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Introduction: 3D pharmacophore models describe the ligand’s chemical
interactions in their bioactive conformation. They offer a simple but
sophisticated approach to decipher the chemically encoded ligand
information, making them a valuable tool in drug design.

Methods: Our research summarized the key studies for applying 3D
pharmacophore models in virtual screening for 6,944 compounds of APJ
receptor agonists. Recent advances in clustering algorithms and ensemble
methods have enabled classical pharmacophore modeling to evolve into more
flexible and knowledge-driven techniques. Butina clustering categorizesmolecules
based on their structural similarity (indicated by the Tanimoto coefficient) to create
a structurally diverse training dataset. The learning method combines various
individual pharmacophore models into a set of pharmacophore models for
pharmacophore space optimization in virtual screening.

Results: This approach was evaluated on Apelin datasets and afforded good
screening performance, as proven by Receiver Operating Characteristic (AUC
score of 0.994 ± 0.007), enrichment factor of (EF1% of 50.07 ± 0.211), Güner-
Henry score of 0.956 ± 0.015, and F-measure of 0.911 ± 0.031.

Discussion: Although one of the high-scoring models achieved statistically
superior results in each dataset (AUC of 0.82; an EF1% of 19.466; GH of 0.131
and F1-score of 0.071), the ensemble learning method including voting and
stacking method balanced the shortcomings of each model and passed with
close performance measures.
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1 Introduction

Apelin (APJ) is a bioactive peptide initially discovered in bovine
stomach extracts by Tatemoto et al., in 1998 (Tatemoto et al., 1998).
It is acknowledged as the inherent ligand of the human G protein-
coupled receptor APJ (APLNR) and a seven-transmembrane
receptor akin to the angiotensin-type 1 receptor (Tatemoto et al.,
1998). Apelin is a precursor protein composed of 77 amino acids
that undergo hydrolysis to yield active peptides of varying lengths,
including Apelin-36, Apelin-31, Apelin-17, and Apelin-13. The APJ
system is instrumental in the physiological and pathological
functioning of numerous organs, influencing fluid homeostasis,
blood pressure, cardiac contractility, angiogenesis, metabolic
equilibrium, cell proliferation, apoptosis, and inflammation
(Hanna Antushevich, 2018). Furthermore, the APJ system
exhibits extensive expression in the central nervous system,
predominantly in neurons and oligodendrocytes (Wan et al., 2022).

In accordance with the International Union of Pure and Applied
Chemistry (IUPAC), a pharmacophore is characterized as the
aggregate of steric and electronic attributes that are requisite to
guarantee the optimal supra-molecular interactions with a specific
biological target structure, thereby inducing (or inhibiting) its
biological response (Seidel et al., 2019). The underlying premise
of pharmacophoric modeling is that the presence of common
chemical functionalities, coupled with a similar spatial
arrangement, would culminate in biological activity on the same
target. The most critical pharmacophoric feature types encompass
hydrogen bond acceptors, hydrogen bond donors, hydrophobic
regions, positively and negatively ionizable groups, aromatic
groups, and metal coordinating areas. Pharmacophore models
can be classified into two primary categories: ligand-based
models and structure-based models.

The ligand-based 3D-pharmacophore approach, extensively
utilized in virtual drug screening, constructs predictive models
from active datasets, drawing upon the study of 3D
configurations and interactions among functional molecules
(Giordano et al., 2022). Nevertheless, the efficacy of
pharmacophore models is intrinsically tied to the diversity and
precision of the input training dataset. Consequently, data
clustering is implemented via the Butina algorithm to amass the
centroids prior to the construction of pharmacophore models in
pharmacophore elucidator - MOE 2015.10 (Vilar et al., 2008). The
centroids derived from each active cluster are collated to formulate a
structural training dataset, while the remaining active compounds
are utilized in decoy generation by the DeepCoy model (Imrie et al.,
2021). DeepCoy fabricates high-caliber decoys that pose a challenge
to differentiate from active substances, thereby mitigating the risk of
artificial enrichment, analog bias, and false negative bias. Artificial
enrichment pertains to the performance influenced by the disparities
in chemical space between the active and decoy molecules. Analog
bias emerges from the restricted diversity of the active molecules,
while false negative bias refers to the potential presence of active
compounds within the decoy set, which could result in an
underestimation of the screening performance.

Ensemble learning (Rokach, 2010) serves as an exhaustive
meta-approach in machine learning, striving to augment
predictive performance via the integration of predictions
derived from an array of models. Despite the seemingly

boundless ensemble configurations that can be tailored for a
predictive modeling problem, there are three methods that
primarily preside over the domain of ensemble learning. Each
of these methods extends beyond being a mere algorithm, evolving
into a distinct field of study that has engendered a multitude of
specialized methods. The four cardinal categories of ensemble
learning methods comprise voting, bagging, stacking, and
boosting. It is imperative to not only acquire a profound
comprehension of each method but also to contemplate their
incorporation in predictive modeling project.

Drawing upon the research conducted byWieder et al. (Wieder
et al., 2017), which led to the development of the common hits
approach method, a technique akin to the voting method, and the
work of Kumar et al. (Kumar, 2018), who created the
REPHARMBLE tools that employ Poisson statistics and entropy
calculations based on information theory, we have devised
ensemble methods (voting and stacking) for the development of
ligand-based pharmacophore models. These models diverge from
the structure-based research of these studies and incorporate the
use of machine learning algorithms to enhance their effectiveness.
Additionally, we implemented several feature engineering
techniques to enhance the performance of the voting and
stacking methods. A benchmarking analysis was also
undertaken to juxtapose the performance of various types of
optimized methods on the Apelin agonists database.

2 Material and methods

The entirety of the research process is encapsulated in Figure 1.

2.1 Data preparation

A total of 6,944 compounds procured from papers and patents
(Supplementary Table S1–Supplementary Material) underwent a
rigorous filtration process based on three specific criteria: the
presence of human APJ, agonists, and a biological activity
EC50 under 100 nM. This refined data was then standardized,
with SMILES (Simplified molecular-input line-entry system)
converted to Canonical SMILES, EC50 to pEC50, and any
duplicate rows were removed. To ensure the drug-likeness of the
data, Lipinski’s Rule of Five (RO5) was implemented (Lipinski et al.,
2012). This rule is instrumental in screening oral therapeutic agents
and selecting structures that comply with more than three rules
(violating only one rule).

2.2 Implementing of Butina clustering

Butina clustering was employed to discern smaller, yet
homogeneous clusters. This method necessitates that the cluster
centroid exhibits a higher degree of similarity (beyond a specified
threshold) to every other molecule within the same cluster (Butina,
1999). The proposed workflow is demonstrated as follows:

Molecular fingerprints, specifically extended-connectivity
fingerprints (ECFP4) (Rogers and Hahn, 2010) were derived
from Canonical SMILESrepresentations using the RDKit package.
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The Tanimoto coefficient (Tc) (Chung et al., 2019), given by the
formula Tc � c

a+b−c where ‘a’ and ‘b’ represent the number of bits in
molecular fingerprints A and B respectively, and ‘c’ is the number of
bits shared between A and B, was employed to calculate the pairwise
similarity between two fingerprints. This calculation resulted in the
formation of an upper triangle similarity matrix, which provides a
comprehensive overview of the similarities between different
molecular structures. Potential cluster centroids, characterized by
having the largest number of neighbors, were identified through a

process of sorting the molecules based on their number of neighbors
in descending order.

The clustering stage was conducted based on the exclusion
spheres method. Here, molecules exhibiting a minimum similarity
above a specified cut-off (Tanimoto above 0.35) (Bender et al.,
2021) were grouped together into clusters. Each molecule
identified as a member of a cluster was flagged and
subsequently removed from further comparisons. Molecules
that remained unflagged at the end of the clustering process
were designated as singletons. These singletons may have
neighbors at the given Tanimoto similarity index, but these
neighbors would have been excluded by a stronger cluster
centroid. Centroids collected from clustering would be used as a
training dataset and the remaining actives were used in the decoy
generation process.

Table 1 referenced the ButinaClustering algorithm. WhereM is
a set of M molecules, denoted as M � m1, . . . , mM{ }. Each
molecule is associated with a unique fingerprint, collectively
represented as the set F . The Tanimoto threshold for similarity
between molecules is represented by τ. A triangular matrix T is used
to store pairwise Tanimoto coefficients. For each molecule mi, N i

represents the number of its neighbors that meet the threshold τ.
After the execution of the algorithm, a set of clusters C �
C1, . . . , CK{ } is obtained. The centroids of these clusters are
represented as Z � z1, . . . , zK{ }. Lastly, a flag set S is used to
track which molecules have been assigned to a cluster.

2.3 Generating decoys

Decoys were systematically generated using DeepCoy,
strategically chosen to mirror the chemical properties of active
molecules. Simultaneously, a deliberate mismatch in chemical
structure was introduced to mitigate the risk of false negative
bias. DeepCoy employed an extensive array of over
25 physicochemical properties, including molecular weight, the
number of rotating bonds, the total number of hydrogen donor
and acceptor groups, logP, polar surface area, and the sp3 fraction
of carbon atoms, among others. This comprehensive approach,
coupled with a high frequency of repetitions, facilitated the

FIGURE 1
Summary of the entire research process.

TABLE 1 Butina clustering algorithm.

Algorithm 1 Butina clustering algorithm

1: Input: M, F , τ

2: Output: C,Z
3: procedure BUTINACLUSTERING (M,F , τ)
4: T ← TriangularMatrix (M)

5: for i � 1 to M do

6: for j � i + 1 to M do

7: T ij ← T(mi,mj)
8: end for

9: end for

10: N i ← ∑j≠i[T ij ≥ τ]
11: Sort M by N i in descending order

12: C ←∅, Z ←∅,S ←∅

13: for each mi ∈ M do

14: if mi ∉ S then

15: C ← mi{ }, S ← S ∪ mi{ }
16: for all mj ∈ M\ mi{ } do
17: if T ij ≥ τ and mj ∉ S then

18: C ← C ∪ mj{ }, S ← S ∪ mj{ }
19: end if

20: end for

21: C ← C ∪ C{ }, Z ← Z ∪ mi{ }
22: end if

23: end for

24: return C,Z
25: end procedure
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creation of decoys that were challenging to differentiate from
active molecules. A critical aspect of the DeepCoy model was
its ability to mitigate three prevalent biases in virtual screening
datasets: artificial enrichment, analogue bias, and false negative
bias. This highlights the significant impact of advanced modeling
techniques in enhancing the accuracy and reliability of virtual
screening processes. The active molecules were utilized to generate
decoys at an imbalanced ratio of 1:50, or 2% (1 active to 50 decoys)
(Chaput et al., 2016). This approach was designed to closely
emulate the screening process in a real-world setting. The
generated decoys were subsequently amalgamated with the
active molecules to establish a validation set, which was
instrumental in evaluating the performance of the model.

2.4 3D-pharmacophore development

The development of a pharmacophore model was undertaken
utilizing MOE 2015.10. The initial phase involved the calculation
of all potential conformations for each structure, achieved by
determining the low-energy conformations of a set of
molecules. These conformations were subsequently employed to
generate pharmacophore queries that exhibited substantial
overlaps in the majority of the active molecules, while
maintaining a clear distinction from the inactive ones. The
ensuing step involved the execution of a “global search
validation”, an automated pipeline designed to validate
hundreds of pharmacophore models. This process identified
hits that were both active and inactive through the
pharmacophore search in MOE. The final results were
automatically evaluated using a Python script. This
comprehensive and systematic approach underscores the nature
of pharmacophore model development and highlights the
potential impact of such models on pharmaceutical research.

2.5 Optimization

2.5.1 Voting method
The study presents the “global voting” technique, that is the

combination of the common hits approach method (Wieder
et al., 2017) and ensemble voting method. The “global voting”
algorithm consists of three steps. In step 1, top-performing
pharmacophore models were selected based on an Area Under
the Curve (AUC) threshold. Step 2 involves the construction of
the voting model using the inputs of the best pharmacophore
models identified in Step 1. Finally, step 3 entailed the validation

of the voting model based on the majority of votes
(active/inactive).

Table 2 referenced the global voting algorithm. Where P is
denoted as a set of all pharmacophore models. The Area Under the
Curve (AUC) threshold is represented by θ. A subset,Ptop, is derived
from P, and it includes models with an AUC that is greater than or
equal to θ. A voting model, Vmodel, is created from these top-
performing models in Ptop. Lastly, V is a function that creates this
voting model from a given set of models.

2.5.2 Stacking method
The study presents the “global stacking” technique, an

innovative adaptation of David’s Stacking algorithm from
“stacked generalization” (Wolpert, 1992), tailored specifically to
pharmacophore models. Stacking amalgamates predictions from
multiple models operating on the same dataset, typically divided
into two tiers: level-0 and level-1 models. Level-0 model, or base
model, learns directly from the dataset and generates predictions for
the level-1 model. The level-1 model, or meta-model, learns from the
predictions of the base model.

XGBoost, with its robust capabilities including high
efficiency, scalability, intrinsic handling of missing data,
regularization features to avert overfitting, customizable
modeling options, and inherent cross-validation, is
increasingly leveraged in drug discovery, significantly
advancing the field by enabling precise predictive modeling
and streamlining the identification of novel therapeutic agents.
The recent studies by Chen et al. (Chen et al., 2020) and Fang
et al. (Fang et al., 2023) also incorporated XGBoost as a training
model, showcasing its widespread adoption and effectiveness in
the field. For these reasons, we opted for the XGBoost algorithm
(Chen and Guestrin, 2016) as the base model. The global stacking
technique is a multi-step process that starts with step 1 by
selecting top-performing pharmacophore models based on an
AUC threshold. In step 2, a new dataset is created using the
outputs (predictions/rescores) from these selected models, which
then serve as base models for training meta-models. This step
utilizes different types of data features for stacking optimization:
pharmacophore-predict stacking uses binary “prediction (0/1)"
data, pharmacophore-score stacking employs “rescore” data, best
global stacking combines both “prediction” and “rescore”, and
feature selection stacking uses a feature selection algorithm to
optimize “prediction” and “rescore”, step 3 involves training a meta-
model using the XGBoost algorithm, where the base model inputs are
the pharmacophore models selected in step 1. This meta-model is
then re-validated to assess its performance, completing the global

TABLE 2 The global voting algorithm.

Algorithm 2 global voting algorithm

Input: Pharmacophore models set P, AUC threshold θ

Output: Voting model Vmodel

Ptop ← p ∈ P |AUC(p)≥ θ{ }
Vmodel ← V(Ptop)
return Vmodel

TABLE 3 The global stacking algorithm.

Algorithm 3 global stacking algorithm

Input: Pharmacophore models set P, AUC threshold θ

Output: Meta-model Mmeta

Ptop ← p ∈ P |AUC(p)≥ θ{ }
Dnew ← E(Ptop)
Mmeta ← X(Dnew)
return Mmeta
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stacking process. Table 3 referenced the global stacking algorithm.
Where P represents the set of all pharmacophore models and θ is the
Area Under the Curve (AUC) threshold. Models from P with AUC
greater than or equal to θ form a subset Ptop. The outputs of Ptop are
used to construct a new dataset Dnew. An XGBoost algorithm is
applied on Dnew to train a meta-model Mmeta. E is a function that
extracts the outputs of the top-performing models into a new dataset,
and X is a function that trains the meta-model using the
XGBoost algorithm.

2.6 Assessment

Before a pharmacophore model is used in virtual screening, it
is crucial to validate it. The model’s quality can be assessed using
the Receiver Operating Characteristic (ROC) curve and the AUC.
The ROC curve shows the model’s ability to distinguish between
active and inactive compounds by plotting the true positive rate
against the false positive rate. If the curve is sharp and flat, it
means the model ranks active compounds higher than inactive
ones. The AUC is a measure of the pharmacophore’s
performance and is useful when evaluating multiple models.
The AUC can range from 0 to 1, with 1 representing an ideal
case where all active compounds are correctly identified first,
0 indicating all inactive compounds are incorrectly classified as
active, and 0.5 representing a random state (Fawcett, 2006).
Alongside validation metrics, the performance of the model is
also evaluated using the statistical parameters of Güner-Henry
(GH) (Vyas et al., 2013), enrichment factor (EF) (Sanders et al.,
2012), and F-measure (Métivier et al., 2018). The F1 score is the
harmonic mean of precision and recall. Recall quantifies the
model’s ability to correctly identify all relevant instances
(active compounds), aiming to reduce false negatives. On the
other hand, precision assesses the accuracy of the model’s
positive predictions (active compounds), with an emphasis on
reducing false positives. In the context of pharmacophore model
assessment, where decoys vastly outnumber active compounds,
the F1 score is essential for evaluating performance in
imbalanced datasets. This metric spans from 0, denoting poor
performance, to 1, indicating perfection. The GH score, which
ranges from 0 (representing a null model) to 1 (representing an
ideal model), is deemed acceptable if it is higher than 0.7.
Conceptually, EF score measures the number of active
compounds found in the “early recognition” portion,
calculated by determining the ratio of the number of true
positive compounds (active compounds) found within a
certain percentage of the top-ranked screened compounds to
the expected number based on random selection (Truchon and
Bayly, 2007).

In an ideal scenario, the model would identify all active
compounds without any inactive ones, resulting in a steep
ROC curve slope, a high AUC value, a high EF value, and the
maximum GH and F1 score values, which are 1. The equations
defining GH, F1 score, and EF value are delineated in Eqs 1–3,
respectively.

GH � 3
4
× Precision + 1

4
× Recall( ) × Specificity (1)

F1 score � 2 × Precision × Recall
Precision + Recall

(2)

EFχ% � ns

Ns
( ) ×

N
n

( ) (3)

Where ‘Ns’ and ‘N’ represent the total number of molecules present
in the χ% and in all database, respectively, while ‘ns’, and ‘n’ stand for
active molecules in χ% and in all database.

3 Result

3.1 Clustering data using Butina algorithm

After preprocessing, 914 active substances were grouped
into 23 clusters using the Butina algorithm and a Tanimoto
coefficient threshold of 0.35. The Silhouette coefficient, an
indicator of clustering performance, was 0.14. The centroids
of these clusters were selected for a training set, labeled as set A.
To ensure the structural diversity of the selected centroids, a
similarity matrix was recalculated for the 23 centroids and
visualized as a heatmap chart (Figure 2A). Data
dimensionality was reduced to two using principal
component analysis (PCA) and t-distributed stochastic
neighbor embedding (t-SNE) algorithms, and the clustering
distribution was presented using the seaborn library
(Figure 2B). While the clustering results were generally
satisfactory, with components of each cluster grouped
together, there was some overlap between clusters,
particularly those with fewer components.

To prevent singletons in the training set, a minimum number
of compounds for a viable cluster was specified. The study
explored clusters with minimums of 5, 25, 50, and
75 compounds, and the centroids of these clusters were
selected for training sets A, B, C, D, and E, respectively
(Table 4). Ligand-based pharmacophore models A, B, C, D,
and E were built using the five active groups A, B, C, D, and
E, respectively. These models were then compared to select the
most effective model for virtual screening.

3.2 Validation set

The validation set included 891 active substances remaining
after data clustering. Along with 44,313 decoys generated and
standardized by the DeepCoy model. The ratio of active to decoy in
this set was maintained at 1:50. Finally, decoys generated by
DeepCoy achieved a DOE score of 0.045, indicating a close to
optimal embedding of actives and decoys in chemical space.
Meanwhile, AUC-1NN value of 0.566 demonstrated the greater
similarity between the actives and decoys. Besides, the average
doppelganger score, a measure of the structural similarity between
actives and decoys, was 0.266 for the DeepCoy decoys, while the
average maximum doppelganger was 0.469. These results strongly
suggested that the decoys generated by DeepCoy should not carry
an increased risk of artificial enrichment, analog bias, and false
negative bias.
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3.3 Performance of ligand-based
pharmacophore models

This study used five train sets (A, B, C, D, and E) obtained from
Butina clustering algorithm by MOE 2015.10 software. Regarding the
results illustrated in Table 4, there is an opposite trend when observing
the number of substances in the training set and generated
pharmacophore models. A possible explanation is that the greater
structural diversity in the training set led to the generation of a higher
number of conformations. However, the less probability of aligning
numerous conformations resulted in the lower models generated.

Validation sets, including actives and decoys, were used to assess
the performance of pharmacophore models generated byMOE from
five train sets A, B, C, D, and E. The standard performance metrics of
pharmacophore-based virtual screening included AUC, EF, GH, and
F1 score. The priority requirement was as many actives as possible
(high TPR) and as few decoys as possible (low FPR), so the area
under the ROC curve (AUC) is the priority value. Besides, EF is also
a widely used validation metric for assessing the quality of virtual
screening protocol to measure how many more actives are found
within a defined “early recognition” fraction of the ordered list
compared to a random distribution. Based on AUC and EF
validation metric, the best pharmacophore model was RHHa_
52 from the train set C. This model achieved a high AUC value
(0.82) (Figure 3A) and EF1% (19.466), however, GH (0.131) and

F1 score (0.071) were very low. The reason was the severe imbalance
between the active and the decoy set (ratio 1:50), which led to the
extremely low precision of the model, on which the GH and F1 score
depended largely. The pharmacophoric feature types of RHHa_52
(Figure 3B) was represented by geometric entities and included two
hydrophobic group and two hydrogen bond acceptors. The study set
RHHa_52 as the base model to compare the performance of the
stacking optimization.

However, the disadvantage of single pharmacophore model is
that it uses a single conformation of each substance. In fact, at the
binding site, substances could exist in numerous different
conformations. Therefore, combining pharmacophore models will
be able to solve the problem of diverse conformations in
virtual screening.

3.4 Optimization of the
pharmacophore model

The study conducted ensemble learning method to improve the
model’s efficiency by increasing the GH and F1 score. The validation
set should be divided according to the stratification principle with a
ratio of 80:20 into internal and external validation to ensure
generalizability. Three repeats of 10-fold cross-validation were
used in internal validation to estimate the model performance.

FIGURE 2
(A) Heatmap representing similarity matrix of 23 centroids (the darker the color, the lower the similarity). (B) Clustering distribution of 23 centroids.

TABLE 4 The results of building pharmacophore model.

Results after clustering and building models Train set

Train set A Train set B Train set C Train set D Train set E

Number of compounds 23 15 8 5 4

Number of conformations 17,789 10,412 4,702 2,387 2047

Number of pharmacophore models 32 166 179 421 370
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3.4.1 Voting method
Global voting method was the first filter for this optimization.

From the results after global search validation, the study selected two
thresholds of AUC, 0.6 and 0.7, in each train set for optimization.
The effectiveness of ensemble learning significantly depends on the
quality of the individual models it comprises. In ensemble methods
like voting or stacking, including poorly performing models can
dilute the overall predictive power of the ensemble, leading to
suboptimal performance. To mitigate this, we employ an Area
Under the Curve of ROC (AUC-ROC) threshold to filter out
underperforming models, ensuring that only models with a
certain level of predictive ability contribute to the final
ensemble decision. AUC thresholds yield varying model
counts: ≥0.5 with 124 models, ≥0.6 with 30 models, ≥0.7 with
seven models, and ≥0.8 with only two models. An AUC of
0.5 marks the baseline, akin to random guessing. Increasing the
threshold filters out weaker models, enhancing the ensemble’s
accuracy. However, setting it too high, like at 0.8, might overly
constrain the model pool, diminishing diversity and potential
effectiveness. Balancing between thresholds of 0.6 and 0.7 could
optimize the ensemble’s performance, maintaining a blend of
diversity and predictive quality. There were 10 models trained
by the global voting method, and the comparison is presented in
Figure 4. The results showed that the GH and F1 score of 10 models
were better than the base one (RHHa_52). It illustrated a
noteworthy contrast in trends: when the number of models
increases (AUC ≥0.6), AUC decreased while both F1 score, and
GH increased. Specifically, the train set C (AUC ≥0.7) attained the
highest AUC index (0.906 ± 0.019), but the GH index (0.29 ±
0.016) and F1 score (0.273 ± 0.015) were relatively low. This
phenomenon could be explained by the fact that combining
multiple models enhances precision score. By contrast, the recall
score witnessed decreases as multiple models must align for an
activity prediction. This equilibrium represented a pivotal trade-off
essential for model optimization. Besides, the AUC index depended
remarkably on sensitivity and specificity compensation, so a decrease

in sensitivity led to a decrease in AUC. Conversely, GH and F1 score
depended on both accuracy and sensitivity. So that the significant
improvement of the accuracy value contributed to the enhancement of
these metrics. In general, train set C and train set D with AUC
threshold ≥0.6 give better evaluation results than the base model
and the remaining models when optimized with the voting algorithm.

3.4.2 Stacking method
Pharmacophore-predict stacking used the output of the

pharmacophore models (prediction 0/1) as the input of the
machine learning with the XGBoost algorithm (meta-model).
The results showed that the GH and F1 score of 10 models
were better than the base one (RHHa_52). Considering
Wilcoxon statistics and boxplots, model train set D with
threshold AUC ≥0.6 achieved better AUC, GH, and F1 score
than the base model and another one. The outcomes of the
pharmacophore-predict stacking method are depicted in Figure 5.

Nevertheless, within data sets A, B, and E, where the AUC
threshold is set at ≥ 0.7, both F1 score, and GH results yield a value of
zero. This can be attributed to the machine learning algorithm’s
preference for well-balanced datasets, whereas the dataset for
validation was extensively imbalanced (1:50). Additionally, the
limited number of input pharmacophore models further
compounded the issue. Consequently, the XGBoost algorithm
tended to predict all substances as “inactive” to minimize cross-
entropy during the training process. As a result, the sensitivity
metric reached zero, causing a cascading effect where both
F1 score, and GH metrics also registered zero values.

The predictive output of the pharmacophore model is not only a
binary variable (0/1) but also a score (rescore). These scores were
used to optimize using pharmacophore-score stacking method.
When optimizing train set D (threshold AUC ≥0.6), the
pharmacophore-score stacking method improved the AUC score
by an average of 0.992 ± 0.008 to 0.994 ± 0.007, respectively,
increasing from 0.927 ± 0.022 to 0.956 ± 0.015 for GH score and
0.882 ± 0.033 to 0.911 ± 0.031 for F1 score. These results were

FIGURE 3
(A) ROC curve of RHHa_52models. (B) Bestmodel pharmacophore - RHHa_52 of the train set C. F1 and F2 are hydrophobic groups (Hydwith radius
of 1.4 Å) and F3 and F4 are hydrogen acceptor groups (Acc2 with radius of 1.0 Å).
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statistically significant based on the Wilcoxon test (p ≤ 0.05).
Furthermore, the investigation integrated the prediction (0/1) and
score features of the pharmacophore model for optimization
through the stacking method, termed global stacking. A
drawback of global stacking was the incorporation of numerous
features (98 features, including prediction and rescore), potentially
leading to the “curse of dimensionality.” To address this issue, the
study employed the Random Forest algorithm for feature selection, a
process referred to as feature selection stacking. Random Forest
selected 44 important elements to optimize. The results showed that
the AUC, GH, and F1 score of the feature selection stacking method
were not statistically significant by the Wilcoxon test. All the
internal-validated comparisons between base model and
optimized models were shown in Figures 6A–C.

To illustrate the model’s generalizability, external validation of
four optimal methods was depicted in Figure 6D. The outcomes
indicated an increase in AUC, GH, and F1 score compared to the
base model RHHa_52. Besides, the enrichment factor EF1% also
increased from 18.333% (RHHa_52) to 50%. These high values of
AUC, EF, GH, and F1 score referred to the good ability of the
pharmacophore models to identify active compounds.

To delve deeper into real-world data, we reanalyzed the test set
comprising 180 active compounds that were excluded from the
training process. The recall or True Positive rate was 83%,
signifying that out of 100 pre-identified active compounds,
83 were accurately predicted as active. Additionally, we
gathered inactive compound data from US and WO patents,
detailed in our repository. Out of 268 compounds, only 31 were

FIGURE 4
On the left side boxplot describing the results of internal cross-validation and on the right-side Wilcoxon post-hoc test comparing optimized
models by global voting algorithm on five training set (A–E). Green representing statistically significant and pink representing no statistically significant
difference.

Frontiers in Chemistry frontiersin.org08

Tran et al. 10.3389/fchem.2024.1382319

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2024.1382319


incorrectly predicted as active, resulting in a False Positive Rate of
11.57%. These outcomes suggest that our methods are effective
with real-world data.

4 Discussion

In this investigation, the Butina clustering algorithm facilitated
the cultivation of training sets that exhibited a broad spectrum of
structural diversity. The ensemble learning methodologies applied,

particularly the stacking method, were critically evaluated using an
array of performance metrics, namely, AUC, EF1%, GH score, and
F1 score. The baseline model, RHHa_52, yielded a moderate AUC of
0.82 and an EF1% of 19.466, as depicted in Figure 3A. However, this
model’s utility was compromised by its GH score and F1 score,
which were substantially low at 0.131 and 0.071, respectively,
signaling an imbalance in the dataset’s active-to-decoy ratio.

A pivotal transformation was observed upon the application
of stacking method, which significantly augmented the
predictive metrics. A comparative analysis, reinforced by the

FIGURE 5
On the left side boxplot describing the results of internal cross-validation and on the right-side Wilcoxon post-hoc test comparing optimized
models by pharmacophore-predict stacking algorithm on five training set (A–E). Green representing statistically significant and pink representing no
statistically significant difference.
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Wilcoxon test, revealed that stacking method statistically
outperformed the base model (p ≤ 0.05), culminating in a
pronounced increase to an AUC score of 0.994 ± 0.007, a GH
score of 0.956 ± 0.015, and an F1 score of 0.911 ± 0.031. These
enhancements not only testify to the methodological robustness
of stacking method but also its operational efficiency in
processing pharmacophore models.

The integration of stacking method within the drug discovery
paradigm signifies a methodological advancement that promises to
expedite the identification of viable drug candidates through
its improved accuracy and efficiency. The statistical validation of
this method, as evidenced by the Wilcoxon test, establishes a
compelling argument for its preferential use in future
pharmacophoric studies.

It is essential to recognize that the current pharmacophore
modeling pipeline is not fully automated due to its dependency on
the MOE 2015.10 software, which is not compatible with Python
scripting. Our strategic objective involves transitioning our
pipeline to utilize RDKit for pharmacophore model
development, facilitating more seamless integration with our
existing framework. Moreover, we aim to broaden our
methodology to include structure-based pharmacophore
modeling, allowing for the comprehensive extraction of
pharmacophore features from proteins. Recognizing the
dynamic nature of ligand-protein interactions, our commitment

to employing ensemble methods aims to capture a broader
spectrum of these interactions, which is expected to
significantly enhance the effectiveness of our structure-based
pharmacophore models.

Data availability statement

The datasets presented in this study can be found in
online repositories. The names of the repository/repositories and
accession number(s) can be found in the article/
Supplementary Material.

Author contributions

X-TT: Formal Analysis, Investigation, Methodology, Software,
Validation, Visualization, Writing–original draft. T-LP:
Conceptualization, Formal Analysis, Investigation, Methodology,
Project administration, Software, Supervision, Validation,
Visualization, Writing–original draft. V-TT: Data curation,
Formal Analysis, Investigation, Methodology, Resources,
Software, Writing–original draft. N-VT: Data curation, Formal
Analysis, Visualization, Software, Writing–original draft. N-NN:
Data curation, Formal Analysis, Visualization, Writing–original

FIGURE 6
The internal comparison (A–C) and the external comparison (D) by AUC, GH, and F1 score between base model and 4 Stacking optimal method.

Frontiers in Chemistry frontiersin.org10

Tran et al. 10.3389/fchem.2024.1382319

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2024.1382319


draft. D-NN: Formal Analysis, Resources, Software,
Writing–original draft. N-TT: Formal Analysis, Resources,
Software, Validation, Writing–original draft. TT:
Conceptualization, Investigation, Methodology, Resources,
Software, Supervision, Writing–original draft, Writing–review
and editing.

Funding

The author(s) declare that no financial support was received for
the research, authorship, and/or publication of this article.

Acknowledgments

We extend our heartfelt appreciation to the MedAI lab for
their invaluable support, without which the fruition of this work
would not have been achievable. Their dedication to nurturing
innovation and propelling research in the realm of medical
AI has played a pivotal role in the triumphant completion of
this study.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fchem.2024.1382319/
full#supplementary-material

References

Bender, B. J., Gahbauer, S., Luttens, A., Lyu, J., Webb, C. M., Stein, R. M., et al. (2021).
A practical guide to large-scale docking. Nat. Protoc. 16, 4799–4832. doi:10.1038/
s41596-021-00597-z

Butina, D. (1999). Unsupervised data base clustering based on daylight’s fingerprint
and Tanimoto similarity: a fast and automated way to cluster small and large data sets.
J. Chem. Inf. Comput. Sci. 39, 747–750. doi:10.1021/ci9803381

Chaput, L., Martinez-Sanz, J., Saettel, N., andMouawad, L. (2016). Benchmark of four
popular virtual screening programs: construction of the active/decoy dataset remains a
major determinant of measured performance. J. Cheminform 8, 56. doi:10.1186/s13321-
016-0167-x

Chen, T., and Guestrin, C. (2016). "XGBoost: a scalable tree boosting system", in:
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining 785–794. Times Square, NY, USA. doi:10.1145/
2939672.2939785

Chen, X., Xie, W., Yang, Y., Hua, Y., Xing, G., Liang, L., et al. (2020). Discovery of dual
FGFR4 and EGFR inhibitors by machine learning and biological evaluation. J. Chem.
Inf. Model. 60, 4640–4652. doi:10.1021/acs.jcim.0c00652

Chung, N. C., Miasojedow, B., Startek, M., and Gambin, A. (2019). Jaccard/Tanimoto
similarity test and estimation methods for biological presence-absence data. Bmc. Bioinf
20, 644–711. doi:10.1186/s12859-019-3118-5

Fang, C., Wang, Y., Grater, R., Kapadnis, S., Black, C., Trapa, P., et al. (2023).
Prospective validation of machine learning algorithms for absorption, distribution,
metabolism, and excretion prediction: an industrial perspective. J. Chem. Inf. Model. 63,
3263–3274. doi:10.1021/acs.jcim.3c00160

Fawcett, T. (2006). An introduction to ROC analysis. Pattern. Recognit. 27, 861–874.
doi:10.1016/j.patrec.2005.10.010

Giordano, D., Biancaniello, C., Argenio, M. A., and Facchiano, A. (2022). Drug design
by pharmacophore and virtual screening approach. Pharm. (Basel) 15, 646. doi:10.3390/
ph15050646

Hanna Antushevich, M. W., and Wójcik, M. (2018). Review: Apelin in disease. Clin.
Chim. Acta 483, 241–248. doi:10.1016/j.cca.2018.05.012

Imrie, F., Bradley, A. R., and Deane, C. M. (2021). Generating property-matched
decoy molecules using deep learning. Bioinformatics 37, 2134–2141. doi:10.1093/
bioinformatics/btab080

Kumar, S. P. (2018). Receptor pharmacophore ensemble (REPHARMBLE): a
probabilistic pharmacophore modeling approach using multiple protein-ligand
complexes. J. Mol. Model. 24, 282. doi:10.1007/s00894-018-3820-7

Lipinski, C. A., Lombardo, F., Dominy, B.W., and Feeney, P. J. (2012). Experimental and
computational approaches to estimate solubility and permeability in drug discovery and
development settings.Adv. Drug. Deliv. Rev. 64, 4–17. doi:10.1016/s0169-409x(00)00129-0

Métivier, J.-P., Cuissart, B., Bureau, R., and Lepailleur, A. (2018). The pharmacophore
network: a computational method for exploring structure–activity relationships from a
large chemical data set. J. Med. Chem. 61, 3551–3564. doi:10.1021/acs.jmedchem.7b01890

Rogers, D., and Hahn, M. (2010). Extended-connectivity fingerprints. J. Chem. Inf.
Model. 50, 742–754. doi:10.1021/ci100050t

Rokach, L. (2010). Ensemble-based classifiers. Artif. Intell. Rev. 33, 1–39. doi:10.1007/
s10462-009-9124-7

Sanders, M. P., Barbosa, A. N. J., Zarzycka, B., Nicolaes, G. A., Klomp, J. P., De Vlieg,
J., et al. (2012). Comparative analysis of pharmacophore screening tools. J. Chem. Inf.
Model. 52, 1607–1620. doi:10.1021/ci2005274

Seidel, T., Schuetz, D. A., Garon, A., and Langer, T. (2019). The pharmacophore
concept and its applications in computer-aided drug design. Prog. Chem. Org. Nat. Prod.
110, 99–141. doi:10.1007/978-3-030-14632-0_4

Tatemoto, K., Hosoya, M., Habata, Y., Fujii, R., Kakegawa, T., Zou, M. X., et al. (1998).
Isolation and characterization of a novel endogenous peptide ligand for the human APJ
receptor. Biochem. Biophys. Res. Commun. 251, 471–476. doi:10.1006/bbrc.1998.9489

Truchon, J. F., and Bayly, C. I. (2007). Evaluating virtual screening methods: good and
bad metrics for the "early recognition" problem. J. Chem. Inf. Model. 47, 488–508. doi:10.
1021/ci600426e

Vilar, S., Cozza, G., and Moro, S. (2008). Medicinal chemistry and the molecular
operating environment (MOE): application of QSAR and molecular docking to drug
discovery. Curr. Top. Med. Chem. 8, 1555–1572. doi:10.2174/156802608786786624

Vyas, V. K., Ghate, M., and Goel, A. (2013). Pharmacophore modeling, virtual
screening, docking and in silico ADMET analysis of protein kinase B (PKB β) inhibitors.
J. Mol. Graph. 42, 17–25. doi:10.1016/j.jmgm.2013.01.010

Wan, T., Fu, M., Jiang, Y., Jiang, W., Li, P., and Zhou, S. (2022). Research progress on
mechanism of neuroprotective roles of apelin-13 in prevention and treatment of
alzheimer’s disease. Neurochem. Res. 47, 205–217. doi:10.1007/s11064-021-03448-1

Wieder, M., Garon, A., Perricone, U., Boresch, S., Seidel, T., Almerico, A., et al. (2017).
Common hits approach: combining pharmacophore modeling and molecular dynamics
simulations. J. Chem. Inf. Model. 57, 365–385. doi:10.1021/acs.jcim.6b00674

Wolpert, D. H. (1992). Stacked generalization.Neural. Netw. 5, 241–259. doi:10.1016/
S0893-6080(05)80023-1

Frontiers in Chemistry frontiersin.org11

Tran et al. 10.3389/fchem.2024.1382319

https://www.frontiersin.org/articles/10.3389/fchem.2024.1382319/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fchem.2024.1382319/full#supplementary-material
https://doi.org/10.1038/s41596-021-00597-z
https://doi.org/10.1038/s41596-021-00597-z
https://doi.org/10.1021/ci9803381
https://doi.org/10.1186/s13321-016-0167-x
https://doi.org/10.1186/s13321-016-0167-x
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1021/acs.jcim.0c00652
https://doi.org/10.1186/s12859-019-3118-5
https://doi.org/10.1021/acs.jcim.3c00160
https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.3390/ph15050646
https://doi.org/10.3390/ph15050646
https://doi.org/10.1016/j.cca.2018.05.012
https://doi.org/10.1093/bioinformatics/btab080
https://doi.org/10.1093/bioinformatics/btab080
https://doi.org/10.1007/s00894-018-3820-7
https://doi.org/10.1016/s0169-409x(00)00129-0
https://doi.org/10.1021/acs.jmedchem.7b01890
https://doi.org/10.1021/ci100050t
https://doi.org/10.1007/s10462-009-9124-7
https://doi.org/10.1007/s10462-009-9124-7
https://doi.org/10.1021/ci2005274
https://doi.org/10.1007/978-3-030-14632-0_4
https://doi.org/10.1006/bbrc.1998.9489
https://doi.org/10.1021/ci600426e
https://doi.org/10.1021/ci600426e
https://doi.org/10.2174/156802608786786624
https://doi.org/10.1016/j.jmgm.2013.01.010
https://doi.org/10.1007/s11064-021-03448-1
https://doi.org/10.1021/acs.jcim.6b00674
https://doi.org/10.1016/S0893-6080(05)80023-1
https://doi.org/10.1016/S0893-6080(05)80023-1
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2024.1382319

	Integration of the Butina algorithm and ensemble learning strategies for the advancement of a pharmacophore ligand-based mo ...
	1 Introduction
	2 Material and methods
	2.1 Data preparation
	2.2 Implementing of Butina clustering
	2.3 Generating decoys
	2.4 3D-pharmacophore development
	2.5 Optimization
	2.5.1 Voting method
	2.5.2 Stacking method

	2.6 Assessment

	3 Result
	3.1 Clustering data using Butina algorithm
	3.2 Validation set
	3.3 Performance of ligand-based pharmacophore models
	3.4 Optimization of the pharmacophore model
	3.4.1 Voting method
	3.4.2 Stacking method


	4 Discussion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


