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Diabetes mellitus is a multi-systematic chronic metabolic disorder and life-
threatening disease resulting from impaired glucose homeostasis. The
inhibition of glucosidase, particularly α-glucosidase, could serve as an
effective methodology in treating diabetes. Attributed to the catalytic function
of glucosidase, the present research focuses on the synthesis of sulfonamide-
based acyl pyrazoles (5a-k) followed by their in vitro and in silico screening
against α-glucosidase. The envisaged structures of prepared compounds were
confirmed through NMR and FTIR spectroscopy and mass spectrometry. All
compounds were found to be more potent against α-glucosidase than the
standard drug, acarbose (IC50 = 35.1 ± 0.14 µM), with IC50 values ranging from
1.13 to 28.27 µM. However, compound 5a displayed the highest anti-diabetic
activity (IC50 = 1.13 ± 0.06 µM). Furthermore, in silico studies revealed the
intermolecular interactions of most potent compounds (5a and 5b), with
active site residues reflecting the importance of pyrazole and sulfonamide
moieties. This interaction pattern clearly manifests various structure–activity
relationships, while the docking results correspond to the IC50 values of
tested compounds. Hence, recent investigation reveals the medicinal
significance of sulfonamide-clubbed pyrazole derivatives as prospective
therapeutic candidates for treating type 2 diabetes mellitus (T2DM).
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1 Introduction

Heterocyclic compounds generally hold a significant position in medicinal and organic
chemistry with their diverse range of biological and pharmacological properties (Ansari and
Lal, 2009; Shiro et al., 2015; Akhtar et al., 2017; Kakkar and Narasimhan, 2019). Owing to
their importance, they contribute considerably to the development of potent and
therapeutic drugs. Among the heterocyclic compounds that contain nitrogen and sulfur,
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sulfonamide derivatives with a pyrazole moiety hold a privileged
position in organic chemistry (Kołaczek et al., 2014; Khan et al.,
2016; Dhameja and Gupta, 2019; Faisal et al., 2019). They not only
act as anticonvulsants (Abdul-Gafoor, 2016; Abdelgawad et al.,
2018; Mishra et al., 2018), anti-stress and anxiogenics (Channar

et al., 2018; Saha and Pal, 2020), antitumor (Channar et al., 2018),
antiviral (Badampudi et al., 2014; Kołaczek et al., 2014; Kumar et al.,
2015; Mustafa et al., 2022), antimicrobial, anticholinesterase
(Mumtaz et al., 2019; Ghosh et al., 2020; Verma et al., 2020),
antiulcer (Khan et al., 2018), and antimalarial (Thillainayagam

FIGURE 1
Sulfonamide compounds incorporating pyrazole with biological activities.
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et al., 2020) but also exhibit a variety of enzyme inhibition properties
(Mumtaz et al., 2019; Bayrak, 2022; Chalkha et al., 2022; Mustafa
et al., 2022). Additionally, some of the pyrazole-containing
sulfonamide derivatives have been tested against α-glucosidase
(Shu et al., 2016; Azimi et al., 2021). Others were found to be
effective inhibitors of acetylcholinesterase, β-amyloid precursor
protein cleavage enzyme 1 (BACE-1), and other metabolic
enzymes (Tugrak et al., 2021; Gehlot et al., 2022).

Controlling diabetes is one of the greatest challenges of the 21st
century (Kharroubi and Darwish, 2015; Bellary et al., 2021).
Diabetes mellitus (DM), a multi-factorial syndrome, is a leading
illness globally, and its prevalence is expected to double by 2030,
with developing nations experiencing a 69% increase and
industrialized countries a 20% increase. Due to being an
endocrine disorder, diabetes is characterized by high blood
glucose levels (hyperglycemia) (Kharroubi and Darwish, 2015;
Bellary et al., 2021). These rising levels have been linked to
serious health problems like cardiovascular diseases (O’gara et al.,
2013; Kobayashi and Liang, 2015; Zhao et al., 2021), nephropathy
(Mora-Fernández et al., 2014), retinopathy (Gispen and Biessels,
2000; Mensah and Kohner, 2002), encephalopathy (Veves and
Malik, 2007), thrombosis (Vazzana et al., 2012), and Alzheimer’s
disease (Kong et al., 2020). This is thus referred to as the α-
Federation (IDF), with diabetes and its complications accounting
for millions of deaths annually (Rogach et al., 2021). One of the most
effective treatments for diabetics with postprandial hyperglycemia is
to prevent the digestion of dietary carbohydrates (Tucci et al., 2010).

β-glucosidase is an enzyme that catalyzes the hydrolysis of
cellobiose’s glycosidic bonds to produce glucose in the digestive
system (Kumar et al., 2015). Similarly, α-glucosidase converts starch
and other dietary carbohydrates into glucose (Joshi et al., 2015).
After that, the breakdown of carbohydrates releases glucose into the
bloodstream, causing hyperglycemia (Tucci et al., 2010; Joshi et al.,
2015; Kumar et al., 2015). Consequently, the inhibition of α- and β-
glucosidase enzymes can suppress the digestion of carbohydrates,
causing a delay in the absorption of glucose and resulting in
decreased blood sugar levels (Tucci et al., 2010; Joshi et al., 2015;
Kumar et al., 2015). Nevertheless, drugs like acarbose, voglibose, andT
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FIGURE 2
All unoccupied sites of α-glucosidase that can be probable
druggable binding sites.
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TABLE 2 Inhibitory potential of pyrazole-clubbed sulfonamide derivatives (5a-k) against α-glucosidase and β-glucosidase.

Compound Structures α-glucosidase inhibition β-glucosidase inhibition

IC50 ± SEM (µM) %age inhibition

5a 1.13 ± 0.06 34.3

5b 2.22 ± 0.11 32.1

5c 3.29 ± 0.09 12.9

5d 4.53 ± 0.12 18.5

5e 4.11 ± 0.19 11.7

(Continued on following page)
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TABLE 2 (Continued) Inhibitory potential of pyrazole-clubbed sulfonamide derivatives (5a-k) against α-glucosidase and β-glucosidase.

Compound Structures α-glucosidase inhibition β-glucosidase inhibition

IC50 ± SEM (µM) %age inhibition

5f 2.77 ± 0.24 27.4

5g 3.47 ± 0.43 21.0

5h 9.22 ± 0.45 14.6

5i 19.13 ± 1.07 11.2

5j 17.88 ± 1.16 7.55

(Continued on following page)
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miglitol inhibit the glucosidase enzyme, although it is commonly
reported that they have undesirable side effects such as diarrhea,
abdominal pain, bloating, and flatulence (Lee et al., 2007; Fang et al.,
2010; Derosa and Maffioli, 2012). Moreover, these drugs have been
proven to reduce their effectiveness over time; hence, new and
improved α- and β-glucosidase inhibitors are highly desired.

We here report a cheap and easymethod for the synthesis of a novel
series of sulfonamides linked with the pyrazole nucleus. Pyrazole and
sulfonamides as individual moieties have a broad biological profile,
including glucosidase inhibition. Various pyrazole-based sulfonamide
compounds have been published with potent biological activities
(Figure 1) (Dhameja and Gupta, 2019; Kausar et al., 2021; Ebenezer
et al., 2022). Hence, considering their medicinal significance, we
designed hybrid chemical entities by combining two different
pharmacophoric cores in a single molecular architecture to address

the health-related concerns and challenges in modern organic
chemistry while also providing easy access to potent α-glucosidase
inhibitors. To investigate the biological profile of the synthesized
molecules, glucosidase inhibition analysis was conducted, and the
data acquired were addressed using molecular docking analysis.

2 Material and methods

2.1 Experimental

2.1.1 Procedure for the synthesis of acyl pyrazole
sulfonamides (5a-j)

Sulfanilamide 1 was coupled with active methylene of acetyl
acetone 2 by diazotization reaction to obtain intermediate 3,

FIGURE 3
Target scaffold incorporating acyl pyrazole-clubbed sulfonamides 5(a–k); positive control: acarbose (IC50 = 35.1 ± 0.14 µM).

TABLE 2 (Continued) Inhibitory potential of pyrazole-clubbed sulfonamide derivatives (5a-k) against α-glucosidase and β-glucosidase.

Compound Structures α-glucosidase inhibition β-glucosidase inhibition

IC50 ± SEM (µM) %age inhibition

5k 28.27 ± 1.45 25.1

Acarbose 35.1 ± 0.14 63.7
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which was further cyclized with different substituted phenyl
hydrazides 4a-j in ethanol for 30 min in the presence of few
drops of conc. hydrochloric acid as a catalyst to furnish the final
product, 5a-j. The precipitated products were filtered off and
washed with ethanol.

2.1.2 (E)-4-((2,4-Dioxopentan-3-yl)diazenyl)
benzenesulfonamide (3)

Yellow solid; yield: 91%; M.P.: 172 °C–174 °C; 1H NMR
(400 MHz, DMSO-d6) δ 13.66 (s, 1H, NH), 7.87–7.80 (m, 2H,
Ar-H), 7.74–7.68 (m, 2H, Ar-H), 7.34 (s, 2H, NH2), 2.46 (s, 6H,
2CH3);

13C NMR (101 MHz, DMSO-d6) δ 197.2, 196.3, 144.5, 139.7,
134.9, 127.2, 116.0, 31.2, 26.3.

2.1.3 (E)-4-((1-(4-Chlorobenzoyl)-3,5-dimethyl-
1H-pyrazol-4-yl)diazenyl)
benzenesulfonamide (5a)

Yellow solid; yield: 86%; M.P.: 225 °C–227 °C; FT-IR (ATR) cm-1,
3366, 3207 (H–N, amine), 2986, 2958 (H–C, CH3), 1,693 (C=O,
amide), 1,574 (C=C, Ar), 1,346 (S=O, sulfonamide), 1,290 (C-N); 1H
NMR (400 MHz, DMSO-d6) δ 8.05–7.97 (m, 4H, Ar-H), 7.97–7.91
(m, 2H, Ar-H), 7.68–7.62 (m, 2H, Ar-H), 7.53 (s, 2H, NH2), 2.98 (s,
3H, CH3), 2.44 (s, 3H, CH3);

13C NMR (101MHz, DMSO-d6) δ

167.13, 154.04, 147.03, 145.41, 144.17, 137.86, 137.11, 132.91, 131.08,
128.13, 127.00, 122.38, 14.86, 11.94; ESI-MS calc. for [C18H16ClN5O3S
+ H]+, m/z 417.0662; found, m/z 418.2 [M + H]+; RT = 2.973;
purity: 95.10%.

2.1.4 (E)-4-((1-(3-Chlorobenzoyl)-3,5-dimethyl-
1H-pyrazol-4-yl)diazenyl)
benzenesulfonamide (5b)

Yellow solid; yield: 82%; M.P.: 214 °C–216 °C; FT-IR (ATR)
cm-1, 3363, 3206 (H–N, amine), 2987, 2959 (H–C, CH3), 1,692
(C=O, amide), 1,569 (C=C, Ar), 1,345 (S=O, sulfonamide), 1,225
(C-N); 1H NMR (400 MHz, DMSO-d6) δ 8.06–7.96 (m, 4H, Ar-
H), 7.94 (t, J = 1.9 Hz, 1H, Ar-H), 7.87 (dt, J = 7.8, 1.3 Hz, 1H, Ar-
H), 7.75 (ddd, J = 8.1, 2.2, 1.1 Hz, 1H, Ar-H), 7.60 (t, J = 7.9 Hz,

FIGURE 4
Visualization of the crystal structure of the best model of α-
glucosidase predicted via Modeller.

FIGURE 5
Validation of the 3D structure of α-glucosidase. (A) Ramachandran plot for the tertiary structure of α-glucosidase. A number of amino acids (83.9%)
reside in the most favorable (red) region of the plot. However, a few lie in the acceptable (yellow), generously acceptable (pale yellow), and restricted
region (white) of the graph. (B) Illustration of the model quality based on z-score. The higher the value of the z-score, the greater the model quality. The
z-score for the predicted α-glucosidase model is −10.78.
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1H, Ar-H), 7.54 (s, 2H, CH3), 2.98 (s, 3H, CH3), 2.44 (s, 3H,
CH3);

13C NMR (101 MHz, DMSO-d6) δ 166.8, 154.0, 147.0,
145.4, 144.3, 137.1, 134.4, 132.5, 132.4, 130.4, 129.9, 129.4,

127.0, 122.3, 14.8, 11.9; ESI-MS calc. for [C18H16ClN5O3S +
H]+, m/z 417.0662; found, m/z 418.2 [M + H]+; RT = 2.974;
purity: 95.16%.

SCHEME 1
Synthetic pathway for acyl pyrazole sulfonamides (5a-k).

FIGURE 6
Graphical representation of averaged 3D-1D score of α-glucosidase obtained from VERIFY3D. The green dots in the graph indicate the amino acid
residues of α-glucosidase, which are more aggregated in the region above 0.1.
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2.1.5 (E)-4-((1-(4-Methoxybenzoyl)-3,5-dimethyl-
1H-pyrazol-4-yl)diazenyl)
benzenesulfonamide (5c)

Yellow solid; yield: 80%; M.P.: 202 °C–205 °C FT-IR (ATR) cm-1,
3271, 3059 (H–N, amine), 2994, 2959 (H–C, CH3), 1,695 (C=O,

amide), 1,570 (C=C, Ar), 1,339 (S=O, sulfonamide), 1,225 (C-N); 1H
NMR (400 MHz, DMSO-d6) δ 8.05–7.95 (m, 6H, Ar-H), 7.53 (s, 2H,
NH2), 7.16–7.05 (m, 2H, Ar-H), 3.89 (s, 3H, OCH3), 2.95 (s, 3H,
CH3), 2.46 (s, 3H, CH3);

13C NMR (101 MHz, DMSO-d6) δ 166.9,
163.2, 163.1, 154.1, 146.7, 145.2, 143.4, 136.9, 133.9, 126.9, 123.8,

FIGURE 7
Quality factor plot of α-glucosidase obtained from ERRAT demonstrating that the overall peaks of error value for each of the graph are less than 95%.
(A) Quality factor plot of 1 to 300 amino acid residues of α-glucosidase. (B) Quality factor plot of 300 to 580 amino acid residues of α-glucosidase.

FIGURE 8
Docked complexes of 5a (A) and 5b (B) in the druggable active site of α-glucosidase.

FIGURE 9
Binding affinities and binding energies of 5a and 5b in complex with α-glucosidase.
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122.3, 113.5, 55.6, 14.8, 11.7; ESI-MS calc. for [C19H19N5O4S + H]+,
m/z 414.1158; found, m/z 414.3 [M + H]+; RT = 2.705;
purity: 94.98%.

2.1.6 (E)-4-((1-(3,4-Dimethoxybenzoyl)-3,5-
dimethyl-1H-pyrazol-4-yl)diazenyl)
benzenesulfonamide (5d)

Yellow solid; yield: 81%; M.P.: 226 °C –228 °C; FT-IR (ATR) cm-1,
3289, 3232 (H–N, amine), 2959, 2914 (H–C, CH3), 1,673 (C=O,
amide), 1,592 (C=C, Ar), 1,345 (S=O, sulfonamide), 1,226 (C-N); 1H
NMR (400MHz, DMSO-d6) δ 8.05–7.95 (m, 4H, Ar-H), 7.67 (dd, J =
8.5, 2.1 Hz, 1H, Ar-H), 7.57 (d, J = 2.1 Hz, 1H, Ar-H), 7.53 (s, 2H,
NH2), 7.13 (d, J = 8.6 Hz, 1H, Ar-H), 3.89 (s, 3H, OCH3), 3.82 (s, 3H,
OCH3), 2.93 (s, 3H, CH3), 2.46 (s, 3H, CH3);

13C NMR (101 MHz,
DMSO-d6) δ 166.9, 154.1, 153.2, 147.9, 146.7, 145.2, 143.4, 136.8,
126.9, 126.9, 126.4, 123.6, 122.3, 114.2, 110.5, 55.8, 55.6, 14.7, 11.7;
ESI-MS calc. for [C20H21N5O5S + H]+, m/z 444.1263; found, m/z
444.2 [M + H]+; RT = 2.526; purity: 95.53%.

2.1.7 (E)-4-((3,5-Dimethyl-1-(4-nitrobenzoyl)-
1H-pyrazol-4-yl)diazenyl)
benzenesulfonamide (5e)

Yellow solid; yield: 71%; M.P.: 231 °C–233 °C; FT-IR (ATR) cm-1,
3249, 3217 (H–N, amine), 2993, 2958 (H–C, CH3), 1,658 (C=O,
amide), 1,585 (C=C, Ar), 1,358 (S=O, sulfonamide), 1,222 (C-N); 1H
NMR (400 MHz, DMSO-d6) δ 8.43–8.35 (m, 2H, Ar-H), 8.17–8.09
(m, 2H, Ar-H), 8.02 (s, 4H, Ar-H), 7.54 (s, 2H, NH2), 3.03 (s, 3H,
CH3), 2.44 (s, 3H, CH3);

13C NMR (101MHz, DMSO-d6) δ 167.0,
154.0, 149.3, 147.1, 145.5, 144.7, 138.4, 137.2, 131.9, 131.7, 127.0,
122.9, 122.9, 122.4, 120.4, 14.8, 12.0; ESI-MS calc. for [C18H16N6O5S +
H]+, m/z 429.0903; found, m/z 444.2 [M + H]+; RT = 2.690;
purity: 96.53%.

2.1.8 (E)-4-((3,5-Dimethyl-1-(3-nitrobenzoyl)-
1H-pyrazol-4-yl)diazenyl)benzenesulfonamide (5f)

Yellow solid; yield: 76%; M.P.: 227 °C –229 °C; FT-IR (ATR) cm-1,
3201, 3091 (H–N, amine), 2983, 2959 (H–C, CH3), 1,696 (C=O,
amide), 1,575 (C=C, Ar), 1,333 (S=O, sulfonamide), 1,289 (C-N); 1H
NMR (400 MHz, DMSO-d6) δ 8.72 (t, J = 2.0 Hz, 1H, Ar-H), 8.52
(ddd, J = 8.3, 2.5, 1.1 Hz, 1H, Ar-H), 8.35 (dt, J = 7.8, 1.3 Hz, 1H, Ar-
H), 8.02 (s, 4H, Ar-H), 7.88 (t, J = 8.0 Hz, 1H, Ar-H), 7.54 (s, 2H,
NH2), 3.03 (s, 3H, CH3), 2.45 (s, 3H, CH3);

13C NMR (101 MHz,
DMSO-d6) δ 166.2, 154.0, 147.2, 147.0, 145.5, 144.6, 137.2, 136.9,
134.0, 129.7, 127.0, 126.9, 125.5, 122.4, 120.4, 14.8, 12.0; ESI-MS calc.
for [C18H16N6O5S + H]+, m/z 429.0903; found, m/z 429.2 [M + H]+;
RT = 2.675; purity: 92.50%.

2.1.9 (E)-4-((3,5-Dimethyl-1-(2-methylbenzoyl)-
1H-pyrazol-4-yl)diazenyl)
benzenesulfonamide (5g)

Yellow solid; yield: 79%; M.P.: 222 °C –224 °C; FT-IR (ATR) cm-1,
3305, 3214 (H–N, amine), 2959, 2914 (H–C, CH3), 1,680 (C=O,
amide), 1,573 (C=C, Ar), 1,337 (S=O, sulfonamide), 1,294
(C-N); 1H NMR (400 MHz, DMSO-d6) δ 8.06–7.96 (m, 4H,
Ar-H), 7.56–7.44 (m, 4H, NH2, Ar-H), 7.39–7.29 (m, 2H, Ar-
H), 3.03 (s, 3H, CH3), 2.38 (s, 3H, CH3), 2.28 (s, 3H, CH3);

13C
NMR (101 MHz, DMSO-d6) δ 169.8, 154.0, 146.4, 145.4, 144.5,
137.2, 136.1, 133.7, 130.8, 130.3, 128.8, 127.0, 125.2, 122.3, 120.3,

19.2, 14.78, 11.97; ESI-MS calc. for [C19H19N5O3S + H]+, m/z
398.1209; found, m/z 398.2 [M + H]+; RT = 2.750;
purity: 96.15%.

2.1.10 (E)-4-((3,5-Dimethyl-1-(4-methylbenzoyl)-
1H-pyrazol-4-yl)diazenyl)
benzenesulfonamide (5h)

Yellow solid; yield: 81%; M.P.: 218 °C –220 °C; FT-IR (ATR) cm-1,
3258, 3110 (H–N, amine), 2993, 2958 (H–C, CH3), 1,690 (C=O, amide),
1,568 (C=C, Ar), 1,331 (S=O, sulfonamide), 1,289 (C-N); 1H NMR
(400 MHz, DMSO-d6) δ 8.05–7.96 (m, 5H, Ar-H), 7.85 (d, J = 8.2 Hz,
2H, Ar-H), 7.53 (s, 2H,NH2), 7.38 (d, J= 8.0Hz, 2H, Ar-H), 2.96 (s, 3H,
CH3), 2.43 (2s, 6H, 2 × CH3);

13C NMR (101MHz, DMSO-d6) δ 167.8,
154.0, 146.8, 145.3, 143.7, 143.6, 137.0, 131.3, 131.1, 129.3, 128.5, 128.5,
127.0, 122.3, 21.2, 14.8, 11.8; ESI-MS calc. for [C19H19N5O3S +H]+, m/z
398.1209; found, m/z 398.2 [M + H]+; RT = 3.400; purity: 92.43%.

TABLE 3 Pharamcokinetic analysis of potent inhibitors 5a and 5b.

Attributes 5a 5b

Formula C18H16ClN5O3S C18H16ClN5O3S

Molecular weight (g/mol) 417.87 417.87

Number of heavy atoms 28 28

Number of aromatic heavy atoms 17 17

Fraction C (sp3) 0.11 0.11

Number of rotatable bonds 5 5

Number of H-bond acceptors 7 7

Number of H-bond donors 1 1

Molar refractivity (m3mol−1) 104.95 104.95

TPSA (Å2) 128.15 128.15

Consensus log Po/w 3.29 3.28

Solubility Moderately soluble Moderately soluble

Digestive tract absorption Low Low

Blood–brain barrier No No

P-gp substrate No No

CYP1A2 inhibitor No No

CYP2C19 inhibitor Yes Yes

CYP2C9 inhibitor Yes Yes

CYP2D6 inhibitor No No

CYP3A4 inhibitor No No

Log Kp (cm/s) −6.34 −6.34

Lipinski Yes Yes

Ghose Yes Yes

Veber Yes Yes

Egan Yes Yes

Muegge Yes Yes

Synthetic accessibility 3.11 3.15
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TABLE 4 Binding interactions of most potent inhibitors.

Most potent compounds Binding interactions

Ligand atoms Receptor residues Interaction types Distance (Å)

5a N10 Lys155 H-bond 3.09

N12 Thr234 H-bond 2.89

O8 Ser235 H-bond 2.80

H33 Ser235 H-bond 2.13

N11 Asn314 H-bond 1.92

O22 Lys425 H-bond 2.49

C18 Lys425 Alkyl bond 4.35

Aromatic ring Lys425 π-cation 4.46

S7 Phe420 π-sulfur 5.25

Aromatic ring Phe420 π-π T-shaped 5.13

Aromatic ring Thr234 Amide-π stacked bond 4.52

5b N12 Thr234 H-bond 2.82

H34 Ser235 H-bond 2.14

N11 Asn314 H-bond 1.92

C19 Phe310 π-alkyl 4.91

S7 Phe420 π-sulfur 5.83

Aromatic ring Phe311 π-π T-shaped 4.23

Aromatic ring Thr234 Amide-π stacked bond 4.97

FIGURE 10
Intermolecular interactions between potent inhibitors and most druggable binding site of α-glucosidase. (A) Atoms of 5a (green) interact with the
binding pocket residues (dark pink) of the target protein. (B) The atoms of 5b (light blue) interact with the active site residues (dark pink) of the target
protein. In both figures, dotted lines indicate intermolecular interactions. Green represents the conventional hydrogen bond; light blue indicates the
carbon hydrogen bond; light pink elucidates the alkyl and π–alkyl bond; π–π T-shaped and amide–π stacked bond are represented in dark pink.
Orange color predicts π–cation and π–sulfur bonds.
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2.1.11 (E)-4-((1-(4-Bromobenzoyl)-3,5-dimethyl-
1H-pyrazol-4-yl)diazenyl)benzenesulfonamide (5i)

Yellow solid; yield: 85%; M.P.: 235 °C –237 °C ; FT-IR (ATR) cm-

1, 3369, 3207 (H–N, amine), 2984, 2958 (H–C, CH3), 1,693 (C=O,
amide), 1,568 (C=C, Ar), 1,345 (S=O, sulfonamide), 1,289 (C-N); 1H
NMR (400 MHz, DMSO-d6) δ 8.05–7.96 (m, 4H, Ar-H), 7.91–7.83
(m, 2H, Ar-H), 7.83–7.76 (m, 2H, Ar-H), 7.54 (s, 2H, NH2), 2.98 (s,
3H, CH3), 2.43 (s, 3H, CH3);

13C NMR (101 MHz, DMSO-d6) δ
167.3, 154.0, 147.0, 145.4, 144.1, 137.1, 132.9, 131.4, 131.0, 127.0,
126.9, 122.3, 14.8, 11.9; ESI-MS calc. for [C18H16BrN5O3 + H]+, m/z
462.0157/464.0157 found, m/z 462.1/464.1 [M + H]+; RT = 3.023;
purity: 95.73%.

2.1.12 (E)-4-((1-(3-Methoxybenzoyl)-3,5-dimethyl-
1H-pyrazol-4-yl)diazenyl)benzenesulfonamide (5j)

Yellow solid; yield: 78%; M.P.: 198 °C –201 °C; FT-IR (ATR) cm-1,
3269, 3015 (H–N, amine), 2993, 2958 (H–C, CH3), 1731 (C=O,
amide), 1,568 (C=C, Ar), 1,370 (S=O, sulfonamide), 1,212 (C-N);
1HNMR (400MHz, DMSO-d6) δ 8.06–7.95 (m, 4H, Ar-H), 7.74–7.67
(m, 2H, Ar-H), 7.54 (s, 2H, NH2), 7.51–7.43 (m, 2H, Ar-H), 2.97 (s,
3H, OCH3), 2.43 (s, 3H, CH3), 2.40 (s, 3H, CH3);

13CNMR (101 MHz,
DMSO-d6) δ 168.2, 154.0, 146.8, 145.3, 143.8, 137.4, 137.0, 133.5,
132.2, 131.1, 128.2, 127.8, 126.9, 122.3, 20.8, 14.8, 11.8; ESI-MS calc.
for [C19H19N5O4S + H]+, m/z 414.1158; found, m/z 414.11 [M + H]+;
RT = 2.862; purity: 94.94%.

2.1.13 (E)-4-((3,5-Dimethyl-1H-pyrazol-4-yl)
diazenyl)benzenesulfonamide (5k)

Yellow solid; yield: 81%; M.P.: 188 °C –190 °C; 1H NMR
(400 MHz, DMSO-d6) δ 12.98 (s, 1H, NH), 7.95 (d, J = 8.6 Hz,
2H, Ar-H), 7.86 (d, J = 8.6 Hz, 2H, Ar-H), 7.46 (s, 2H, NH2), 2.48 (s,
6H, 2 × CH3).

2.2 In vitro biological assay

An already established method was employed to perform α-
and β-glucosidase inhibitory assays in 96-well plates (Kazmi

et al., 2017). In this assay, phosphate buffer (0.07 M pH 6.8)
was used to prepare 2.5 U/mL of α-glucosidase, 2.0 U/mL of β-
glucosidase, and substrate 4-nitrophenyl-β-D-glucopyranoside
(p-NPG) (10 mM) solutions. In addition, 1 mM solution of
each test compound was prepared in 10% DMSO to achieve
an end concentration of 100 µM in each well. Initially, 10 µL of
the respective enzyme was incubated with 10 µL of test
compounds for 5 min at 37 °C. Subsequently, 10 µL of p-NPG
was added in each well followed by an incubation period of
30 min at 37 °C before adding 80 µL of Na2CO3 (200 mM) as a
stop solution to each well. The absorbance was measured at
405 nm, and the percentage inhibition for each of the test
compounds was determined by the following equation.

Percentage inhibition = 100–[Slope of test compound/Slope of
enzyme control] × 100.

Acarbose was used as a standard drug for evaluating the efficacy
of test compounds against α- and β-glucosidase. The inhibitory
concentration 50 (IC50) for each of the test compound was
determined by GraphPad prism version 10.0.

2.3 In silico investigation

2.3.1 Protein model development and validation
Modeller 10.3 homology modeling software was used to

construct the 3D structure of α-glucosidase (http://salilab.org/
modeller/) taking the crystalline structure of Saccharomyces
cerevisiae isomaltase (PDB id: 3AJ7) as a reference. The model
was prepared by providing the amino acid sequence of α-glucosidase
in FASTA format obtained from UniProt (access code P53341)
(Kazmi et al., 2017). The quality of the model and its stereochemical
features were then evaluated by the Ramachandran plot
(LASKOWSKI et al., 2013) obtained from PROCHECK version
3.5 (https://saves.mbi.ucla.edu) (Hasan et al., 2015). Additionally,
Verify3D (Eisenberg et al., 1997), ERRAT (Hasan et al., 2015), and
ProSA-web (https://prosa.services.came.sbg.ac.at/prosa.php) (Zaib
et al., 2023) were also utilized to validate the predicted 3D
structure of α-glucosidase.

FIGURE 11
HYDE estimation of 5a (A) and 5b (B) in which green circles represent good HYDE scores. The greater the width of the green circle, the more the
contribution of the atom in the interaction with α-glucosidase.
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2.3.2 Molecular docking
Subsequent to 3D structure prediction of the target protein (α-

glucosidase), the binding affinities of the potent inhibitors were
evaluated using the FlexX functionality of SeeSAR version 13.0
(www.biosolveit.de/SeeSAR) (BioSolveIT GmbH, 2023). The
protein was uploaded in the protein mode followed by the
selection of the binding site in the binding site mode. Alpha-
glucosidase contains 09 unoccupied sites, as indicated by various
colors in Figure 2, having varied amino acid residues, DoGSiteScore,
volume, and surface area (Table 1). All these binding sites were
evaluated individually to analyze the binding of potent inhibitors,
and it was found that the second binding site (dark pink) was the
optimum druggable binding site for pyrazole containing
sulfonamide derivatives (Ibrar et al., 2016). Thence, the potent
inhibitors were docked in the selected binding site via standard
docking, and the best pose was selected based on the lowest binding
energy and highest binding affinity (Dera et al., 2023).

2.3.3 Pharmacokinetic evaluation
The pharmacokinetic properties of the potent inhibitors were

determined by SwissADME (swissadme.ch/index.php) which helps
the determination of druggability, lipophilicity, skin permeability,
gastrointestinal absorption, and the medicinal properties of the
query compound. The results are interpreted in tabular form
(Mahanthesh et al., 2020; Sravika et al., 2021).

2.3.4 Intermolecular interaction visualization
Intermolecular interactions such as hydrogen bond and

hydrophobic interactions formed between the potent inhibitors
and α-glucosidase were visualized by BIOVIA Discovery Studio
molecular visualizer 2021 (Baskaran et al., 2020).

2.3.5 Hydrogen bond and Dehydration energy
The role of each atom of potent inhibitors in the binding affinity

was determined by the Hydrogen bond and Dehydration energy
(HYDE) calculated by SeeSAR version 13.0. The results are
represented qualitatively by colors and quantitatively by energy
scores (Zaib et al., 2023).

3 Results and discussion

3.1 Synthesis and characterization

Sulfanilamide 1was coupled with active methylene of acetylacetone
2 by the diazotization reaction to furnish intermediate 3, which was
reacted with different substituted hydrazides 4a-j and hydrazine
monohydrate in ethanol under acidic conditions (Scheme 1). The
desired products were precipitated out during the reaction and were
filtered and washed with ethanol.

The formation of sulfonamide-clubbed pyrazole derivatives (5a-
k) was indicated by their FTIR spectral data, where characteristic
absorptions were observed in the range of 3300–3000 cm-1 attributed
to the N-H of the NH2 group, in addition to those of C-H stretching
vibrations in the range of 2990–2870 cm-1. The peaks at 1,580 cm-1

and 1,370 cm-1 corresponded to the stretching frequency of the
aromatic (C=C) and sulfonamide (S=O) moiety, respectively.
Additionally, a strong absorption peak of 1700 cm-1 was attributed

to carbonyl (C=O) of the amide linkage. In 1HNMR spectra, the N–H
proton of the primary amine resonated at 7.53 ppm along with the
additional aromatic protons in their respective regions. The
appearance of two singlets for CH3 substituents at a pyrazole ring
also confirmed the formation of synthesized derivatives. 13C NMR
spectra also aided in the confirmation of compounds 5a-k, where
distinctive signals for carbonyl were observed around 167.3 ppm. The
additional resonance for the carbon-related methyl alkyl part was also
observed in the range of 11.94–14.86 ppm. The other aromatic signals
appeared in the corresponding region with appropriate chemical
shift values.

3.2 In vitro biological activity

Initially, the synthesized derivatives were investigated at a
concentration of 1 mM, and percentage inhibition was employed
as an indicator of activity against both enzymes. It was observed that
all compounds were more effective against α-glucosidase than β-
glucosidase (Table 2). IC50 values were calculated for compounds
having a percentage inhibition higher than 50%. The synthesized
compounds showed varying trends for inhibition by altering the
substitutions on the phenyl ring. Among these, compound 5a
displayed the highest activity, being 35 times more potent than
the positive control, acarbose (IC50 = 35.1 ± 0.14 µM). The overall
decreasing inhibitory trends within the series were found as 5a>5b >
5f > 5c > 5g > 5e > 5d> 5h > 5j > 5i > 5k (Table 2).

3.3 Structure–activity relationship studies

The generic structure presented in Figure 3 comprises three
components: 1) the terminal aryl sulfonamide moiety linked to the
diazo unit; 2) central pyrazole heterocycle; 3) an acyl part attached to the
pyrazole nucleus. The sulfonamide and pyrazole components remained
unaltered, whereas a diverse variety of substituents was introduced on
the acyl component. On evaluation of in vitro inhibitory data, various
structure–activity relationships (SARs) revealed that the glucosidase
inhibitory activity of pyrazole containing sulfonamide derivatives
altered by varying the position and nature of the substituent on the
acyl group (Figure 3). Among all the synthesized compounds, 5a
bearing a chlorine atom at the para-position of the phenyl ring was
the most potent member of the developed library, with an IC50 value of
1.13 ± 0.06 µM. This inhibitory efficacy of 5a was 35-fold higher than
the standard acarbose (IC50 = 35.1 ± 0.14 µM). When switching the
chlorine from the para- to meta-position (5b), a 50% reduction in
activity was observed, although the inhibitory strength was still 17-fold
higher than that of acarbose. The introduction of a bulky halogenated
bromine atom instead of chlorine led to a drastic decrease in the
inhibitory profile, as compound 5i showed an IC50 value of 19.13 ±
1.07 µM; however, the activity strength could be improved by
introducing a strongly polarizable electron-withdrawing nitro
substituent (5e). This compound displayed an IC50 value of 4.11 ±
0.19 µM, an eight-fold stronger inhibition than the standard inhibitor. A
further improvement in the inhibitory profile was noticed when an
electron-withdrawing group (NO2) was replaced with an electron-
donating group (OMe) in compound 5c. Adding more electron-rich
substituents such as themethoxy group in 5d or removing the electron-
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rich character in 5h led to a decrease in inhibitory efficacy. Both
compounds exhibited IC50 values of 4.53 ± 0.12 and 9.22 ± 0.45 µM,
respectively. On the other hand, replacing the chloro substituent at a
meta-position of 5b with the nitro group produced a slight decrease in
inhibition; however,methoxy-substituted derivative 5j exhibited a sharp
decline in glucosidase inhibition. The only ortho-substituted derivative,
5g, showed a better inhibitory profile comparable to compound 5c, with
an IC50 value of 3.47 ± 0.43 µM, whereas a drastic reduction in activity
was observed when the acyl component was completely removed
(compound 5k; IC50 = 28.27 ± 1.45 µM), making this derivative the
least active member of the tested series. Overall, according to the
behavior of these substituents in the active site of α-glucosidase, it
was observed that the presence of an electron-withdrawing group
(EWG) such as chlorine at meta- and para-positions increased the
inhibitory potential. However, derivatives having an electron-donating
group (EDG), such as methoxy at meta-position, showed a significant
decrease in enzyme inhibitory activity. These observations also showed
that the presence of an acyl component is necessary for the better
induction of biological function.

On the contrary, none of the derivatives showed inhibitory
efficacy against β-glucosidase enzyme. All the compounds
showed inhibition in the range of 7.55%–34.3%.

3.4 In silico investigation

3.4.1 Protein model development and validation
The enzyme α-glucosidase sequence (583 amino acids) of S.

cerevisiae was used for model development through Modeller
version 10.3. It was observed that there was a good similar
identity score with the protein having PDB ID of 3AJ7, so it was
chosen as the template for model development. Five different
models were developed, and the one with the best score and
energy was taken for further evaluation. The crystallographic
structure of the model is shown in Figure 4.

The selected protein model was verified by Ramachandran plot
analysis. It was predicted that 83.9% of amino acid residues
(432 amino acids) would lie in the most favorable region (red
color), while 15.1% pf amino acid residues (78 amino acids) would
reside in the allowed region of the plot. However, only two amino acid
residues (0.4%) were present in the generously allowed region (pale
yellow), while three amino acid residues (0.6%) existed in the
disallowed region (white color) (Figure 5A). Afterward, the z-score
was determined by protein structure analysis (ProSA)-web which
predicted the quality of the model (Figure 5B). The z-score of the final
model was −10.78, which was similar to the z-score of the protein with
similar amino acids (Lee et al., 2014).

The VERIFY3D evaluates the compatibility between the specific
amino acid sequence and protein model. It determines the stability of
the crystal structure of protein, identifies the most stable form of the
folded protein assembly, and detects analogous protein sequences that
exhibit a similar overall folding arrangement (Dym et al., 2006).
According to the graph in Figure 6, nearly 97.94% of the residues have
greater than or equal to 0.1 of mean 3D-1D score. Therefore, the
predicted model of α-glucosidase passed the VERIFY3D validation.

ERRAT functions are based on the premise that various types of
atoms within proteins will exhibit a non-random arrangement in
relation to each other (Dym et al., 2006). It predicted that the overall

quality factor of the α-glucosidase model was 91.115%. It also
indicated that the resolution of the protein structure was between
2.5 and 3 Å (Figure 7).

3.4.2 Molecular docking
Molecular docking studies were performed for the in silico

evaluation of protein–ligand binding via the FlexX feature of
SeeSAR version 13.0 (www.biosolveit.de/SeeSAR) (BioSolveIT
GmbH, 2023). The developed model was docked with two of the
most potent inhibitors: compounds 5a and 5b (Figure 8). The
calculated binding energies and affinities were congruent with the
in vitro analysis. The binding affinity and energy of 5a was in the
nanomolar range and −8.4 kcal/mol, respectively. However, the
binding energy and affinity of the docked complex of 5b was
slightly lower at −8.2 kcal/mol in the micromolar range (Figure 9).

3.4.3 Pharmacokinetic analysis
The pharmacokinetic evaluation of 5a and 5b predicted that

both isomers have the same physiochemical properties (Table 3).
Their molecular weight is 417.87 g/mol with five rotatable bonds,
seven hydrogen bond acceptors, one hydrogen bond donor, and
28 heavy atoms. The molar refractivity of both the inhibitors was
104.95 m3mol−1, while their topological polar surface area (TPSA)
was 128.15 Å2. They are moderately soluble, have low digestive tract
absorption, and do not permeate the blood–brain barrier. In
addition, they can exhibit minute hepatotoxicity by inhibiting
two of the five cytochrome P450, such as CYP2C19 and
CYP2C9. Both inhibitors do not permeate the skin as their log
Kp is −6.34 cm/s and follow all druggable criteria.

3.4.4 Intermolecular interaction visualization
The intermolecular interactions were predicted via Discovery

Studio 2021 molecular visualization tool. Compounds 5a and 5b
exhibit favorable interactions with the druggable active site of α-
glucosidase (Table 4). Compound 5a specifically develops hydrogen
bonds, alkyl bonds, π–cation, π–sulfur, π–π T-shaped bond, and an
amide–π stacked bond with the active site residues. Lys155 and
Asn314 form conventional hydrogen bonds with N10 and N11 of 5a,
respectively. Another conventional hydrogen bond with H33 of 5a is
attributed to the presence of Ser235 in the active site, which also
develops a carbon hydrogen bond with O8. Additionally,
Thr234 and Lys425 also form carbon hydrogen bonds with
N12 and O22 of the most potent ligand. As well as carbon
hydrogen bonds, Thr234 also develops an amide-π stacked bond
with the aromatic ring of the sulfonamide group of 5a. Similarly, the
same aromatic group is also involved in developing a π–π T-shaped
bond with the Phe420 of the binding site. Along with the π–π

T-shaped bond, Phe420 also contributes to the formation of a
π–sulfur bond with the S7 of 5a. Finally, Lys425 exhibits π–sulfur
and alkyl bonds with the aromatic ring of the acyl group and C18 of
the ligand (Figure 10A).

Compound 5b develops conventional hydrogen bonds, carbon
hydrogen bond, π–alkyl, π–sulfur, andπ–π T-shaped and amide–π
stacked bonds. The intermolecular interactions are simpler than 5a.
Two conventional hydrogen bonds are formed by Ser235 and
another by Asn314 with H34 and N11 of 5b. On the other hand,
Thr234 forms a carbon hydrogen bond and an amide–π stacked
bond with N12 and an aromatic ring of the sulfonamide group of 5b.
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Phe310, Phe311, and Phe420 of the binding site exhibit π–alkyl, and
π–π T-shaped and π–sulfur interaction with C19, aromatic ring,
S7 of 5b, respectively (Figure 10B).

3.4.5 HYdrogen bond and DEhydration energy
HYdrogen bond and DEhydration energy (HYDE) for 5a and 5b

are predicted by SeeSAR version 13.0 (Figure 11). According to
Figure 11A, atoms such as C1, C4, C6, O8, N14, and C18 of 5a have a
HYDE score less than −2.5 kJ/mol; among these, C18 has the lowest
HYDE. The lower the value of HYDE, the greater the involvement of
the atom in the binding affinity.

In the case of 5b (Figure 11B), the lowest HYDE is exhibited by
C3, which was −4.2 kJ/mol. However, other atoms such as C6, O8,
N10, and C19 also have contributions to the binding affinity of 5b
with α-glucosidase.

4 Conclusion

This research demonstrated an efficient method for producing
structurally diverse pyrazole–sulfonamide conjugates (5a–k) by a
diazotization reaction of sulfonamide amine with acetylacetone
followed by a cyclization reaction with a diverse array of
substituted hydrazides and hydrazine monohydrate in ethanol.
This approach was beneficial since it led to the formation of a
pyrazole ring, an important medicinal heterocycle, while
simultaneously circumventing extensive purification methods and
minimizing chemical waste. The structural variability of the
synthesized analogs was assured by using a diverse range of
substituents on the aromatic hydrazides. The glucosidase
inhibition potential was evaluated for synthesized conjugates
(5a–k) where most of the compounds were prominently active
and selective against the α-glucosidase enzyme. Among them, 5a
containing chlorine at a para-position was identified as the most
potent and selective inhibitor, with an IC50 value of 1.13 ± 0.06 µM
(acarbose: IC50 = 35.1 ± 0.14 µM). Consequently, based on the
activity findings and docking studies, these compounds could
potentially be developed as a novel series of structurally varied,
potent, efficacious, and highly selective α-glucosidase inhibitors.
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