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Amino acid-derived quaternary ammonium salts were successfully applied in the
asymmetric aza-Henry reaction of nitromethane to N-Boc trifluoromethyl
ketimines. α-Trifluoromethyl β-nitroamines were synthesized in good to
excellent yields with moderate to good enantioselectivities. This reaction is
distinguished by its mild conditions, low catalyst loading (1 mol%), and
catalytic base. It also proceeded on a gram scale without loss of
enantioselectivity. The products were transformed to a series of adamantane-
type compounds containing chiral trifluoromethylamine fragments. The potent
anticancer activities of these compounds against liver cancer HepG2 and
melanoma B16F10 were evaluated. Six promising compounds with notable
efficacy have potential for further development.
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1 Introduction

The aza-Henry reaction involves the addition of nitroalkanes to imines, which is one of
the most important reactions in forming carbon–carbon bonds (Marqués-López et al.,
2009). The aza-Henry reaction readily introduces diverse functional groups, including
amine and nitro moieties, into organic scaffolds (Noble and Anderson, 2013). Notably, the
resulting β-nitroamines, featuring two nitrogen atoms with distinct oxidation states, serve as
crucial synthons in organic synthesis. The facile conversion of β-nitroamines into amino
acids, chiral diamines, and other key medicinal frameworks has continuously attracted the
attention of synthetic chemists. Consequently, the aza-Henry reaction has found extensive
application in the synthesis of numerous active compounds, drugs, and natural products
(Noble and Anderson, 2013). In recent years, trifluoromethyl amine-containing
compounds have been widely favored by synthetic chemists because they play a very
important role not only in chiral drugs but also in natural products (Yoder and Kumar,
2002; Nie et al., 2011; Qiu and Qing, 2011). The catalytic enantioselective aza-Henry
reaction is one of the most practical reactions that convert ketimines into the corresponding
optically active α-trifluoromethyl amine compounds (Onyeagusi and Malcolmson, 2020).
However, the asymmetric aza-Henry reaction of trifluoromethyl imines is still less reported
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(Xie et al., 2011; Zhang et al., 2011; Kutovaya et al., 2015;Wang et al.,
2019a; Li et al., 2019; Krstic et al., 2023).

In recent years, there has been significant interest in the
development of efficient and enantioselective methods for
synthesizing chiral trifluoromethyl amines. This has led to the

exploration of a variety of strategies, including the use of chiral
organocatalysts and auxiliary groups. Wang (Xie et al., 2011), Liu
(Zhang et al., 2011; Li et al., 2019), and Nenajdenko (Kutovaya et al.,
2015) have reported several notable contributions to this field. In
addition, Duan (Wang et al., 2019a) and Krstic et al. (2023) reported

SCHEME 1
(A–C) Enantioselective construction of trifluoromethyl β-nitroamines via chiral ion-pair catalysts.
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TABLE 1 Optimization of the reaction conditionsa.

Entry Base (eq.) Cat Solvent t Yield/%b ee/%c

1 K2CO3 (2.0) 4a Toluene 12 h 72 58

2 K2CO3 (2.0) 4b Toluene 12 h 78 58

3 K2CO3 (2.0) 4c Toluene 12 h 78 55

4 K2CO3 (2.0) 4d Toluene 5 h 76 46

5 K2CO3 (2.0) 4e Toluene 2 day 75 −32

6 K2CO3 (2.0) 4f Toluene 12 h 70 70

7 K2CO3 (2.0) 4g Toluene 1 day 80 65

8 K2CO3 (2.0) 4h Toluene 3 day 75 69

9 K2CO3 (2.0) 4i Toluene 2 day 75 69

10 Cs2CO3 (2.0) 4f Toluene 5 h 63 38

11 K3PO4 (2.0) 4f Toluene 18 h 80 67

12 NaOH (2.0) 4f Toluene 12 h 56 71

13d K2CO3 (2.0) 4f Toluene 7 day 77 76

14 K2CO3 (1.0) 4f Toluene 12 h 85 75

15 K2CO3 (0.1) 4f Toluene 12 h 80 74

16 K2CO3 (0.1) 4f PhCF3 2.5 day 65 68

17 K2CO3 (0.1) 4f PhCl 2 day 88 71

18 K2CO3 (0.1) 4f PhF 2.5 day 72 68

19 K2CO3 (0.1) 4f THF 2.5 day 74 59

20 K2CO3 (0.1) 4f 2-Me-THF 2 day 78 65

21 K2CO3 (0.1) 4f Mesitylene 1 day 89 80

22e K2CO3 (0.1) 4f Mesitylene 2.5 day 88 80

23 ‒ 4f Mesitylene 1 day ND ‒

aUnless otherwise noted, the reaction was performed with 0.10 mmol of 1a, 0.20 mmol of 2, catalyst 4 (5 mol%), and base in 1.0 mL solvent.
bIsolated yield.
cDetermined by chiral HPLC analysis.
d0°C.
e4f (1 mol%) was used.
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the asymmetric aza-Henry reaction of trifluoromethyl ketimines
using different kinds of ion-pair catalysts (Schemes 1A, and B).

Despite these advances, the synthesis of chiral trifluoromethyl
amines using readily prepared catalysts with low catalyst loading still
remains a challenging goal for organic chemists (Onyeagusi and
Malcolmson, 2020). Amino acid-derived quaternary ammonium
catalysts are inexpensive, stable, and easy to prepare and have
been widely used in asymmetric catalysis over the past decade
(Wang et al., 2013a; Wang et al., 2013b; Zhang et al., 2016). In
continuation of our efforts to synthesize chiral trifluoromethylamine
analogs via organocatalysis (Du et al., 2020; Zhao et al., 2023), we
now reportN-protected trifluoromethyl ketimines as the substrate in
the asymmetric aza-Henry reaction catalyzed by the easily prepared
quaternary ammonium and demonstrated the products as potent
anticancer agents (Scheme 1C).

2 Results and discussions

The aza-Henry reaction using N-Boc trifluoromethyl ketimines
and nitromethane was designed as the model reaction. First, the
widely used double-hydrogen-bonding quaternary ammonium salt
4a derived from L-phenylalanine was tested in this reaction, and to
our surprise, the reaction produced 3a with moderate
enantioselectivity (Table 1, entry 1). The catalysts bearing distinct
amino acid backbones were then screened to investigate the
performance of enantioselective control. Replacement of the
catalyst backbone with L-tert-leucine 4b and L-isoleucine 4c had
similar effects. The enantiomeric excess (ee) value of the product
from 4b remained unchanged, while the enantioselectivity of the
product from 4c decreased (Table 1, entries 2–3). Hydrogen bonding
patterns significantly impacted enantioselectivity. Catalyst 4d with a
urea group reduced the enantioselectivity (Table 1, entry 4), while
the amide catalyst 4e flipped the enantiomer preference (Table 1,
entry 5). These results demonstrate the critical importance of
hydrogen bonding type for the reaction. When the thiourea
moiety within the catalyst was further examined (4f and 4g), it
was found that aryl thiourea substituents for both the electron-
donating methoxy group and electron-withdrawing nitro group
could give better results (Table 1, entries 6–7). The product
obtained from catalyst 4f, in which aryl thiourea was substituted
with the nitro group on the para position, gave an enantioselectivity
of 70%. By adjusting the structure of the ammonium salt center (4h
and 4i), the ee values of the products were found to be slightly
decreased (Table 1, entries 8–9). Therefore, we identified catalyst 4f
as the optimal catalyst and screened the solvent and base.

Additional base screening indicated that K2CO3 was the best
base for further screening based on the reaction time, yield, and
enantioselectivity (Table 1, entries 10–12). When the reaction was
conducted at 0°C, both the yield and enantioselectivity of the
reaction were slightly improved, but the reaction time was also
extended to 7 days (Table 1, entry 13). The enantioselectivity of the
product was improved slightly by decreasing the equivalent amount
of K2CO3 (Table 1, entries 14–15), which is very essential for large-
scale synthesis since only catalytic amounts of the base are required
in the proton transfer process. Finally, we screened solvents such as
trifluorotoluene, chlorobenzene, fluorobenzene, tetrahydrofuran, 2-
methyl tetrahydrofuran, and mesitylene (Table 1, entries 16–21) and

found that the enantioselectivity of the product increased up to 80%
when mesitylene was applied. Reduction of the catalyst loading to
1 mol% resulted in the ee value of the product remaining unchanged,
with a slightly longer reaction time needed (Table 1, entry 22). No
product was detected without a base (Table 1, entry 23). The
absolute stereochemistry of 3a was determined to be S by
comparing its optical rotation with the reported value (Krstic
et al., 2023).

Under the optimized conditions (Table 1, entry 22), the scope of
the substrate of this reaction was next explored. A series of N-Boc
trifluoromethyl ketimines were investigated under standard reaction
conditions. The experimental results showed that the substituents
on the aryl ring regardless of the electron-withdrawing and electron-
donating groups were well-tolerated and the corresponding
products could be obtained in high yields with good
enantioselectivities (Table 2, 3a-3h). It is worth mentioning that
the ee value of 3d could be increased up to 99% in 75% yield after a
single recrystallization step. The reaction is also compatible with
naphthalene cycles and heteroaromatic cycles (Table 2, 3i and 3j).
When the trifluoromethyl group within the substrate was replaced
by the perfluoropropyl group, good yield and enantioselectivity were
also achieved (Table 2, 3k). In addition, trifluoromethyl ketimine
containing an alkynyl group was applied in the reaction, which gave
the product 3l in good yield and moderate enantioselectivity
(Table 2, 3l) (Dai et al., 2019; Ran et al., 2020; Yang et al., 2020;
Li et al., 2021).

Based on the previous results, (Wang et al., 2013a; Wang et al.,
2013b; Zhang et al., 2016; Du et al., 2020), a transition state was
proposed. The substrate 1a with an N-Boc group may interact with
thiourea in the catalyst 4f via N–H and O–H hydrogen bonding. The
face selectivity of the complex was controlled by the steric hindrance,
and the imine should be attacked from the Si-face by nitromethane
anions, which were activated by the ammonium salt center through
electrostatic interaction (Scheme 2).

To demonstrate the efficiency and applicability of this reaction,
gram-scale experiments with six representative substrates (1a, 1c-1e,
1h, and 1j) were carried out successfully (Table 3). The following
one-pot reduction of their products 3a, 3c-3e, 3h, and 3j with
NiCl₂,·6H₂O, and NaBH₄ in methanol afforded the desired products
in good yields in two steps, with no observed loss of
enantioselectivity (5a and 5c). As a result, 1.8–2.6 g of the
valuable chiral diamine intermediates 5a–5f was obtained easily,
which serve as crucial fragments to access adamantane-type
derivatives.

Intrigued by the promising biological activity of polycyclic
polyprenylated acylphloroglucinol derivatives (Yang et al., 2018;
Wang et al., 2019b; Phang et al., 2020; Wang et al., 2021), we aimed
to integrate a key structural element, adamantane, into these
molecules. Adamantane, the quintessential diamond-like molecule
with its symmetrical and rigid cage structure, boasts a unique
combination of valuable properties, including potent antioxidant
activity, high lipid solubility, impressive thermal stability, and
comparatively low toxicity (Spilovska et al., 2016). These
exceptional attributes have propelled adamantane-type derivatives
to the forefront of diverse applications, from systemic therapies to
topical treatments. Herein, chiral diamines 5a–5f were successfully
derived into a series of adamantane-type derivatives by introducing
1-adamantanecarboxylic acid (6a–6f), 2-adamantanecarboxylic acid
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(7a–7f), and 1-adamantaneacetic acid (8a–8f) through amide
condensation, along with urea derivatives (9a–9f), through
condensation with 1-adamantanecarboxylic acid isocyanate
(Scheme 3). The enantioselectivities of adamantane-type
derivatives derived from 5a and 5c remained consistent with

those of 5a and 5c (for details, see Supplementary Material),
indicating that these processes did not affect the enantiomeric
excess (ee) values.

Based on the published literature and our ongoing research,
the incorporation of adamantane units into therapeutic scaffolds

TABLE 2 Aza-Henry reaction of N-Boc trifluoromethyl ketimines catalyzed by the ion-pair catalysta.

aUnless otherwise noted, the reaction was performed with 1 (0.1 mmol), 2 (0.20 mmol), catalyst 4f (1 mol%), and base (0.1 equiv.) in solvent (1.0 mL) for 3 days.
bAfter recrystallization.
cCatalyst 4e (5 mol%) and K2CO3 (2.0 equiv.) were used.
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TABLE 3 Gram-scale synthesis of trifluoromethyl 1,2-diamines in one pota.

aStep 1: standard conditions; Step 2: NiCl₂,·6H₂O (1.0 equiv.), NaBH₄ (7.0 equiv.), and MeOH.
bAfter recrystallization in step 1.

SCHEME 2
Proposed transition state leading to the desired configuration.
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has shown significant potential in recent years. Some
adamantane-type compounds have demonstrated promising
biological activities, such as anti-psychiatric, anticancer and
neurological disorders, and anti-inflammatory effects
(Burmistrov et al., 2022; Tao et al., 2024; Gutti et al., 2023;
Ragshaniya et al., 2024). To explore this further, we have utilized
the uniqueness of the adamantane moiety in our synthetic
compounds with the introduction of various functional groups
that may enhance the potency as well as selectivity. Thus, the
synthesized 24 adamantane-type derivatives were evaluated
against two cancer cell lines: liver carcinoma HepG2 and
melanoma B16F10. The initial impact of these compounds on
cell viability was assessed. Based on these findings, a subset of

compounds demonstrating promising cytotoxicity was selected
for further investigation. The IC50 values of the chosen
compounds were subsequently determined for both
HepG2 and B16F10 cell lines (Scheme 4). Compound 6b with
a 1-adamantane structure exhibited remarkable bioactivity
against both HepG2 and B16F10, showcasing its potential as a
broad-spectrum anticancer agent. Compounds 7a–7d with a
2-adamantane structure collectively displayed impressive
bioactivity against both cancer lines, highlighting the efficacy
of their structural motifs. Compound 8a, formed through
condensation with 1-adamantaneacetic acid, also exhibited
similar bioactivity against liver cancer HepG2 and melanoma
B16F10; however, urea derivatives (9a–9f) did not show any good

SCHEME 3
Transformations of chiral trifluoromethyl amines to diverse adamantane-type derivatives.
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results in the bioassay, which may be attributed to the size of the
molecular cavity itself, and it is consistent with the fact that
amides are much more likely to be seen in medicinal chemistry.
Preliminary findings indicate that the incorporation of 2-
adamantanecarboxylic acid can lead to relatively favorable
bioactivity, offering essential insights for the structural
modification of compounds with antitumor properties. Based
on these results, the structure–activity relationship is concluded
in Scheme 4.

3 Conclusion

In summary, we present the asymmetric aza-Henry reaction
involving nitromethane and N-Boc trifluoromethyl ketimines
catalyzed by readily prepared quaternary ammonium salts

derived from amino acids. The reaction demonstrates
efficiency under mild conditions and with low catalyst loading.
It exhibits good tolerance, yielding the desired products in high
yields with notable enantioselectivities. A series of adamantane-
type derivatives containing chiral trifluoromethylamine
fragments were designed and synthesized successfully. The
biological evaluation of these compounds against liver cancer
HepG2 and melanoma B16F10 cell lines identified promising
lead compounds, allowing the establishment of a
structure–activity relationship.

4 Materials and methods

For experimental procedures and compound characterization
data, see the Supplementary Material.

SCHEME 4
IC50 of selected adamantane-type compounds against two cell lines and SARs.
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4.1 Experimental section

4.1.1 General procedure for the asymmetric aza-
Henry reaction of N-Boc ketimines

To a solution of quaternary ammonium salt (0.001 mmol, 1 mol%)
in mesitylene (1.0 mL) was added nitromethane (2.0 equiv.) and base
(0.1 equiv.). After stirring for 5 min, the corresponding N-Boc
trifluoromethyl ketimine (0.1 mmol) was added. The reaction was
monitored by TLC until it was completed, and the residue was
purified by flash silica gel column chromatography to give
trifluoromethyl β-nitroamines.

4.1.2 General procedure for the gram-scale
synthesis of trifluoromethyl 1,2-diamines in
one pot

To a solution of quaternary ammonium salt (0.1 mmol, 1 mol%) in
mesitylene (50.0 mL) was added nitromethane (2.0 equiv.) and base
(0.1 equiv.). After stirring for 10 min, the corresponding N-Boc
trifluoromethyl ketimine (10.0 mmol) was added. The reaction was
monitored by TLC until it was completed; then, the solvent was
removed under vacuum, MeOH (50.0 mL) and NiCl2·6H2O
(1.0 equiv.) were added to the mixture, NaBH4 (7.0 equiv.) was added
in portions to a stirred methanol solution at 0°C, and the system was
stirred at 0°C for 2 h. The reaction was monitored by TLC. Saturated
aqueous NH4Cl (5.0 mL) was added to quench the reaction, and the
resulting mixture was stirred at room temperature until no gas evolved.
Anhydrous Na2SO4 was added into the mixture. After filtration, the
filtrate was concentrated, and the residuewas purified by silica gel column
chromatography to give the trifluoromethyl 1,2-diamines.

4.1.3 General procedure for the synthesis of 6a–6f
To a solution of trifluoromethyl 1,2-diamine (1.0 mmol, 1.0 equiv.)

in DCM (5.0 mL) was added 1-adamantanecarboxylic acid (1.5 equiv.),
HBTU (1.5 equiv.), and DIPEA (2.0 equiv.), and the reaction was
monitored by TLC until it was completed, and the residue was purified
by flash silica gel column chromatography to give 6a–6f.

4.1.4 General procedure for the synthesis of 7a–7f
To a solution of trifluoromethyl 1,2-diamine (1.0 mmol, 1.0 equiv.)

in DCM (5.0 mL) was added 2-adamantanecarboxylic acid (1.5 equiv.),
HBTU (1.5 equiv.), and DIPEA (2.0 equiv.), and the reaction was
monitored by TLC until it was completed, and the residue was purified
by flash silica gel column chromatography to give 7a–7f.

4.1.5 General procedure for the synthesis of 8a–8f
To a solution of trifluoromethyl 1,2-diamine (1.0 mmol,

1.0 equiv.) in DCM (5 mL) was added 1-adamantaneacetic acid
(1.5 equiv.), HBTU (1.5 equiv.), and DIPEA (2.0 equiv.), and the
reaction was monitored by TLC until the reaction was completed,
and the residue was purified by flash silica gel column
chromatography to give 8a–8f.

4.1.6 General procedure for the synthesis of 9a–9f
To a stirred solution of trifluoromethyl 1,2-diamine (1.0 mmol,

1.0 equiv.) in DCM (5.0 mL) was added 1-adamantyl isocyanate
(1.5 equiv.), and the reaction was monitored by TLC until the
reaction was completed, and the residue was purified by flash
silica gel column chromatography to give 9a–9f.
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