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Cyclooctane is classified as a cycloalkane, characterized by the chemical formula
C8H16. It consists of a closed ring structure composed of eight carbon atoms and
sixteen hydrogen atoms. A cyclooctane chain typically refers to a series of
cyclooctane molecules linked together. Cyclooctane and its derivatives find
various applications in chemistry, materials science, and industry. Topological
indices are numerical values associated with the molecular graph of a chemical
compound, predicting certain physical or chemical properties. In this study, we
calculated the expected values of degree-based and neighborhood degree-
based topological descriptors for random cyclooctane chains. A comparison of
these topological indices’ expected values is presented at the end.
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1 Introduction

Cyclooctane itself is a cyclic molecule, forming a stable ring structure with eight carbon
atoms and saturated with hydrogen atoms. One way to modify cyclooctane is by
substituting some of its hydrogen atoms with other functional groups, leading to
various derivatives with different properties and reactivities. Substituted cyclooctane
derivatives can serve as essential building blocks in organic synthesis.

The unique structure and strain of cyclooctane can influence the reactions it undergoes,
potentially leading to interesting transformations. Cyclooctane rings can be part of larger
molecules, where their strain energy might play a role in the overall reactivity and stability of
the molecule. The strain energy in cyclooctane rings, attributed to their angle strain, can
make them more reactive in certain reactions, possibly resulting in unexpected products.

Cyclooctane and its derivatives are intriguing subjects for computational chemistry
studies, aiding researchers in understanding their structures, energies, and reactivities
(Bharadwaj, 2000; Salamci et al., 2006; Alamdari et al., 2008; Ali et al., 2012; Banu et al.,
2015). These derivatives find applications in combustion kinetics, drug synthesis, organic
synthesis, and more. For instance, cyclooctane-1,2,5,6-tetrol is utilized in the osmium-
catalyzed bis-dihydroxylation of 1,5-cyclooctadiene (Salamci et al., 2006). Alamdari
(Alamdari et al., 2008), conducted a study on the synthesis of some cyclooctane-based
quinoxalines and pyrazines.
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The molecular structures, specifically the graphs depicting
carbon atoms, in cyclooctanes form cyclooctane systems (also
referred to as octagonal systems (Brunvoll et al., 1997)). In these
systems, each inner face is enclosed by a regular octagon, and any
two octagons are linked by an edge. LetG be a graph with a vertex set
and an edge set denoted by V and E. A vertex v is called the neighbor
of vertex w if there is an edge between them (or vw ∈ E). Let N(v)
denote the set of neighbors of v. The degree of vertex v is the number
of edges incident to it and is denoted by d(v). We use the notation
δ(v) to denote the neighborhood degree of a vertex v and is defined
as the sum of the degree of the vertices that are adjacent to v, i. e.,
δ(v) = ∑u∈N(v)d(u). For basic definitions related to graph theory, see
(West, 2001).

Topological indices are numerical descriptors that provide
information about the connectivity and structure of molecules.
Up until now, many topological indices have been proposed by
different researchers with applications in chemistry. Among these
topological indices, the ones most studied are those based on the
degree of vertices in a graph. Milan Randic introduced the first
degree-based topological index known as the branching index
(Randic, 1975). Randic noted that this index is well-suited for
assessing the degree of branching within the carbon atom skelton
of saturated hydrocarbons. For a graph G, the Randic index is the
sum of 1���

dvdw
√ over all edges vw ∈ E, i.e.,

R G( ) � Σvw∈E
1����
dvdw

√ .

The Randic index shows strong correlations with various physico-
chemical properties of alkanes, including but not limited to boiling
points, enthalpies of formation, chromatographic retention periods,
surface areas, and parameters in the Antoine equation for vapor
pressure (Kier et al., 1975).

The second Gourava index was proposed by Kulli (Kulli, 2017),
in 2017 and is defined as

GO2 G( ) � Σvw∈E dv + dw( )dvdw.

Recently, Mondal et al. (Das and Trinajstic, 2010; Imran et al.,
2017; Ali et al., 2019), proposed some topological indices based
on neighborhood degree. The modified neighborhood forgotten
index of a graph G is denoted by FG* and has the
mathematical formula

FN* G( ) � ∑
uv∈E G( )

δ u( )2 + δ v( )2. (1)

The second modified neighborhood Zagreb index of a graph G is
defined as

nmM2 G( ) � ∑
uv∈E G( )

1
δ u( )δ v( ). (2)

It was observed that these two topological descriptors show a very
good correlation with two physical properties, namely, the acentric
factor and the entropy of the octane isomers. Therefore, these
topological descriptors are of chemical importance. In, Mondal
et al. proposed a few more topological descriptors based on
neighborhood degree. He named these topological descriptors the
third NDe index and the fourth NDe index. These topological
indices are defined as

ND3 G( ) � ∑
uv∈E G( )

δ u( )δ v( ) δ u( ) + δ v( )( ), (3)

ND4 G( ) � ∑
uv∈E G( )

δ u( )δ v( )( )−1
2. (4)

Different researchers have studied the expected values of random
molecular structures in the recent past. Raza et al. (Raza et al.,
2023a), conducted calculations for the expected values of sum-
connectivity, harmonic, Sombor, and Zagreb indices in
cyclooctane chains. In the work presented in (Raza, 2022),
expected values for the harmonic and second Zagreb indices
were determined for random spiro chains and polyphenyl.
Additionally, Raza et al. (Raza et al., 2023b), computed the
expected value of the first Zagreb connection index in random
cyclooctane chains, random polyphenyl chains, and random chain
networks. Explicit formulas for the expected values of certain
degree-based topological descriptors of random phenylene chains
were provided by Hui et al. (Hui et al., 2023). Zhang et al. (Zhang
et al., 2018), discussed the topological indices of generalized bridge
molecular graphs, while in separate works (Zhang et al., 2022; Zhang
et al., 2023), they computed the topological indices of some
supramolecular chains using graph invariants. For more details
on this topic of research, readers can see the following papers
(Mondal et al., 2019; Xu et al., 2020; Mondal et al., 2021; Raza, 2021).

The main aim of this work is to find the expected values of the
Randic index, the second Gourava index, the modified
neighborhood forgotten index, the third degree neighborhood
index, and the fourth degree neighborhood index of the random
cyclooctane chain. Moreover, we give a comparison between the
expected values of these topological indices.

2 Expected values of topological
descriptors for random
cyclooctane chains

Cyclooctane is a cyclic hydrocarbon with eight carbon atoms
arranged in a ring. While it does not form chains itself, neighboring
cyclooctane molecules can interact through intermolecular forces.
Understanding these interactions is crucial for studying the physical
properties and behavior of cyclooctane and similar cycloalkanes.
Cyclooctane graphs are examples of cyclic graphs, which are graphs
containing a single cycle as their main structural component. A
random cyclooctane chain with a length of t is obtained by
connecting t octagons in a linear arrangement, where any two
consecutive octagons are randomly joined by an edge between
vertices. We use the notation Ot to represent a random
cyclooctane chain containing t octagons (of length t). Observe
that there is a unique cyclooctane chain for t = 1, 2 (see
Figure 1). For t ≥ 3, at each step, two octagons can be attached
to each other by an edge in four different ways, which results in a
random cyclooctane chain Ot (see Figure 2). Suppose p1, p2, p3, and
p4 are the probabilities of attaching the octagons at these four places.
We call the corresponding cyclooctane chain with probability pi as
O

pi
t , 1≤ i≤ 4 (see Figure 3). The four possible constructions at each

step are as follows:

(a) Ot−1 → O
p1
t with probability p1,
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(b) Ot−1 → O
p2
t with probability p2,

(c) Ot−1 → O
p3
t with probability p3,

(d) Ot−1 → O
p4
t with probability p4 = (1 − p1 − p2 − p3), with

probability.

From the graph of the cyclooctane chain, it is easy to see that
there are only (2,2), (2,3), and (3,3) types of edges. Let xij denote the
number of edges of Ot with end vertices of degrees i and j,
respectively. By using the definition, the expressions for the
Randic index and the second Gourava index are as follows:

R Ot( ) � 1
2
x22 + 1�

6
√ x23 + 1

3
x33. (5)

GO2 Ot( ) � 16x22 + 30x23 + 54x33. (6)

Since Ot is a random cyclooctane chain, it follows that R(Ot) and
GO2(Ot) are random variables. We use the notations ER(Ot) and
EGO2(Ot) to denote the expected values of the random cyclooctane
chain Ot. In the next theorem, we give an explicit expression for the
expected value of the Randic index for the cyclooctane chain Ot.

Theorem 2.1. Let Ot be a random cyclooctane chain of length t ≥
2. Then,

ER Ot( ) � p1
15 − 2

�
6

√
6

t − 15 − 2
�
6

√
3

( ) + 7 + 2
�
6

√
3

( )t
+ 15 − 2

�
6

√
3

.

Proof. Let t = 2, then E(O2) � 19+2 �
6

√
3 , which is indeed true. For

t ≥ 3, there are four possibilities.

A) If Ot−1 → O
p1
t with probability p1, then x22(Op1

t ) � x22

(Ot−1) + 5, x23(Op1
t ) � x23(Ot−1) + 2 and x33(Op1

t ) �
x33(Ot−1) +2. Substituting these values into equation 5
yields R(Op1

t ) � R(Ot−1) + 19+2 �
6

√
6 .

B) If Ot−1 → O
p2
t with probability p2, then x22(Op2

t ) � x22

(Ot−1) + 4, x23(Op2
t ) � x23(Ot−1) + 4 and x33(Op2

t ) �
x33(Ot−1) +1. Substituting these values into equation 5
yields R(Op2

t ) � R(Ot−1) + 7+2 �
6

√
3 .

C) If Ot−1 → O
p3
t with probability p3, then x22(Op2

t ) � x22

(Ot−1) + 4, x23(Op2
t ) � x23(Ot−1) + 4 and x33(Op2

t ) �
x33(Ot−1) +1. Substituting these values into equation 5
yields R(Op3

t ) � R(Ot−1) + 7+2 �
6

√
3 .

D) If Ot−1 → O
p4
t with probability p4 = (1 − p1 − p2 − p3), then

x22(Op4
t ) � x22 (Ot−1) + 4, x23(Op3

t ) � x23(Ot−1) + 4 and
x33(Op3

t ) � x33(Ot−1) + 1. Substituting these values into
equation 5 yields R(Op4

t ) � R(Ot−1) + 7+2 �
6

√
3 .

FIGURE 1
cyclooctane chains with single and double octagons.

FIGURE 2
cyclooctane chains with t =3.
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Now, we have

ER Ot( ) � p1R O
p1
t( ) + p2R O

p2
t( ) + p3R O

p3
t( ) + p4R O

p4
t( )

� p1 R O
p
t−1( ) + 19 + 2

�
6

√
6

( ) + p2 R O
p
t−1( ) + 7 + 2

�
6

√
3

( )
+p3 R O

p
t−1( ) + 7 + 2

�
6

√
3

( ) + p4 R O
p
t−1( ) + 7 + 2

�
6

√
3( ).

By employing the operator E on both sides and considering the fact
that E[ER(Ot)] � ER(Ot), we get

ER Ot( ) � ER Ot−1( ) + 19 + 2
�
6

√
6

p1 + 7 + 2
�
6

√
3

p2 + 7 + 2
�
6

√
3

p3 + 7 + 2
�
6

√
3

p4.

(7)

Finally, solving the recurrence relation (7), we obtain

FIGURE 3
cyclooctane chains with t >3.

FIGURE 4
some special cases of cyclooctane chains COt ,ZOt ,MOt, LOt.
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ER Ot( ) � p1
15 − 2

�
6

√
6

t − 15 − 2
�
6

√
3

( ) + 7 + 2
�
6

√
3

+ 15 − 2
�
6

√
3

.

Theorem 2.2. Let Ot be a random cyclooctane chain of length t ≥
2. Then

EGO2 Ot( ) � 10p1 t − 2( ) + 238t − 110.

Proof. Let t = 2, then E2 = 366, which is indeed true. For t ≥ 3,
there are four possibilities

A) If Ot−1 → O
p1
t with probability p1, then x22(Op1

t ) � x22

(Ot−1) + 5, x23(Op1
t ) � x23(Ot−1) + 2 and x33(Op1

t ) �
x33(Ot−1) +2. Using these values in Eq. 6 we haveGO2(Op1

t ) �
GO2(Ot−1) + 248.

B) If Ot−1 → O
p2
t with probability p2, then x22(Op2

t ) � x22

(Ot−1) + 4, x23(Op2
t ) � x23(Ot−1) + 4 and x33(Op2

t ) �
x33(Ot−1) +1. Using these values in Eq. 6 we haveGO2(Op2

t ) �
GO2(Ot−1) + 238.

C) If Ot−1
p → O

p3
t with probability p3, then x22(Op2

t ) � x22

(Ot−1) + 4, x23(Op2
t ) � x23(Ot−1) + 4 and

x33(Op2
t ) � x33Ot−1 + 1. Using these values in Eq. 6 we have

GO2(Op3
t ) � GO2(Ot−1) + 238.

D) If Ot−1 → O
p4
t with probability p4 = (1 − p1 − p2 − p3), then

x22(Op4
t ) � x22(Ot−1) + 4, x23(Op3

t ) � x23(Ot−1) + 4 and
x33(Op3

t ) � x33(Ot−1) + 1. Using these values in Eq. 6 we
have GO2(Op4

t ) � GO2(Op
t−1) + 238.

Thus, we obtain

GO2 O
p
t( ) � p1GO2 O

p1
t( ) + p2GO2 O

p2
t( ) + p3GO2 O

p3
t( ) + p4GO2 O

p4
t( )

� p1 GO2 Ot−1( ) + 248( ) + p2 GO2 Ot−1( ) + 238( )
+ p3 GO2 Ot−1( ) + 238( ) + p4 GO2 O

p
t−1( ) + 238( ).

GO2 Op
t( ) � GO2 O

p
t−1( ) + 248p1 + 238p2 + 238p3 + 238p4.

By employing the operator E on both sides and considering the fact
that E[EGO2(Ot)] � EGO2(Ot), we get

EGO2 Ot( ) � EGO2 Ot−1( ) + 238 + 10p1. (8)
Finally, solving the recurrence relation (8), we obtain

EGO2 Ot( ) � 10p1 t − 2( ) + 238t − 110.

If the probability is invariable to the step parameter and
constant, then this process is called a zeroth-order Markov
process. We obtain some special classes of cyclooctane chains
if we take one of the values of p1,p2, p3, and p4 as one. Let COt,
ZOt, MOt, and LOt (see Figure 4) be the classes of cyclooctane

TABLE 1 Expected values ER and EGO2 .

t ER EGO2

3 12.2693 606

4 16.5709 846

5 20.8725 1086

6 25.1741 1326

7 29.4757 1566

8 33.7773 1806

9 38.0789 2046

10 42.3805 2286

FIGURE 5
Graphical comparison of ER and EGO2 .
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chains obtained by taking p1 = 1, p2 = 1, p3 = 1, and p4 = 1,
respectively. The following corollary is an immediate
consequence of Theorems 2.1 and 2.2.

Corollary 2.3. Let t ≥ 2, then

1. • ER(COt) � [19+2
�
6

√
6 ]t.

•ER(ZOt) � [7+2
�
6

√
3 ]t + 15−2 �

6
√

3 .
•ER(MOt) � [7+2

�
6

√
3 ]t + 15−2 �

6
√

3 .
•ER(LOt) � [7+2

�
6

√
3 ]t + 15−2 �

6
√

3 .
2. • EGO2(COt) � 248t − 130.

•EGO2(ZOt) � 238t − 110.
•EGO2(MOt) � 238t − 110.
•EGO2(LOt) � 238t − 110.
Next, we compute the expected values of topological indices

depending on neighborhood degree. For this, we need to find the
partition of the edge set of Ot based on the neighborhood degree of
the end vertices of each edge. Observe that there are only (4,4), (4,5), (5,5),
(5,7), (5,8), (6,7), (7,7), (7,8), and (8,8) types of edges based on
neighborhood degree in Ot. We use the notation yij to denote the

number of edges of Ot whose end vertices have neighborhood degrees
i and j, respectively. For t = 3, it is easy to calculate that y44(Op1

t ) � 11,
y45(Op1

t ) � 6, y57(Op1
t ) � 4 y58(Op1

t ) � 2, y78(Op1
t ) � 2,

y88(Op1
t ) � 1, y44(Op2

t ) � 10, y45(Op2
t ) � 6, y57(Op2

t ) � 6,
y67(Op2

t ) � 2, y77(Op2
t ) � 1, y44(Op3

t ) � 9, y45(Op3
t ) � 6,

y55(Op3
t ) � 1, y57(Op3

t ) � 8, y77(Op3
t ) � 2 y44(Op4

t ) � 8,
y45(Op4

t ) � 8, y57(Op4
t ) � 8, and y77(Op4

t ) � 2. The expressions for
the neighborhood degree based topological indices are as follows

FN* Ot( ) � 32y44 Ot( ) + 41y45 Ot( ) + 50y55 Ot( ) + 74y57 Ot( )
+ 89y58 Ot( ) + 85y67 Ot( ) + 98y77 Ot( ) + 113y78 Ot( )
+ 128y88 Ot( ).

(9)
nmM2 Ot( ) � 1

16
y44 Ot( ) + 1

20
y45 Ot( ) + 1

25
y55 Ot( ) + 1

35
y57 Ot( )

+ 1
40

y58 Ot( ) + 1
42

y67 Ot( ) + 1
49

y77 Ot( )

+ 1
56

y78 Ot( ) + 1
64

y88 Ot( ). (10)

TABLE 2 Expected values of E
nmM2 , END4 , EFN* and END3 .

t E
nmM2 END4 EFN* END3

3 1.17974 5.4420 1383.6 7372.4

4 1.5249 7.4638 1395.2 10640.8

5 1.861 9.4856 1406.8 13909.2

6 2.2151 11.5074 1418.4 17177.6

7 2.5602 13.5292 1430 20446

8 2.9053 15.5509 1431.6 23714.4

9 3.2504 17.5728 1443.2 26982.8

10 3.5955 19.5946 1454.8 30251.2

FIGURE 6
Graphical comparison of E

nmM2 , END4 , EFN* and END3 .
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ND3 Ot( ) � 128y44 Ot( ) + 180y45 Ot( ) + 250y55 Ot( ) + 420y57 Ot( )
+ 520y58 Ot( ) + 546y67 Ot( ) + 686y77 Ot( )
+ 840y78 Ot( ) + 1024y88 Ot( ).

(11)
ND4 Ot( ) � 1

4
y44 Ot( ) + 1

2
�
5

√ y45 Ot( ) + 1
5
y55 Ot( ) + 1��

35
√ y57 Ot( )

+ 1
2

��
10

√ y58 Ot( ) + 1��
42

√ y67 Ot( ) + 1
7
y77 Ot( )

+ 1
2

��
14

√ y78 Ot( ) + 1
8
y88 Ot( ).

(12)

Theorem 2.4. Let Ot be a random cyclooctane chain of length t ≥
3. Then

EFN* Ot( ) � 1372 + t − 2( ) 54p1 + 4p2[ ] + t − 3( )558.

Proof. For t = 3, we have FN* (Op1
3 ) � 1462, FN* (Op2

3 ) � 1376,
FN* (Op3

3 ) � 1372, and FN* (Op4
3 ) � 1372. Hence,

EFN* (O3) � 1372 + 54p1 + 4p2. For t ≥ 3, there are four possibilities

A) If Ot−1 → O
p1
t with probability p1, then

y44(Op1
t ) � y44(Ot−1) + 3, y45(Op1

t ) � y45(Ot−1) + 2,
y58(Op1

t ) � y58(Ot−1) + 2 and y88(Op1
t ) � y88(Ot−1) + 2.

The other yij values remains same. Using these values in 9,
we have FN* (Op1

t ) � FN* (Op
t−1) + 612.

B) If Ot−1 → O
p2
t with probability p2, then

y44(Op2
t ) � y44(Ot−1) + 2, y45(Op2

t ) � y45(Ot−1) + 2,
y57(Op2

t ) � y57(Ot−1) + 2, y67(Op2
t ) � y67(Ot−1) + 2, and

y77(Op2
t ) � y77(Ot−1) + 1. The other yij values remains

same. Using these values in 9, we
have FN* (Op2

t ) � FN* (Ot−1) + 562.
C) If Ot−1 → O

p3
t with probability p3, then

y44(Op3
t ) � y44(Ot−1) + 1, y45(Op3

t ) � y45(Ot−1) + 2,
y55(Op3

t ) � y55(Ot−1) + 1, y57(Op3
t ) � y57(Ot−1) + 4, and

y77(Op3
t ) � y77(Ot−1) + 1. The other yij values remains

same. Using these values in 9, we
have FN* (Op3

t ) � FN* (Ot−1) + 558.
d) IfOt−1 → O

p4
t with probability p4, then y44(Op4

t ) � y44(Ot−1),
y45(Op4

t ) � y45(Ot−1) + 4, y57(Op3
t ) � y57(Ot−1) + 4, and

y77(Op3
t ) � y77(Ot−1) + 1. The other yij values remains

same. Using these values in 9, we have FN* (Op4
t ) �

FN* (Ot−1) + 558.

Thus, we obtain

EFN* Ot( ) � p1FN* O
p1
t( ) + p2FN* O

p2
t( ) + p3FN* O

p3
t( ) + p4FN* O

p4
t( )

� p1 FN* Ot−1( ) + 612( ) + p2 FN* Ot−1( ) + 562( )
+ p3 FN* Ot−1( ) + 558( ) + p4 FN* Ot−1( ) + 558( )

� FN* Ot−1( ) + 558 + 54p1 + 4p2.

By employing the operator E on both sides and considering the fact
that E[EF N* (Ot)] � EF N* (Ot), we get

EFN* Ot( ) � EFN* Ot−1( ) + 558 + 54p1 + 4p2. (13)
Finally, solving the recurrence relation (13), we obtain

EFN* Ot( ) � 1372 + t − 2( ) 54p1 + 4p2[ ] + 558 t − 3( ).

Theorem 2.5. Let Ot be a random cyclooctane chain of length t ≥
3. Then

E
nmM2 Ot( ) � 2695

2240
p1 + 13934

11760
p2 + 22969

19600
p3 + 4584

3920
p4

+ t − 3( ) 59
160

p1[ + 4118
11760

p2 + 6609
19600

p3 + 328
980

p4].

Proof. For t = 3, we have nmM2(Op1
3 ) � 2625

2240,
nmM2(Op2

3 ) � 13934
11760,

nmM2(Op3
3 ) � 22969

19600 and nmM2(Op4
3 ) � 4584

3920. Hence,
E

nmM2(O3) � p1
2695
2240 + p2

13934
11760 + p3

22969
19600 + p4

4584
980 . For t > 3, there

are four possibilities

A) If Ot−1 → O
p1
t with probability p1, then y44(Op1

t ) � y44

(Ot−1) + 3, y45(Op1
t ) � y45(Ot−1) + 2 and y58(Op1

t ) �
y58(Ot−1) +2, and y88(Op1

t ) � y88(Ot−1) + 2. The other yij
values remains same. Using these values in 10, we have
nmM2(Op1

t ) � nmM2 (Ot−1) + 59
160.

B) If Ot−1 → O
p2
t with probability p2, then y44(Op2

t ) � y44

(Ot−1) + 2, x45(Op2
t ) � y45(Ot−1) + 2,

y57(Op2
t ) � y57(Ot−1) + 2, y67(Op2

t ) � y67(Ot−1) + 2, and
y77(Op2

t ) � y77(Ot−1) + 1. The other yij values remains
same. Using these values in 10, we have
nmM2(Op2

t ) � nmM2(Op
t−1) + 4118

11760.
C) If Ot−1 → O

p3
t with probability p3, then y44(Op3

t ) � y44

(Ot−1) + 1, y45(Op3
t ) � y45(Ot−1) + 2,

y55(Op3
t ) � y55(Ot−1) + 1, y57(Op3

t ) � y57(Ot−1) + 4, and
y77(Op3

t ) � y77(Ot−1) + 1. The other yij values remains
same. Using these values in 10, we have
nmM2(Op3

t ) � nmM2(Op
t−1) + 6609

19600.
D) If Ot−1 → O

p4
t with probability p4, then y44(Op4

t ) � y44

(Ot−1), y45(Op4
t ) � y45(Ot−1) + 4, y57(Op4

t ) � y57(Ot−1) + 4
and y77(Op4

t ) � y77(Ot−1) + 1. The other yij values remains
same. Using these values in 10, we have
nmM2(Op4

t ) � nmM2(Op
t−1) + 328

980.

Thus, we obtain

E
nmM2 Ot( ) � p1

nmM2 O
p1
t( ) + p2

nmM2 O
p2
t( ) + p3

nmM2 O
p3
t( )

+p4
nmM2 O

p4
t( ) � p1

nmM2 O
p
t−1( ) + 59

160

+p2
nmM2 O

p
t−1( ) + 4118

11760
+ p3

nmM2 O
p
t−1( )

+ 6609
19600

p4
nmM2 O

p
t−1( ) + 328

980
� nmM2 O

p
t−1( )

+p1
59
160

+ p2
4118
11760

+ p3
6609
19600

+ p4
328
980

.
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By employing the operator E on both sides and considering the fact
that E

nmM2(Ot) � E
nmM2(Ot), we get

E
nmM2 Ot( ) � E

nmM2 Ot−1( ) + p1
59
4480

+ p2
4118
11760

+ p3
6609
19600

+ p4
328
980

.

(14)
Finally, solving the recurrence relation (14), we obtain

E
nmM2 Ot( ) � 2695

2240
p1 + 13934

11760
p2 + 22969

19600
p3 + 4584

3920
p4

+ t − 3( ) 59
160

p1 + 4118
11760

p2 + 6609
19600

p3 + 328
980

p4[ ].

Theorem 2.6. Let Ot be a random cyclooctane chain of length t ≥
3. Then,

END3 Ot( ) � 7196 + 716p1 + t − 3( ) 3086 + 746p1[ ] + t − 2( )
× 148p2 + 18p3[ ].

Proof. For t = 3, we haveND3(Op1
3 ) � 7912,ND3(Op2

3 ) � 7344,
ND3(Op3

3 ) � 7214 and ND3(Op4
3 ) � 7196. Hence,

END3(O3) � 7912p1 + 7344p2 + 7214p3 + 7196p4. For t > 3, there
are four possibilities

A) If Ot−1 → O
p1
t with probability p1, then

y44(Op1
t ) � y44(Ot−1) + 3, y45(Op1

t ) � y45(Ot−1) + 2,
y58(Op1

t ) � y58(Ot−1) + 2, and y88(OP1
t ) � y88(Ot−1) + 2.

The other yij values remains same. Using these values in 11,
we have ND3(Op1

t ) � ND3(Ot−1) + 3832.
B) If Ot−1 → O

p2
t with probability p2, then

y44(Op2
t ) � y44(Ot−1) + 2, y45(Op1

t ) � y45(Ot−1) + 2,
y57(Op2

t ) � y57(Ot−1) + 2, y67(Op2
t ) � y67(Ot−1) + 2, and

y77(Op2
t ) � y77(Ot−1) + 1. The other yij values remains

same. Using these values in 11, we have ND3(Op2
t ) �

ND3(Ot−1) + 3234.
C) If Ot−1 → O

p3
t with probability p3, then

y44(Op3
t ) � y44(Ot−1) + 1, y45(Op3

t ) � y45(Ot−1) + 2,
y55(Op3

t � y55(Ot−1) + 1, y57(Op3
t ) � y57(Ot−1) + 4, and

y77(Op3
t ) � y77(Ot−1) + 1. The other yij values remains

same. Using these values in 11, we have ND3(Op3
t ) �

ND3(Op
t−1) + 3104.

D) IfOt−1 → O
p4
t with probability p4, then y44(Op4

t ) � y44(Ot−1),
y45(Op4

t ) � y45(Ot−1) + 4, y57(Op3
t ) � y57(Ot−1) + 4 and

y77(Op3
t ) � y77(Ot−1) + 1. The other yij values remains

same. Using these values in 11, we have ND3(Op4
t ) �

ND3(Ot−1) + 3086.

Thus, we obtain

END3 Ot( ) � p1ND3 O
p1
t( ) + p2ND3 O

p2
t( ) + p3ND3 O

p3
t( )

+ p4ND3 O
p4
t( )

� p1 ND3 Ot−1( ) + 3832( ) + p2 ND3 Ot−1( ) + 3234( )
+ p3 ND3 Ot−1( ) + 3104( ) + p4 ND3( ) Ot−1( )
+ 3086

� ND3 Ot−1( ) + 3832p1 + 3234p2 + 3104p3 + 3086p4.

By employing the operator E on both sides and considering the fact
that END3(Ot) � END3(Ot), we get
END3 Ot( ) � END3 Ot−1( ) + 3234p1 + 3234p2 + 3104p3 + 3086p4.

(15)
Finally, solving the recurrence relation (15), we obtain

END3 Ot( ) � 7196 + 716p1 + t − 3( ) 3086 + 746p1[ ] + t − 2( )
× 148p2 + 18p3[ ].

Theorem 2.7. Let Ot be a random cyclooctane chain of length t ≥
3. Then

END4 Ot( ) � p1
770 + 168

�
5

√ + 32
��
35

√ + 28
��
10

√ + 20
��
14

√ + 35
280

[ ]
+ p2

585 + 126
�
5

√ + 36
��
35

√ + 10
��
42

√
210

[ ]
+ p3

383 + 84
�
5

√ + 84
��
35

√
140

[ ] + p4
80 + 28

�
5

√ + 8
��
35

√
35

[ ]
+ t − 3( ) p1

10 + 2
�
5

√ + ��
10

√
10

+ p2
177 + 12

��
35

√ + 10
��
42

√
210

[
+p3

83 + 28
�
5

√ + 16
��
35

√
140

+ p4
5 + 14

�
5

√ + 4
��
35

√
35

].

Proof. For t = 3, we have
ND4(Op1

3 ) � 770+168 �
5

√ +32 ��
35

√ +28 ��
10

√ +20 ��
14

√
280 ,

ND4(Op2
3 ) � 585+126 �

5
√ +36 ��

35
√ +10 ��

42
√

210 , ND4(Op3
3 ) � 383+84 �

5
√ +84 ��

35
√

140 and
ND4(Op4

3 ) � 80+28 �
5

√ +8 ��
35

√
35 . Hence,

END4(O3) � p1[770 +168 �
5

√ +32 ��
35

√ +28
���������
10+20 ��

14
√ +35

√
280]+p2[585+126

�
5

√ +36 �35√ +10 �42√
210 ]+p3[383+84

�
5

√ +84 ��
35

√
140 + p4

5+14 �
5

√ +4 ��
35

√
35 ]. For t > 3 there are four possibilities

A) If Ot−1 → O
p1
t with probability p1, then

y44(Op1
t ) � y44(Op

t−1) + 3, y45(Op1
t ) � y45(Ot−1) + 2,

y58(Op1
t ) � y58(Ot−1) + 2, and y88(Op1

t ) � y88(Ot−1) + 2.
The other yij values remains same. Using these values in
12, we have ND4(Op1

t ) � ND4(Ot−1) + 10+2 �
5

√ + ��
10

√
10 .

B) If Ot−1 → O
p2
t with probability p2, then

y44(Op2
t ) � y44(Ot−1) + 2, y45(Op1

t ) � y45(Ot−1) + 2,
y57(Op2

t ) � y57(Ot−1) + 2, y67(Op2
t ) � y67(Ot−1) + 2, and

y77(Op2
t ) � y77(Ot−1) + 1. The other yij values remains same.

Using these values in 12, we have ND4(Op2
t ) � ND4(Op

t−1) +
177+12 ��

35
√ +10 ��

42
√

210 .
C) If Ot−1 → O

p3
t with probability p3, then

y44(Op3
t ) � y44(Ot−1) + 1, y45(Op3

t ) � y45(Ot−1) + 2,
y55(Op3

t ) � y55(Ot−1) + 1, y57(Op3
t ) � y57(Ot−1) + 4, and

y77(Op3
t ) � y77(Ot−1) + 1. The other yij values remains same.

Using these values in 12, we have ND4(Op3
t ) � ND4(Ot−1) +

83+28 �
5

√ +16 ��
35

√
140 .

D) If Ot−1 → O
p4
t with probability p4, then

y44(Op4
t ) � y44(Ot−1), y45(Op4

t ) � y45(Ot−1) + 4,
y57(Op3

t ) � y57(Ot−1) + 4, and y77(Op3
t ) � y77(Ot−1) + 1.

The other yij values remains same. Using these values in
12, we have ND4(Op4

t ) � ND4(Ot−1) + 5+14 �
5

√ +4 ��
35

√
35 .

Thus, we obtain
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END4 Ot( ) � p1ND4 O
p1
t( ) + p2ND4 O

p2
t( ) + p3ND4 O

p3
t( )

+ p4ND4 O
p4
t( )

� p1ND4 Ot−1( ) + 10 + 2
�
5

√ + ��
10

√
10

+ p2ND4 Ot−1( )

+ 177 + 12
��
35

√ + 10
��
42

√
210

+ p3ND4 Ot−1( )

+ 83 + 28
�
5

√ + 16
��
35

√
140

+ p4ND4 Ot−1( )

+ 5 + 14
�
5

√ + 4
��
35

√
35

� ND4 Ot−1( ) + p1
10 + 2

�
5

√ + ��
10

√
10

[ ]
+ p2

177 + 12
��
35

√ + 10
��
42

√
210

[ ]
+ p3

83 + 28
�
5

√ + 16
��
35

√
140

[ ]
+ p4

5 + 14
�
5

√ + 4
��
35

√
35

[ ].
By employing the operator E on both sides and considering the fact
that END4(Ot) � END4(Ot), we get

END4 Ot( ) � END4 Ot−1( ) + p1
10 + 2

�
5

√ + ��
10

√
10

[ ]
+ p2

177 + 12
��
35

√ + 10
��
42

√
210

[ ] + p3
83 + 28

�
5

√ + 16
��
35

√
140

[ ]
+ p4

5 + 14
�
5

√ + 4
��
35

√
35

[ ].
(16)

Finally, solving the recurrence relation (16), we obtain

END4 Ot( ) � p1
770 + 168

�
5

√ + 32
��
35

√ + 28
��
10

√ + 20
��
14

√ + 35
280

+p2
585 + 126

�
5

√ + 36
��
35

√ + 10
��
42

√
210

+p3
383 + 84

�
5

√ + 84
��
35

√
140

+ p4
80 + 28

�
5

√ + 8
��
35

√
35

+ t − 3( ) p1
10 + 2

�
5

√ + ��
10

√
10

+ p2
177 + 12

��
35

√ + 10
��
42

√
210

[
+p3

83 + 28
�
5

√ + 16
��
35

√
140

+ p4
5 + 14

�
5

√ + 4
��
35

√
35

].

Corollary 2.8. For t ≥ 3, we have

1. • EFN* (COp
t ) � 612t − 310.

•EFN* (ZOp
t ) � 562t − 310.

•EFN* (MO
p
t ) � 588t − 302.

•EFN* (LOp
t ) � 588t − 302.

2. • EnmM2(COp
t ) � 59

160 t + 217
2240.

•EnmM2(ZOp
t ) � 4118

11760 t − 79
588.

•EnmM2(MO
p
t ) � 6609

19600 t + 1571
9800.

•EnmM2(LOp
t ) � 328

90 t − 81
490.

3. • END3(COp
t ) � 3832t − 3584.

•END3(ZOp
t ) � 3234t − 2358.

•END3(MO
p
t ) � 3104t − 2098.

•END3(LOp
t ) � 3086t − 2062.

4. •END4(COp
t ) � [770+168

�
5

√ +32 ��
35

√ +28 ��
10

√ +20 ��
14

√ +35
280 ] + (t − 3)[10+2

�
5

√ + ��
10

√
10 ].

•END4(ZOp
t ) � [128+126

�
5

√ +36 ��
35

√ +10 ��
42

√
210 ] + (t − 3)[177+12

��
35

√ +10 ��
42

√
210 ].

•END4(MO
p
t ) � [383+84

�
5

√ +32 ��
35

√
140 ] + (t − 3)[83+28

��
35

√ +16 ��
35

√
140 ].

•END4(LOp
t ) � [84+28

�
5

√ +8 ��
35

√
35 ] + (t − 3)[5+14

�
5

√ +4 ��
35

√
35 ].

3 A comparison between the expected
values of topological indices for
random cyclooctane chains

In this section, we give a comparison between the expected
values of the considered topological indices for Random
Cyclooctane Chains. In Table 1, we have calculated the
expected values of the forgotten index and the second
Gourava index of random cyclooctane chains for t = 3, 4, . . . ,
10. The plot of the expected values of these topological
indices for different values of t is depicted in Figure 5.
Observe that the expected values for the forgotten index are
always less than the expected value of the second Gourava index
for all t ≥ 3. Now, we give an explicit proof of the fact that for
any t ≥ 3 the expected value of second Gourava index is always
greater than the expected value of the forgotten index in
random cyclooctane chains.

Theorem 3.1. Let t ≥ 3, then [EGO2(Ot)]> [ER(Ot]
Proof. For t = 3, the result follows immediately. By applying

Theorems 2.1 and 2.2, we get

EGO2 Ot( )[ ] − ER Ot([ ] � 366 + t − 2( ) 238 + 10p1( ) − 19 + 2
�
6

√
3

+ t − 2( )

× 7 + 2
�
6

√
3

[ + 15 − 2
�
6

√
6

( )p1]
� t − 2( )

× 238 + 10p1( ) − 7 + 2
�
6

√
3

+ 15 − 2
�
6

√
6

( )p1( )[ ]
+ 366 − 19 + 2

�
6

√
3

( )
� t − 2( )

× 238 − 7 + 2
�
6

√
3

( ) + 10 − 15 − 2
�
6

√
6

( )( p1[ ]
+ 366 − 19 + 2

�
6

√
3

( )> 0 qt> 2.

Next, we give a comparison between the expected values of the
topological indices based on the neighborhood degree for
cyclooctane chains. The expected values of the modified
neighborhood Forgotten index, the modified neighborhood
second Zagreb index, the third neighborhood index, and the
fourth neighborhood index are calculated and depicted in
Table 2 for t = 3, 4, . . . , 10. A 2D plot of these values is shown
in Figure 6. Observe that E

nmM2 <END4 <EFN* <END3 . Now, we give
explicit proof of this fact.

Theorem 3.2. Let t ≥ 3, then [EnmM2 ]< [END4 ]
Proof. For t = 3, the result follows immediately. By applying

Theorems 2.7 and 2.5, we get
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END4 − E
nmM2 � t − 3( ) 1.7634 − 0.3688( )p1 + 1.4895 − 0.3502( )p2[

+ 1.7162 − 0.3372( )p3] + 1.7134 − 0.3347( )p4

+ 5.4763 − 1.2031( )p1 + 5.4501 − 1.18486( )p2

+ 7.6270 − 1.17188( )p3 + 5.4269 − 1.1694( )p4

� t − 3( ) 1.3946p1 + 1.1393p2 + 1.379p3[
+1.3787p4] + 4.2732p1 + 4.2652p2 + 6.4551( )p3

+ 4.2875( )p4 > 0qt> 3.

Theorem 3.3. Let t ≥ 3, then END4 <EFN*

Proof. For t = 3, the result follows immediately. By applying
Theorems 2.7 and 2.4, we get

EFN*[ ]− END4[ ]� t−3( ) 558−1.7634p1−1.4895p2−1.7162p3[
−1.7134p4]+ t−2( ) 54p1+4p2[ ]+1372>0 qt>3.

Theorem 3.4. For t ≥ 3, we have

[EFN* ]< END3[ ].
Proof. For t = 3, the result follows immediately. So, we get

END3[ ] − EFN*[ ] � t − 3( ) 3086 + 746p1 − 558[ ] + t − 2( )
× 144p2 + 18p3 − 54p1[ ] + 7196 + 716p2

− 1372> 0 qt> 3.

4 Conclusion

In this paper, we have studied the behaviour of cyclooctane
chains and calculated the expected values of the
neighbourhood sum of some topological indices, which are
the neighbourhood forgotten index, general Randić
index, modified second Zagreb index, and third, fourth and
fifth (NDe) indices of cyclooctane chains. It has been
observed that the neighbourhood third (NDe) index has
highest value and neighbourhood modified second
Zagreb descriptor has the smallest value. In addition, the
expected values of cyclooctane chains in some special cases
have been computed. The results may be helpful in
studying various physical/chemical properties of
cyclooctane chains.
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