of homogeneity change which can
occur depends on the starting inhomogeneity, which also implies
that the measured effect depends on the selected ROI. This goes back
to the general issue we face of the systematic uncertainty in
evaluation results due to ROI selection. In addition, our
homogeneity parameter is a function of the number of different
spectra (colors) in the region and does not take into account the
spatial distribution of the color. Intuitively, the evenness or texture is
likely an important part of the perceived coverage effect, and we
should therefore include it in our evaluation of makeup coverage.
We can tackle both of these points by employing an analysis over the
space of all possible ROI at varying size scales, combined with
analysis of the full distribution of spectral angles within each ROI.

We also foresee the extension of this coverage analysis to include the
lasting of the coverage over time. From preliminary data over multiple
time points, we know that we can see the change of the homogeneity and
color shift effects over time. There are some issues regarding the design
of a such a study which we must address, such as how to accelerate the
makeup wear in a way which does not bias the results, but from an
analysis perspective, the main work which remains it is to improve our
basic analysis of coverage in the directions which we have outlined here.
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