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The destructive effect of Aβ peptides on membranes is an important source of its
cytotoxicity in the pathogenesis of Alzheimer’s disease. We have investigated the
binding mechanism between the Aβ42 peptide and bilayer in our former work.
However, as another abundant form of Aβ peptides in the physiological
environment, the binding mechanism between Aβ40 peptide and the lipid
bilayer still remains ambiguous. Hence, we performed all-atom simulations on
the Aβ40 peptides with the lipid bilayer herein using replica exchange with the
solute tempering 2 method. We obtained four major binding models with the
hydrophobic C-terminus as the most preferable binding region. Hydrophobic
residues and positively charged residues are the principal residues involved in the
peptide-bilayer interactions. Aβ40 peptides in our simulation mainly adopt a β-
rich conformation in both bound and unbound states. Besides, we determined
peptide-water interactions and found that bound peptides prefer forming
hydrogen bonds with water molecules than unbound peptides. Our findings
herein may provide new insights for the in-depth understanding of the
membrane-destructive mechanism of Aβ peptides.
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1 Introduction

The formation of senile plaques composed of Aβ peptides is one of the main hallmarks
of Alzheimer’s disease (AD) (Guillozet et al., 2003; Chabrier et al., 2012; Bloom, 2014).
According to the mainstream view of the “amyloid cascade hypothesis,” the excessive
accumulation and abnormal aggregation of Aβ peptides are recognized as the key factors in
the onset and progression of AD (Hardy and Selkoe, 2002; Shankar et al., 2007; Sondag et al.,
2009; Ferreira and Klein, 2011; Barage and Sonawane, 2015; Awasthi et al., 2016; Minter
et al., 2016). Aβ is an intrinsically disordered peptide of 36–43 residues cleaved from
amyloid precursor protein, with Aβ40 composed of 40 residues and Aβ42 composed of
42 residues as two predominant forms in physiological conditions (Murphy and LeVine,
2010). Aβ peptides and their products of low aggregation level, such as dimers and trimers,
are toxic to the neuron and can cause neuroinflammation and further induce synaptic
plasticity impairment and synapse loss (Shankar et al., 2007; Selkoe, 2008; Ferreira and
Klein, 2011; Bartolotti et al., 2016; Minter et al., 2016; Mueller-Schiffmann et al., 2016).
Abundant evidence shows that many pathogenic features, such as tau
hyperphosphorylation, acetylcholine deficiency, oxidative stress, and inflammation, are
in the downstream of Aβ pathway (Sondag et al., 2009; Chabrier et al., 2012; Lesne et al.,
2013; Bloom, 2014; Amar et al., 2017; Cheignon et al., 2018). Therefore, the investigation of
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the toxic mechanism of Aβ peptides is vital for the understanding of
the pathological mechanism of AD.

Recent studies have demonstrated that the interaction between
Aβ peptides and lipid membrane is an important source of its
cytotoxicity to AD (Kremer and Murphy, 2003; Arispe et al., 2007;
Serra-Batiste et al., 2016; Lindberg et al., 2017; Sparr and Linse,
2019; Ciudad et al., 2020). On the one hand, the membrane can
accelerate the aggregation of Aβ peptides by acting as a catalytic
site for Aβ nucleation (Kremer and Murphy, 2003; Bokvist et al.,
2004; Bokvist and Grobner, 2007; Lindberg et al., 2017; Sparr and
Linse, 2019). The aggregation rates of Aβ in a membrane
environment are faster than those in bulk solution (Kremer and
Murphy, 2003; Bokvist et al., 2004; Bokvist and Grobner, 2007;
Banerjee et al., 2020). On the other hand, Aβ peptides can insert
into the membrane, forming destructive channels allowing water
or ions to flow (Williams and Serpell, 2011; Fantini et al., 2014;
Serra-Batiste et al., 2016; Osterlund et al., 2019; Ciudad et al.,
2020). Full-length Aβ(1–42) or truncated β-amyloid peptide
Aβ(9–42) and Aβ(17–42) peptides can form channels or
channel-like structures inside the lipid bilayer (Lin et al., 2001;
Arispe et al., 2007; Jang et al., 2010; Serra-Batiste et al., 2016; Bode
et al., 2017; Osterlund et al., 2019; Ciudad et al., 2020). The ion-
channel-like structures are found to be toxic by inducing neurite
degeneration or neuritic abnormality irrespective of their size and
morph (Lin et al., 2001; Jang et al., 2010). The channels formed can
elicit ion-channel currents, allow calcium uptake, and disrupt the
homeostasis of calcium ions (Lin et al., 2001; Quist et al., 2005; Jang
et al., 2010; Williams and Serpell, 2011; Fantini et al., 2014).
Moreover, the direct interactions between Aβ peptide and
bilayer are destructive to the membrane, causing membrane
thinning and curvature (Wong et al., 2009; Williams and
Serpell, 2011; Garcia-Vinuales et al., 2021). Aβ monomer forms
α-helix structure in the membrane-like environment and binding
induces a coil-to-helix structure change (Utsumi et al., 2009; Wong
et al., 2009). Replica exchange molecular dynamics (REMD)
simulations have been utilized to study the Aβ(10–40)
monomer in the dimyristoylphosphatidylcholine (DMPC)
bilayer environment and found that peptides bound with the
bilayer favor the structure with central hydrophobic cluster
inserted inside the bilayer (Lockhart et al., 2020). Replica
exchange with solute tempering (REST) has also been
performed to study the Aβ(25–35) peptide in the DMPC bilayer
environment (Smith and Klimov, 2018; Smith et al., 2019; Khayat
et al., 2020; Khayat et al., 2021). Interactions between Aβ peptide
and bilayer can happen in residues at diverse regions, and both
helix, coil, or β-strand structures have been found to exist in
peptides at different membrane environments (Brown and Bevan,
2017; Fatafta et al., 2020; Fatafta et al., 2022). Besides, all-atom
(AA) simulations and coarse-grained (CG) simulations have also
been applied to study the interactions between trimeric or
hexameric Aβ fibrils with different bilayers, finding that their
binding affinity with bilayer increases with increasing
cholesterol content (Agrawal et al., 2023). CG models can be
performed in a large timescale due to the simplification of the
system, whereas compared with AA models, they lose some key
interactions such as hydrogen bonds, salt bridges, etc.

Two Aβ species, Aβ40 and Aβ42, are majorly found in
physiological conditions (Murphy and LeVine, 2010; Gu and

Guo, 2013; Qiu et al., 2015). The contents of Aβ40 are
significantly higher than Aβ42 peptides, whereas Aβ42 peptides
are more toxic and more ready to aggregate (Gu and Guo, 2013; Qiu
et al., 2015). Previously, we determined the binding mechanism of
the Aβ42 peptide with a mixed bilayer using all-atom conventional
molecular dynamics (cMD) simulation (Wang et al., 2022). Herein,
as a comparison, we carried out all-atom simulations for the full-
length Aβ40 peptide with an identical mixed bilayer using the
enhanced sampling method of replica exchange with solute
tempering 2 (REST2). The sequence for the Aβ40 peptide was
divided into four function regions according to the
hydrophobicity and charges of residues analogous to our former
work of Aβ42: the hydrophilic N-terminus of residues D1-K16 (NT),
the central hydrophobic core of residues L17-A21 (CHC), the
hydrophilic central loop region of residues E22-G29 (CL), and
the hydrophobic C-terminus of residues A30-V40 (CT) (Man
Hoang et al., 2014; Cao et al., 2017; Owen et al., 2018; Wang
et al., 2022). We found four binding models for the
Aβ40 peptide binding to the bilayer with the hydrophobic CT as
the most preferable interacting region. We determined the structure
features of the Aβ40 peptide of both bound and unbound states.
Moreover, we investigated the interactions such as hydrogen bonds
formed between peptides and lipids and explored the role of water
molecules in peptide-bilayer binding.

2 Methods

2.1 System setup

Before the REST2 simulation, we performed short
conventional molecular dynamic simulations for the
Aβ40 peptide in solution to acquire ththe onset and progression
of ADe pre-equilibrated initial conformations of the peptide for
REST2. The initial structure of the full-length Aβ40 peptide is
obtained from the Protein Data Bank (PDB ID: 2lfm; Figure 1A)
with a helical peptide determined by nuclear magnetic resonance
(Vivekanandan et al., 2011). The sequence of the Aβ40 peptide
compared with the Aβ42 peptide is shown in Figure 1B. Compared
to Aβ42, Aβ40 only lacks the last two hydrophobic residues I41 and
A42 at the C-terminal (Tomaselli et al., 2006; Vivekanandan et al.,
2011). This peptide was then under the calculation of the
protonation state through the H++ web server (Gordon et al.,
2005; Anandakrishnan et al., 2012) and put into a rectangle box
filled with 0.15 M NaCl and TIP3P (Jorgensen et al., 1983) water
molecules. The system underwent a 100 ns cMD at 343 K, and the
final conformation was used as the initial peptide structure for the
REST2 simulations. The peptide was placed 5.01 nm center of mass
(COM) distance above the lipid bilayer and filled with 150 mM
NaCl and TIP3P (Jorgensen et al., 1983) water molecules in a
rectangular box. The lipid bilayer was constructed in CHARMM-
GUI (Jo et al., 2009; Lee et al., 2016) with each leaflet containing
18 cholesterols (CHOL), 18 1-palmitoyl-2-oleoyl-sn-glycero-3-
phospho-L-serine (POPS) lipids, and 54 1-palmitoyl-2-oleoyl-
sn-glycero-3-phosphocholine (POPC) lipids, with a total of
36 CHOL, 36 POPS, and 108 POPC in the system. This POPC/
POPS/CHOL bilayer in a ratio of POPC: POPS: CHOL = 3: 1: 1 is
identical to our previous work (Wang et al., 2022).
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2.2 Simulation details

All the simulations were carried out employing the GROMACS
software, version 2020.6 (Van der Spoel et al., 2005), with the
CHARMM36m force field (Huang et al., 2017) and a time step of
4 fs with hydrogen-mass repartitioning (Hopkins et al., 2015). The
temperature coupling was dealt with using the Nosé–Hoover
method while the Parrinello-Rahman barostat (Parrinello and
Rahman, 1981; Nos’e and Klein, 1983) was employed for
pressure coupling. The periodic boundary condition was used
in all directions with the electrostatic interactions using the
particle-mesh Ewald method (Essmann et al., 1995). The length
of all bonds was constrained by the LINCS algorithm (Hess, 2008).
The distance cutoff for the Lennard-Jones potentials and
electrostatic interactions were all 1.2 nm. We also performed a
5000-step energy minimization with the steepest descent algorithm
followed by 1 ns NVT and 1 ns NPT equilibration before final
production runs.

The REST2 method coupled with PLUMED version 2.7.5
(Tribello et al., 2014) was used herein to explore the binding
mechanism between full-length Aβ40 peptide and lipid bilayer,
which provided an enhanced sampling method analogous to
REMD, whereas fewer replicas were needed to achieve equal
performance (Wang et al., 2011). The following expression was
utilized to determine the temperature distribution in our REST2 (Jo
and Jiang, 2015).

Ti � Tmin exp
i ln Tmax/Tmin( )

Nrep − 1
[ ] (1a)

Peptides and ions were dealt with as the “hot” region while water
molecules and membranes remained cold. Exchanges between the
adjacent replicas were attempted every 2 ps. Eighteen replicas were
used with effective temperatures ranging between 343 K and 500 K.

Each replica runs for 500 ns, resulting in a total of 9 μs simulation
times for this entire work.

2.3 Analysis

Trajectories were analyzed using in-house codes and the
GROMACS built-in programs. A free energy landscape (FEL)
describing the binding process was constructed along the number
of contacts and peptide-bilayer distance. Contacts between the
Aβ40 peptide and lipid bilayer were determined between any
heavy atoms of the peptide and bilayer within 0.5 nm. Peptide-
bilayer distance was defined as the perpendicular COM distance
between the peptide and the bilayer. For a closer look, the FEL
describing each basin in the binding process was also constructed
along the root mean square deviation (RMSD) of the peptide with
respect to its initial conformation and β-sheet content. Distances
between residues and membrane surfaces were generated by
computing the perpendicular COM distance between each
residue and bilayer and further subtracting half of the membrane
thickness (2 nm). Hydrogen bond (H-bond) was defined using the
criteria of 0.3 nm donor-acceptor distance cutoff and 20° angle
cutoff. Free energies were defined using the following expression (1).

G � −kT ln P( ) (1b)
where G is free energy, k is the Boltzmann constant, T is the
temperature, and P is the probability of the conformations
appearing in one bin. Intra-peptide contacts were computed
using the 0.5 nm cutoff within the heavy atoms of residues and
the contact probabilities were the average of all peptides in the
ensemble. For the REST2 simulation, the first 200 ns trajectory of
each replica was discarded to avoid initial transients, that is, only the
200–500 ns trajectory of each replica was utilized for analysis. All the

FIGURE 1
(A) Initial Aβ40 peptide structure obtained from Protein Data Bank for the pre-equilibrium of the peptide (left) and initial Aβ40 peptide and bilayer
structure for the REST2 simulation at 343 K (right). (B) Sequence for the Aβ40 and Aβ42 peptides, where the two additional residues compared to Aβ40 at
CT are highlighted in red in Aβ42.
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secondary structure content calculation, H-bond analysis, and
snapshot generation were carried out using the VMD software
(Humphrey et al., 1996).

3 Results and discussion

3.1 Binding models explored by REST2

The REST2 method was used herein to explore the binding
mechanism between Aβ40 and the bilayer. The lipid bilayer is the
POPC/POPS/CHOL membrane used in our previous work (Wang
et al., 2022). Similarly, this membrane was used here based on its
characteristic of being extensively studied and close to the authentic
cell membrane, as well as its simplicity (van Meer et al., 2008;
Lemkul and Bevan, 2011; Lai et al., 2017; Banerjee et al., 2021). As
our previous study revealed, Aβ42 peptides showed little interaction
with the bilayer, and the obtained binding models were rare at the
physiological temperature of 310 K, while the high temperature of
343 K could make the membranes ready to be penetrated without
modifying their basic architecture (Wang et al., 2022). The
interactions raised a lot at 343 K and the analyses of
Aβ42 peptide-bilayer interactions were all based on the results at
343 K. Hence, with the aim of promoting Aβ40 binding to the lipid
bilayer and for the convenience of direct comparison, we performed
the REST2 simulation at 343 K for the Aβ40-bilayer system herein.
The temperature distribution is calculated using Eq. 1a. Exchange
rates between adjacent replicas were all larger than 17%
(Supplementary Figure S1). The average exchange rate was

20.80% averaged over 18 replicas. The temperature trajectory for
each replica sufficiently visits all the temperatures from 343 K to
500 K (Supplementary Figure S2). All the above outcomes
demonstrated the sufficient sampling of our REST2 simulations.
Consistent with our expectations, the peptides showed a high
tendency to form interactions with bilayers at 343 K
(Supplementary Figure S3). For most residues, the contact
fractions were larger than 10% and the average contact fraction
was 25.29%.

First, the free energy landscape describing the position and
interaction of Aβ40 with respect to the bilayer is mapped
(Figure 2A). The two-dimensional (2D) FEL is constructed based
on the peptide-bilayer distance and the number of peptide-bilayer
contacts. Not surprisingly, as the peptide approaches the bilayer, the
interactions between the peptide and bilayer increase, leading to the
FEL in an L-form. Seven free energy basins, a to g, are identified.
Basin c corresponds to the lowest free energy in the 2D FEL, where
ΔG = 0. By projecting the 2D FEL onto the peptide-bilayer distance,
we obtain the one-dimensional (1D) free energy profile (FEP,
Figure 2B). From the FEP, it can be found that Aβ40 is most
populated in the region of 2.65 nm (e, f, and g) and
3.33–3.56 nm (a, b, c, and d) distance. These results indicate that
Aβ40 energetically favors binding with the bilayer.

To further identify the bound structures distributed at the seven
minima a to g characterized in Figure 2, we extracted the structural
ensemble of the peptides at each minimum to construct the 2D FEL
of the ensemble for each minimum to describe their structural
features (Figure 3A). The FEL is mapped along the positional
RMSD and β-sheet content of the peptide. As can be seen from
Figure 3A, as the peptides are getting closer to the bilayer (from a to
g), the β-sheet content is progressively reduced. Conformations at
each minimum can be explicitly classified into two groups, and their
representative structures are shown in Figure 3B. One group, labeled
as a1, b1, c1, d1, e1, f1, and g1 of Figure 3B, contains bound peptides
with predominantly β-sheet structure. Another group, labeled as a2,
b2, c2, d2, e2, f2, and g2 of Figure 3B, contains bound peptides with
predominantly helix or coil structure.

Snapshots in Figure 3B can accurately represent the microstates
in Figure 3A except for a2. a2 microstate contains peptides with few
residues interacting with the membrane surface and their
conformations are disordered and distinct from each other. The
remaining 13 microstates can be classified into four binding models
according to their structural features and membrane-interacting
regions. Distances between each residue and bilayer surface of the
four interacting models are shown in Figure 4A. Snapshots of
peptides and bilayers are depicted in Figure 4B. Microstates a1,
b1, c1, and d1 are classified into model 1, where barely several
residues of CT are inserted inside the bilayer with other residues
remaining in the solution. Conformations in this model adopt a β-
rich structure of 30%–50% β-sheet content with three parallel β-
strands as NT, CHC, and CT region each possessing one β-strand.
Microstates b2, c2, and d2 are classified into model 2, where several
residues of NT are lying on the membrane surface. Peptides in this
model adopt two helical fragments at NT and residues at these two
fragments are slightly touching the bilayer surface. Model 3 contains
microstates e1, f1, and g1, where the peptides are mainly β-sheet
structures with most residues of CT buried inside the bilayer, and
several residues in NT and CHC are lying on the membrane surface.

FIGURE 2
(A) FEL as a function of the distance and contacts between the
Aβ40 peptide and bilayer with the minima are marked. (B) FEL in (A) is
projected into the one dimension of distance.
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Compared to the β-rich structure in model 1, peptides of this model
also adopt the structure with three parallel β-strands, whereas the β-
sheet structures are of 10%–30% content lower than model 1 with
NT, CHC, and CL region, each possessing one β-strand. Besides,
residues at CT in model 3 were buried significantly deeper than in
model 1. Microstates e2, f2, and g2 are classified into the most deeply
buried model 4. Peptides in this model are unstructured and
dominated by a random coil with the CHC and CT buried below
the membrane surface while NT and CL stretch into the solution.
Two to 15 residues of peptides in model 1 and model 2 contact with
the bilayer in the 3.0 nm–4.0 nm peptide-bilayer distance region,
whereas 16 to 25 residues in model 3 and model 4 contact and insert
deeper in the 2.5 nm to the 3.0 nm distance region.

These binding models of Aβ40 were further compared with
those of Aβ42 reported in our previous work (Wang et al., 2022).
The results show two significant differences in their binding models.
From their representative structures in Figure 4, it can be seen that
Aβ40 can adopt more diverse structures of bound peptide including

β-strand, helix, or unstructured structure, whereas bound peptides
in Aβ42 are mostly unstructured. This difference can be attributed to
the highly enhanced sampling efficiency of REST2 compared to
cMD as the latter was used in the work of Aβ42. Another difference
is that residues at CT frequently interact with the bilayer in Aβ40
(Models one to four in Figure 4) while showing little tendency to
bind with the bilayer in Aβ42. This can be explained by the two
additional residues Ile41 and Ala42 in CT of Aβ42. Due to the
absence of these two residues in Aβ40, two Val residues with
stronger hydrophobicity are exposed at the CT region, which can
interact with the bilayer more frequently driven by the hydrophobic
interactions.

To give a deeper view of the conformation for the binding
peptides, the H-bonds formed between the peptide and membrane/
water for minima a to g were obtained (Figure 5A). From minima a
to g, with the contacts increased, the number of H-bonds formed by
Aβ40 with bilayer also shows a roughly rising trend. However, there
is no obvious rising or declining trend for the H-bond formed with

FIGURE 3
(A) FES for each minimum in Figure 2A as a function of RMSD between heavy atoms of the peptide with respect to its initial conformation and the β-
sheet content of the peptide. Microstates in FES of each minimum are labeled at the right. (B) Representative structure of the microstates in (A).
Membrane atoms are shown in gray lines. B-sheet structures are shown in yellow. Helix structures, including α-helix, 3–10 helix, and Pi-helix are shown in
red. The remaining turn, bridge, and coil structures are shown in blue.
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water. We then computed the H-bonds formed between binding
models and the membrane/water (Figure 5B). The peptide-bilayer
H-bonds exhibit no correlation with the peptide-water H-bonds.
Conformations in model 2 form the highest number of H-bonds
with the membrane but also show a high tendency to form H-bonds
with water. Conformations in model 1 form the least H-bonds with
the membrane. The average number of H-bonds formed by each
residue with membrane was then acquired to explore the role of
residues in peptide-membrane interactions in four binding models
(Figure 5C). Two residues forming the highest number of H-bond
with bilayer were pointed in each model. Most of these residues were
charged especially for the deepest binding model of model 4, and
positively charged K16 and K28 form strong H-bonds with the
bilayer. Positively charged R5 residue at NT also plays a key role in
forming H-bonds in models 2 and 3. We have labeled these residues
intuitively in the structure of binding models in Figure 5D. They are
all distributed in the peptide-bilayer interacting regions. The free
energy data were computed using Eq. 1b to compare the relative
stability of each microstate (Supplementary Table S1). Microstates
d1, g2, and c1 showed the lowest free energy, indicating the high
stability of these microstates. Free energies of other microstates were
relatively high, especially for b2, c2, and d2 of model 2, suggesting
the instability of this binding model.

3.2 Structural features of the Aβ40 peptide

Aβ peptides, as numerous works previously characterized, are
intrinsically disordered in bulk water (Viola and Klein, 2015; Ono,
2018). The initial Aβ40 conformation used here is a partially folded

structure with a helix structure spanning residues H13-D23. To
explore the conformational transition of Aβ40 induced by binding to
the lipid bilayer, an analysis of the secondary structure was carried
out, as delineated in Figure 6. Aβ40 peptides were considered bound
when their peptide-bilayer contacts in Figure 2A are larger than
zero; otherwise, they are considered unbound. As can be seen from
Figures 6A, B, for both the bound and unbound peptides, β-sheet
(E), turn (T), and coil (C) structures were dominant. These three
structures took up at least 79.50% and 90.80% of the bound and
unbound peptides, respectively, and alternatively exist in each residue.
In Figure 6C, the seven structures obtained were classified into three
groups: the sum of the fraction for coil, turn, and bridge structure (C +
T + B) was taken as the unstructured structure fraction; the fraction
for β-sheet structure (E) was taken as the β-sheet structure fraction;
the sum of 3–10 helix, α-helix, and Pi-helix structure (G + H + I) was
taken as the helix structure fraction. Fractions of helix structure were
low in both bound and unbound peptides, whereas residues E3-R5
and H13-Q15 at NT could form helix structures with fractions larger
than 10% in the bound peptides. Peptides possessed more helix
structure in the bound state than in the unbound state. β-sheet
content (E) of both bound and unbound peptides was much
higher than that of helix, especially for unbound peptides. Residues
D7, E11, Q15, K16, L17, and F20 in unbound peptides adopted the β-
sheet structure with fractions larger than 80%, which were all
distributed at the NT and CHC regions. In the bound state, the
highest fraction of β-sheet was 49.84%, which was evidently lower
than the unbound state, and the residues with β-sheet structure were
widely distributed in NT, CHC, CL, and CT regions. In summary, the
β-sheet structure is dominant in both bound and unbound
Aβ40 peptides.

FIGURE 4
Four binding models were acquired from the REST2 simulation. (A) The distance between each residue and membrane surface. Negative values
represent residues buried below the bilayer surface. (B) Corresponding structures of peptide and bilayer of each model, where the four function regions
NT, CHC, CL, and CT of the peptides are colored in blue, red, yellow, and magenta, respectively.
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FIGURE 5
(A) The average number of H-bonds formed between peptide andmembrane/water for minima a to g. (B) The average number of H-bonds formed
between peptide and membrane/water for four binding models. (C) The average number of H-bonds formed between each residue and membrane for
four bindingmodels. The two residues forming the highest number of H-bonds are pointed in eachmodel. (D) The representative conformations for four
binding models with the two residues forming the highest H-bond are highlighted in green balls. The color scheme for peptide and bilayer is
identical to Figure 3.

FIGURE 6
(A) Secondary structure probability for each residue of bound peptide. (B) Secondary structure probability for each residue of unbound peptide. (C)
Secondary structure probability for each residue for the sum of coil, turn, bridge structure (C + T + B); the sum of the β-sheet (E); and the sum of
3–10 helix, α-helix, and Pi-helix structure (G + H + I) for bound and unbound Aβ40 peptides. E: extended β-sheet structure, B: bridge structure, H: α-helix
structure, G: 3–10 helix structure, I: Pi-helix structure, T: turn structure, and C: coil structure.
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3.3 Peptide-bilayer interactions

To explore the driving force for the peptide binding, the peptide-
bilayer contacts and H-bonds were analyzed. It is clear from
Figure 7A; Supplementary Figure S4 that binding events occurred
mainly in the NT, CHC, and CT regions. The contact fractions of
residues in hydrophilic CL were significantly lower, especially for
residues E22-N27. Residues at CT showed the highest tendency to
interact with the bilayer. The top 10 residues with the highest contact
fractions were G38, A40, G37, V39, Q15, V36, K16, H14, M35, and
L34, which were all hydrophobic or positively charged residues. We
compared the average fractions of residue-bilayer contact between
Aβ40 and Aβ42 in the four sequence regions in Supplementary
Figure S4 (Wang et al., 2022). It is remarkable that residues at CT in
Aβ40 frequently interacted with the bilayer, whereas they showed
little tendency to bind with the bilayer in Aβ42. From Figure 7B,
R5 formed the highest number of H-bonds much larger than other
residues, followed by K16 and K28 residues. These three residues
also exhibited the same behavior in Aβ42 (Wang et al., 2022). The
highest 10 types of H-bonds formed between R5, K16, and
K28 residues and bilayer are provided in Supplementary Figure
S5. The most populated H-bonds are formed with the side chain of
POPC or POPS lipids. Like in the Aβ42-bilayer system, cholesterols

also do not favor forming H-bonds with these residues (Wang et al.,
2022). Overall, residues in the CT region of the Aβ40 peptide
showed the highest tendency to interact with the bilayer, and
H-bonds formed between positively charged residues and bilayer
may drive the binding. Both hydrophobic interactions and
electrostatic interactions contributed to the binding of Aβ40 to
the bilayer.

3.4 Intra-peptide and peptide-water
interactions

Besides peptide-bilayer interactions, intra-peptide and peptide-
water interactions may also drive the peptide bind to the bilayer.
Residue-residue contact maps for the bound and unbound
Aβ40 peptides were plotted to investigate the intra-peptide
interactions (Figure 8A). Unlike Aβ42, the conformations of
Aβ40 in the unbound state were rather different from the bound
state (Wang et al., 2022). The evident cross-diagonal formed by
residues F4-V12 and residues H14-D23 in the contact map of the
unbound state corresponded to the anti-parallel β-sheet structure
formed at these regions. The contact probabilities in these regions
were extremely high, corresponding to the high β-sheet structure of

FIGURE 7
(A)Contact fractions of residues with the membrane in the bound peptides. When there is a contact between any of the heavy atoms of one residue
and the bilayer, then this residue is considered to be in contact. (B) The average number of H-bonds formed between each residue and the bilayer.

FIGURE 8
(A) Residue-residue contact maps of peptides in bound and unbound states. The color bar corresponding to the contact probability from 0 to 1 is
shown on the right. (B) The average number of H-bonds formed between each residue and water molecules for bound and unbound peptides.
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these regions in Figure 6C. A cross-diagonal represented that the β-
sheet structure was also formed by residues H14-A21 and V24-V36
of the bound peptide, whereas the probabilities were not as high as
the β-sheet structure in the unbound peptide. Besides, there was a
band indicating the contacts formed between residues A2-H6 and
residues G29-G33, which corresponded to the β-sheet interactions at
these two fragments. The highest 10 contact fractions for the residue
pairs (at least three residues apart) were used to characterize long-
range interactions (Supplementary Figure S6).

To explore the peptide-water interactions, the average number
of H-bonds formed between peptides and water molecules was
counted (Figure 8B). Surprisingly, for most residues in the bound
state, the average number of H-bonds formed with water was higher
than residues in the unbound state except for a few residues at CT.
This phenomenon occurred due to the fact that bound peptides were
more exposed to water than unbound peptides and water molecules
could drive the binding of peptide to the bilayer. Another reasonable
explanation is that Aβ40 in extended solvent-accessible structure
preferred binding with the bilayer than in the globular structure.
These results suggested that water molecules played an important
role in the binding of Aβ40 to membranes.

4 Conclusion

In the present work, we investigated the interactions between
full-length Aβ40 peptide and POPC/POPS/CHOL bilayer using the
REST2 method. We first explored the binding mechanism by
extracting the conformations in the free energy landscape. The
conformations could be classified into four binding models.
Peptides in model 1 adopted a β-rich structure with only several
residues of CT inserted inside the bilayer. Model 2 contained
peptides with NT lying on the membrane surface and adopted
two helical fragments at NT. Peptides in model 3 were also β-rich
structures with most residues of CT buried inside the bilayer and
several residues in NT and CHC lying on the bilayer surface. The
most deeply buried model 4 contains peptides dominated by the
random coil with the CHC and CT buried deeply inside the
membrane. Hydrophobic CT was the region showing the highest
tendency to interact with the bilayer. Residues most preferably
forming H-bonds with bilayer were positively charged R5, K16,
and K28 residues. Aβ40 peptides in both bound and unbound states
mainly adopted the β-rich structure, whereas bound peptides
showed slightly higher fractions of the helix structure than
unbound peptides. We also computed the H-bonds formed
between peptide and water molecules to unveil the role of water
in peptide-bilayer binding. Peptides in the bound state form more
H-bonds with water than in the unbound state, which showed strong

proof of the vital role of water molecules in driving the peptide-
membrane binding.
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