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This paper presents a thorough examination for drug release from a polymeric
matrix to improve understanding of drug release behavior for tissue regeneration.
A comprehensive model was developed utilizing mass transfer and machine
learning (ML). In the machine learning section, three distinct regression models,
namely, Decision Tree Regression (DTR), Passive Aggressive Regression (PAR),
and Quadratic Polynomial Regression (QPR) applied to a comprehensive dataset
of drug release. The dataset includes r(m) and z(m) inputs, with corresponding
concentration of solute in the matrix (C) as response. The primary objective is to
assess and compare the predictive performance of these models in finding the
correlation between input parameters and chemical concentrations. The hyper-
parameter optimization process is executed using Sequential Model-Based
Optimization (SMBO), ensuring the robustness of the models in handling the
complexity of the controlled drug release. The Decision Tree Regression model
exhibits outstanding predictive accuracy, with an R2 score of 0.99887, RMSE of
9.0092E-06, MAE of 3.51486E-06, and a Max Error of 6.87000E-05. This
exceptional performance underscores the model’s capability to discern
intricate patterns within the drug release dataset. The Passive Aggressive
Regression model, while displaying a slightly lower R2 score of 0.94652,
demonstrates commendable predictive capabilities with an RMSE of 6.0438E-
05, MAE of 4.82782E-05, and a Max Error of 2.36600E-04. The model’s
effectiveness in capturing non-linear relationships within the dataset is
evident. The Quadratic Polynomial Regression model, designed to
accommodate quadratic relationships, yields a noteworthy R2 score of
0.95382, along with an RMSE of 5.6655E-05, MAE of 4.49198E-05, and a Max
Error of 1.86375E-04. These results affirm the model’s proficiency in capturing
the inherent complexities of the drug release system.
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1 Introduction

Efficient delivery of therapeutic agents to the desired site has
been a subject of research owing to the importance of this method in
cancer treatment. Drugs might reach other tissues and damage
them, while low dosage of drug could reach the cancer cells for
treatment. Therefore, the design of targeted drug delivery systems
would be of fundamental importance for cancer effective treatment
(Kandula et al., 2023; Chen et al., 2024; Lu et al., 2024; Sameer Khan
et al., 2024). Drug can be loaded into various carriers such as
polymeric nanoparticles and reach the target cells, while its
release can be triggered by various means such as pH or
temperature change (Ali et al., 2023).

Modeling and computation of drug release from carriers can be
utilized for design and optimization of drug delivery systems based
on polymeric carriers. Some mathematical models have been
developed to simulate mass transfer in polymeric-based drug
release (González-Garcinuño et al., 2023; Kubinski et al., 2023;
Carr and Pontrelli, 2024). Usually, molecular diffusion is the
main mechanism that happens in polymeric-based drug delivery
systems where the drug molecules diffuse through the porous
structure of polymeric carrier. Some parameters such as pore
structure of carrier, molecular interaction, temperature, and
pH can affect the release rate of drug molecules. On the other
hand, machine learning models can be used for simulation of drug
release from polymeric carriers. The method is based upon
collection of datasets and building models via appropriate
algorithms. This method is indeed fast and possesses higher
performance in terms of fitting accuracy.

Machine learning (ML) techniques have shown great potential
in the field of drug development by enabling accurate forecasting of
drug solubility and density (Abdelbasset et al., 2022; Almehizia et al.,
2023). These techniques have the capability to evaluate large
amounts of data and extract meaningful patterns and
relationships that can be utilized for predictions (Jovel and
Greiner, 2021). This paper provides a thorough analysis of three
distinct regression models, namely, Decision Tree Regression
(DTR), Passive Aggressive Regression (PAR), and Quadratic
Polynomial Regression (QPR). These models were carefully
evaluated using a comprehensive dataset in the field of drug
release from a porous polymeric carrier. The hyper-parameter
optimization process is executed using Sequential Model-Based
Optimization (SMBO).

Decision Tree Regression is a versatile algorithm that can be
utilized in a wide range of regression tasks. Careful tuning of
hyperparameters is essential to prevent overfitting and ensure
optimal model performance (Talekar and Agrawal, 2020). Passive
Aggressive Regression offers a flexible and adaptive approach to
regression tasks, particularly in situations where data arrives
sequentially or in a streaming fashion (Crammer et al., 2006).
Also, Quadratic Polynomial Regression is a valuable tool for
capturing quadratic relationships in the data. Careful
consideration of model complexity and potential overfitting is
crucial for obtaining reliable and meaningful results (Yao and
Müller, 2010).

By systematically evaluating Decision Tree Regression (DTR),
Passive Aggressive Regression (PAR), and Quadratic Polynomial
Regression (QPR) models on a dataset comprising over 15,000 data

samples, the study provides valuable insights into the strengths and
limitations of each model. The incorporation of Sequential Model-
Based Optimization (SMBO) for hyper-parameter tuning enhances
the robustness of the models, highlighting the significance of
thoughtful parameter optimization.

2 Problem statement

This research dataset consists of more than 15,000 data points,
incorporating three key variables: r measured in meters, z also in
meters, and chemical concentration C expressed in mol/m3. The
data have been collected from a CFD (Computational Fluid
Dynamics) simulation of drug-loaded polymeric matrix. The
CFD was utilized to numerically solve time-dependent mass
balance per species (COMSOL, 2008) and the generated data was
used for building the machine learning models. The correlation
heatmap between variables is shown in Figure 1. This step was done
as the preliminary data visualization to see how data vary in the
domain of drug delivery system.

The z-score, or standard score, is a statistical measure widely
employed for outlier detection in various studies, including the
present research. When conducting outlier analysis, the z-score is a
useful metric that provides a standardized representation of the
deviation of a data point from the mean of the dataset. It measures
the distance from a data point to the mean in standard
deviation units.

The expression for determining the z-score of a data point X
within a dataset having a mean of μ and a standard deviation of σ is
articulated as follows (Anusha et al., 2019):

Z � X − μ( )
σ

In this context, Z signifies the z-score of the data point, X represents
the individual data value, μ is indicative of the mean within the
dataset, and σ denotes the standard deviation.

A high absolute z-score indicates that the data point is far from
the mean and is considered a potential outlier. The threshold for
identifying outliers using z-scores is often set empirically;
commonly, a z-score beyond 2 or 3 standard deviations is
considered indicative of an outlier.

In the specific context of this study, the z-score method has been
employed for outlier detection. By calculating z-scores for the
relevant variables or features, the study aims to identify data
points that exhibit significant deviations from the norm,
facilitating a robust analysis of the dataset and ensuring the
reliability of the research findings. The result of z-score analyses
is shown in Figure 2.

3 Method of computing

3.1 Sequential Model-Based
Optimization (SMBO)

Sequential Model-Based Optimization (SMBO) emerges as a
powerful strategy for optimizing hyperparameters within the
domain of machine learning. It seamlessly integrates elements of
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FIGURE 1
Correlation heatmap for drug release dataset.

FIGURE 2
Z-Score plot analysis.
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Bayesian optimization andmodel-driven reasoning to systematically
navigate the hyperparameter landscape, identifying optimal
configurations for a given machine learning model (Croppi, 2021).

Hyperparameters, distinct from model parameters learned
during training, constitute pre-defined configuration settings
governing a model’s behavior and performance. The paramount
goal of hyperparameter tuning is to pinpoint the most favorable

FIGURE 3
Structure of DTR model.

FIGURE 4
DTR model: Predicted values compared to True values.

TABLE 1 Final metrics of the optimized models.

Model R2 score RMSE MAE Max error

DTR 0.99887 9.0092E-06 3.51486E-06 6.87000E-05

PAR 0.94652 6.0438E-05 4.82782E-05 2.36600E-04

QPR 0.95382 5.6655E-05 4.49198E-05 1.86375E-04
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values for these settings, significantly influencing the overall
performance of the model.

SMBO is a technique that utilizes Bayesian optimization
principles to optimize a given objective function. The core idea
behind SMBO is to iteratively assess and update a surrogate model,
which approximates the true objective function. This surrogate

model guides the optimization process by estimating the
objective function based on evaluated hyperparameter
configurations (Lacoste et al., 2014).

At each iteration, SMBO selects the subsequent
hyperparameter configuration for evaluation, striking a
balance between exploration and exploitation. This decision is

FIGURE 5
PAR model: Predicted values compared to True values.

FIGURE 6
QPR model: Predicted values compared to True values.
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informed by an acquisition function denoted as a(x), gauging the
utility of evaluating a specific configuration x based on
predictions from the surrogate model. The acquisition
function incorporates both the predicted performance f̂(x)
and uncertainty σ(x) of the surrogate model (Croppi, 2021):

a x( ) � α x( ) · μ x( ) + β x( ) · σ x( )
Here, μ(x) signifies the anticipated performance of the surrogate
model, while α(x) and β(x) are weighting functions regulating the
trade-off between exploitation and exploration. The choice of
acquisition functions depends on specific optimization objectives
(Tran et al., 2019).

To establish the surrogate model, SMBO initiates with a random
sample of hyperparameter configurations, refining and updating

them iteratively based on the acquisition function until a stopping
criterion is met.

SMBO’s merits in hyperparameter tuning include its efficiency
in exploring hyperparameter space, capacity to capture intricate
interactions between hyperparameters, automated configuration
process, and adaptability to diverse hyperparameters and
machine learning algorithms.

3.2 Decision Tree Regression model (DTR)

Decision Tree Regression (DTR) stands out as a potent tool in the
realm of machine learning, serving the purpose of predictive modeling
and regression analysis. Differing from its classification equivalent,

FIGURE 7
Three-dimensional representation of concentration with respect to r(m) and z(m) utilizing the DTR model.
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Decision Tree Classification, DTR has a distinct focus on forecasting
continuous values. Its operation involves the iterative division of the
dataset into subsets based on the features’ values, leading to the formation
of a tree-like arrangement of decision nodes (Kotsiantis, 2013).

Consider X as the input feature matrix comprising n samples
andm features, while y represents the corresponding target variable.
The Decision Tree Regression model can be expressed as (Rokach
et al., 2005; Olson et al., 2020):

ŷ � ∑
N

i�1
ci · I x ∈ Ri( )

Here, ŷ signifies the predicted output, N signifies the quantity of leaf
nodes in the tree, ci stands for the constant value associated with the

i-th leaf, I(x ∈ Ri) denotes an indicator function that equals 1 if x
belongs to the i-th region Ri and 0 otherwise.

The objective of the model is to identify optimal values for the
parameters ci and the corresponding regions Ri in order to minimize
the sum of squared differences between the model predicted values
and the expected (true) target values.

The structure of DTR model is displayed in Figure 3. In the
training procedure, the dataset undergoes iterative division into
subsets by leveraging feature thresholds. The algorithmmeticulously
picks the feature and its associated threshold, aiming to minimize
the mean squared error (MSE) concerning predictions within each
subset. The recursive partitioning persists until a predetermined
stopping condition is met, whether it involves reaching a maximum
tree depth or satisfying a minimum threshold of samples per leaf

FIGURE 8
Three-dimensional representation of concentration with respect to r(m) and z(m) utilizing the PAR model.
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(Quinlan, 1986; Suthaharan et al., 2016). Advantages of Decision
Tree Regression can be summarized in following items (Bertsimas
et al., 2017):

1. Non-linearity Handling: DTR excels in taking complicated
non-linear associations between input parameters and the
response variable, rendering it well-suited for handling
complex datasets.

2. Interpretability: Decision trees are inherently interpretable,
allowing users to easily understand and visualize the
decision-making process.

3. Robustness to Outliers: DTR is robust to outliers as it makes
decisions based on splits, rather than relying on the mean
or median.

3.3 Passive Aggressive Regression (PAR)

Passive Aggressive Regression (PAR) is a type of online learning
algorithm used for regression tasks. It is particularly suitable for
scenarios where data streams in real-time, and the model needs to
adapt and update its parameters continuously. The “Passive
Aggressive” name stems from its aggressive updating strategy
when making incorrect predictions and passive behavior when
predictions are correct (Salas et al., 2015).

The Passive Aggressive Regression model is defined by the
following update rule (Crammer et al., 2006):

w t+1( ) � argmin
w

1
2

w| − w t( )∣∣∣∣2 + Cmax 0, y t( ) − wTx t( )∣∣∣∣ ∣∣∣∣( ){ }

FIGURE 9
Three-dimensional representation of concentration with respect to r(m) and z(m) utilizing the QPR model.
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Here w indicates the weight vector, w(t) denotes the weight vector at
time step t,C stands for the regularization parameter,y(t) represents the
true target at time step t, x(t) is the input feature vector at time step t, | · |
denotes the Euclidean norm, and max(0, ·) is the hinge loss function.

3.4 Quadratic Polynomial Regression
model (QPR)

QPR has been known as a polynomial regressive technique that
extends the linear regression technique to find quadratic correlations
between the input features and the response parameters. Unlike
simple linear models which consider a linear relationship, QPR
accommodates more complex curvilinear patterns in the data
(Heiberger and Neuwirth, 2009; Yao and Müller, 2010; Almehizia
et al., 2023).

Let X represent the input feature matrix with n data points and
m features, and y be the corresponding target variable. The QPR
model is defined by the equation (Yao and Müller, 2010; Almehizia
et al., 2023):

ŷ � β0 + β1x + β2x2

Where, ŷ represents the predicted output, β0 is the intercept term, β1
stands for the coefficient associated with the linear term, β2

represents the coefficient associated with the quadratic term, and
x denotes the input feature.

4 Results and discussion

The evaluation of the Decision Tree Regression (DTR), Passive
Aggressive Regression (PAR), and Quadratic Polynomial Regression
(QPR) models was conducted on a dataset comprising more than
15,000 data points, with input parameters represented by r(m) and
z(m) coordinates, and the output parameter denoted by
concentration (C) in mol/m³. The models underwent hyper-
parameter optimization using Sequential Model-Based
Optimization (SMBO). Table 1 presents a summary of the
numeric results obtained from the assessment conducted. This
table provides a concise overview of the key metrics and
performance measures obtained from the evaluation of the
regression models.

The DTR model demonstrates outstanding predictive accuracy,
reflected in an impressive R2 score of 0.99887, underscoring its
capability to discern intricate patterns within the dataset. The
negligible RMSE, MAE, and Max Error values further emphasize
the precision and reliability of the model in predicting chemical
concentrations. Figure 4 showcases a visual comparison between the

FIGURE 10
Concentration’s dependency on r.
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model predicted values and the true values using the Decision Tree
Regression (DTR) model.

While the PAR model demonstrates a slightly lower R2 score of
0.94652, its performance remains commendable, with competitive
RMSE, MAE, and Max Error values. This indicates the model’s
effectiveness in capturing relationships within the dataset, albeit
with a nuanced trade-off between accuracy and complexity. In
Figure 5, a visual comparison is presented, illustrating the
disparities between the values predicted by the PAR model and
the actual values.

The QPR model, designed to capture non-linear relationships,
achieves a noteworthy R2 score of 0.95382. The model’s competitive
RMSE, MAE, and Max Error values underscore its proficiency in
accommodating the inherent complexities of the chemical
engineering dataset. Figure 6 provides a visual representation,
demonstrating the distinctions between the values forecasted by
the QPR model and the factual values.

Figures 7–9 present three-dimensional representations of
concentration in relation to the variables r(m) and z(m), utilizing
the three regression models. These visualizations offer a
comprehensive view of how concentration varies across different
values of r(m) and z(m) for each model. The change in drug
concentration which has been obtained by the model could be
attributed to the molecular diffusion occurring indie the

polymeric matrix. Although both convective and diffusional mass
transfer have been considered in the mass transfer model, the
contribution of diffusion is significant and controls the release of
drug from the carrier.

Leveraging the DTR model, acknowledged as the top-
performing model in this investigation, Figures 10, 11 depict the
partial dependency of concentration on the variables r(m) and z(m),
respectively. These visualizations provide insights into how changes
in r(m) and z(m) influence the drug concentration, while keeping
the other variable constant at multiple levels. This visualization
provides a comprehensive representation of how the concentration
varies across different combinations of the input variables, r(m) and
z(m). The center of geometry is the drug where its concentration is
the highest, while concentration declines beyond the center due to
the diffusion as well as chemical reactions.

5 Conclusion

In conclusion, this paper has presented a rigorous evaluation of
three distinct regression models, namely, Decision Tree Regression
(DTR), Passive Aggressive Regression (PAR), and Quadratic
Polynomial Regression (QPR), within the context of a dataset
containing more than 15,000 data points. The dataset has been

FIGURE 11
Concentration’s dependency on z.
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obtained from mass transfer simulation of drug release from a
porous polymeric carrier. The input parameters, r(m) and z(m),
were utilized to predict the output concentration (C) in mol/m³. The
models underwent hyper-parameter optimization through
Sequential Model-Based Optimization (SMBO), ensuring a
meticulous exploration of the parameter space.

The results showcase the exceptional predictive capabilities of
the Decision Tree Regression model, evidenced by a significant R2

score of 0.99887, a negligible RMSE of 9.0092E-06, a minute MAE of
3.51486E-06, and a maximum error of 6.87000E-05. Despite a
slightly lower R2 score, the Passive Aggressive Regression model
demonstrated commendable performance, while the Quadratic
Polynomial Regression model showcased proficiency in capturing
non-linear relationships within the dataset.

This comparative analysis not only provides valuable insights
into the specific strengths and limitations of each regression model
but also serves as a guide for practitioners in selecting an appropriate
model tailored to the complexities of chemical engineering datasets.
The incorporation of SMBO contributes to the robustness of the
models, highlighting the significance of thoughtful hyper-parameter
tuning in enhancing predictive accuracy. Overall, this research
contributes to the ongoing discourse on regression model
selection and optimization techniques in the domain of drug
delivery, offering a foundation for further exploration and
refinement in predictive modeling methodologies for design of
advanced drug delivery systems.
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