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This work refers to the synthesis and characterization of poly (3-
hydroxybutyrate)-b-oligo (2-ethyl oxazoline) (oligoEtOx). Cationic ring-
opening polymerization of 2-ethyl oxazoline yielded poly (2-ethyl oxazoline)
(oligoEtOx) with a hydroxyl end. Carboxylic acid-terminated PHB was reacted
with oligoEtOx via dicyclohexylcarbodiimide chemistry to obtain PHB-b-
oligoEtOx conjugates. The obtained PHB-b-oligoEtOx conjugates were
successfully characterized by 1H- and 13C NMR, FTIR, DSC, and size exclusion
chromatography. PHB-b-oligoEtOx conjugates can be promising biologic
active materials.
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Introduction

Poly (3-hydroxybutyrate) (PHB) is a microbial aliphatic biopolyester which is
accumulated in bacterium cells from some carbon substrates (Ashby and Foglia, 1998;
Kocer et al., 2003; Hazer and Steinbüchel, 2007; Chen, 2009; Ashby et al., 2019; Choi et al.,
2020; Guzik et al., 2020; Bedade et al., 2021; Kacanski et al., 2023).

PHB is a crystalline polymer with melting transition (Tm) at approximately 170°C. It
can also be synthesized by the anionic ring-opening polymerization of beta-butyrolactone
(Hazer, 1996; Arkin et al., 2001).

The synthetic PHB is in R, S configuration, while bacterial PHB is only in R
configuration (Caputo et al., 2022).

PHB modification reactions are important to prepare new PHB derivatives for some
industrial and medical applications (Hazer, 2010; Hazer et al., 2012; Guennec et al., 2021).
Some of them are halide derivatives (Arkin and Hazer, 2002; Yalcin et al., 2006; Erol et al.,
2020), chitosan derivatives (Arslan et al., 2007), diethanol amine derivatives (Tuzen et al.,
2016), trithiocarbonate derivatives (Hazer et al., 2020), methyl salicylate derivatives (Hazer
et al., 2021), ricinoleic acid derivatives (Ullah et al., 2024), PEG derivatives (Hazer et al.,
1999; Wadhwa et al., 2014), and caffeic acid derivatives (Abdelmalek et al., 2023).

Poly (2-ethyl-2-oxazoline) (oligoEtOx) is obtained by the cationic polymerization of 2-
ethyl oxazoline (2-EtOx). OligoEtOx is a water-soluble polymer and is very popular in the
field of biomedical and pharmaceutical applications (Vergaelen et al., 2023). Dual initiator
techniques, including the carbocationic method and free radical polymerization, can be
used to synthesize block copolymers (Hazer, 1991; Christova et al., 1997). In this manner,
poly (2-ethyl-2-oxazoline) derivatives were successfully synthesized by polymer chemists
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for medical applications (Miyamoto et al., 1989; Christova et al.,
2002; Diab et al., 2004; Park et al., 2004; Hoogenboom et al., 2005;
Becer et al., 2008; Li et al., 2021; Göppert et al., 2023).

Very recently, Becer et al. reported the synthesis of poly (2-ethyl
oxazoline)-b-poly (acrylate) hybrid multiblock copolymers via a
click reaction. They evaluate their self-assembly behavior into
stomatocyte-like nanoparticles (Hayes et al., 2023). The
multiamide structure of polyEtOx makes it a candidate to mimic
peptides, and it shows an antibacterial effect against Staphylococcus
aureus (Hoogenboom, 2009).

Poly (2-ethyl oxazoline) is a new class of functional peptide that
mimics with potential in a variety of biological applications (Zhou
et al., 2020). PolyEtOx is a thermosensitive polymer with a lower
critical solution temperature (LCST), changing the aqueous solution
temperature at approximately 62°C (Christova et al., 2003; Park and
Kataoka, 2007; Obeid et al., 2009; Hoogenboom and Schlaad, 2011).

Winnik et al. reported the cloud point of aqueous methyl
poly(I-propyl oxazoline) with Mn 10 K g/mol. Turbidity
decreases with the increasing concentration from ~48°C to ~39°C.

Block copolymers containing hydrophilic and hydrophobic
blocks gain the properties of both related blocks. These different
polymer blocks can be arranged linearly or as brush-type
copolymers (Minoda et al., 1990; Xu et al., 1991; Förster and
Antonietti, 1998; Bronstein et al., 1999; Chen et al., 1999; Hu
et al., 2008; Mai and Eisenberg, 2012; Kalayci et al., 2013; Glaive
et al., 2024; Hosseini et al., 2024; Wang et al., 2024).

The insertion of the hydrophilic polymer in a block copolymer
will improve the colloidal stability of the nanoparticles for
biomedical applications (Balcı et al., 2010; Kalaycı et al., 2010;
Karahaliloğlu et al., 2020; Wen et al., 2023; Kilicay et al., 2024).

PHB is a commercially available biodegradable natural aliphatic
polyester for some biomedical applications, such as implant
biomaterials, tissue engineering, and food packaging applications
(Chen and Zhang, 2018; Mehrpouya et al., 2021; Abdelmalek et al.,
2023). PHB derivatives can be used as novel biodegradable
adsorbents for analytical applications (Wadhwa et al., 2014;
Unsal et al., 2015; Tuzen et al., 2016; Altunay et al., 2020; Ullah
et al., 2024; Ali et al., 2024) for drug delivery systems (Bayram et al.,
2008; Kılıcay et al., 2011; Kilicay et al., 2024).

In this work, we report the synthesis of poly (3-
hydroxybutyrate)-oligo-2-ethyl oxazoline, fully bio-based
amphiphilic polymer conjugates. Two carboxyl-terminated PHB
were synthesized by refluxing PHB with adipic acid in the
presence of Stannous octoate. Then, the carboxyl-terminated
PHB was reacted with the hydroxyl end of oligooxazoline, which
was obtained by the ring-opening cationic polymerization of 2-ethyl
oxazoline. The physicochemical characterization of the PHB-oligo-
2-ethyl oxazoline conjugates was carried out in detail.

Experiment

Materials

2-Ethyl oxazoline (2-EtOx) was supplied from Sigma-Aldrich
and was passed into the Al2O3 column before use. N, N′-
Dicyclohexylcarbodiimide (DCC; 99%), dimethylaminopyridine
(DMAP; 99%), stannous 2-ethylhexanoate (Sn-oct; ≥92.5%),

methyl p-toluene sulfonate (MepTs), and all other chemicals
were purchased from Sigma-Aldrich. Poly (3-hydroxybutyrate)
(PHB) and microbial polyester (Mn 187,000 g/mol, Mw/Mn 2.5,
Biomer Inc.) were supplied from Biomer (Germany) (Neugebauer
et al., 2007).

Synthesis of oligo(2-ethyl
oxazoline) (oligoEtOx)

2-Ethyl oxazoline was oligomerized by ring-opening cationic
polymerization. A mixture of 2-ethyl oxazoline (2.01 g) and MepTs
(0.20 g) as the catalyst was dissolved in acetonitrile (AcCN, 2.0 mL)
in a reaction bottle. Argon was passed through the solution for
2 min. Polymerization was carried out at 100°C for 70 min. The
polymer precipitated in excess diethyl ether. It was dried under
vacuum at 40°C for 24 h (yield: 1.98 g, Mn 900 g/mol, and
PDI: 1.57).

Synthesis of dicarboxylic acid-terminated
PHB, PHB-COOH

A mixture of adipic acid (1.00 g), PHB (0.64 g), and Sn-oct
(20 mg) was dissolved in CHCl3 (20 mL). It was refluxed at 85°C for
4 h. After half of the solvent was evaporated, the product was
precipitated from excess methanol and dried under vacuum at
40°C for 24 h. The yield was 0.86 g.

Characterization

1H NMR spectra were taken with an Agilent NMR 600 MHz
NMR (Agilent, Santa Clara, CA, United States) spectrometer
equipped with a 3-mm broadband probe. FT-IR spectra of the
substituted polymer samples were recorded using a Bruker
Model, Tensor II instrument with the ATR technique in the
transmissive mode and a scan rate of 4,000 to 450 cm−1. A
Viscotek GPCmax autosampler system, consisting of a pump,
three ViscoGEL GPC columns (G2000H HR, G3000H HR, and
G4000H HR), and a Viscotek differential refractive index (RI)
detector, was used to determine the molecular weights of the
polymer products. A calibration curve was generated with five
polystyrene (PS) standards of molecular weight 2,960, 8,450,
50,400, 200,000, and 696,500 Da with low polydispersity. Data
were analyzed using Viscotek OmniSEC Omni 01 software.
Differential scanning calorimetry (DSC) was used in the
thermal analysis of the obtained polymers. The DSC analysis
was carried out under nitrogen using a TA Q2000 DSC
instrument that was calibrated using indium (Tm = 156.6°C)
and a Q600 Simultaneous DSC-TGA (SDT) series thermal
analysis system. DSC measures the temperatures and heat
flows associated with thermal transitions in the polymer
samples obtained. The dried polymer samples were heated
from −60°C to 220°C under a nitrogen atmosphere. All
melting endotherms (Tm) were reported as peak temperatures,
while all glass transition temperatures (Tg) were reported as
midpoint temperatures. Thermogravimetric analysis (TGA) was
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used to determine the decomposition temperature (Td)
characteristics of the polymers by measuring the weight loss
under a nitrogen atmosphere over time. In these analyses, the

obtained polymers were heated from 20°C to 600°C at a rate of
10°C/min, and the results were determined based on the first
derivative of each curve. Scanning electron microscopy (SEM)

FIGURE 1
1H (A) and 13C (B) NMR spectra of the PHB-COOH sample.

FIGURE 2
Reaction pathways of the synthesis of the oligoEtOx-b-PHB block copolymer.
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imaging (Zeiss EVO lS10) was used for the characterization of the
obtained polymers.

Results and discussion

Ring-opening cationic polymerization of 2-ethyl oxazoline, in
the presence of MepTs, yielded oligo(2-ethyl oxazoline) (OligoOx).
Oxazoline oligomers were obtained in several types, with molar
masses changing from 700 to 900 g/mol. Characterization of
OligoEtOx confirmed the polymer structure. The FTIR spectrum
contained the characteristic signals at 3,462 cm−1, 2,977–2,939 cm−1,
1,624 cm−1, and 1,187 cm−1 related to –OH, -C-H, amid carbonyl,
and –N-CH2- groups, respectively. Typical characteristic groups

were also observed in the 1H NMR spectrum at chemical shifts at
3.5 ppm (-N-CH2-), 2.2–2.5 ppm (-CH2-C(O)-), and 1.1 ppm
(CH3-CH2-).

PHB with two carboxylic acid terminals was obtained by the
reaction of an equimolar amount of adipic acid and PHB under
reflux conditions at 85°C. The characteristic signals were
observed in the 1H NMR and 13C NMR spectra of the as-
synthesized PHB-COOH sample, which is seen in Figure 1,
including 1H (a) and 13C (b) NMR spectra. 1H NMR, δ (ppm):
1.3 ppm for –CH3, 1.5 ppm for –CH2-CH2-, 2.4–2.6 ppm for
–CH2-COO-, 3.7 ppm for CH2-OC(O)CH2–, and 5.1–5.3 ppm
for–CHO–. 13C NMR, δ(ppm): 10 (–CH2-CH2-), 20 (CH3-), 40
(-CH2-C(O)-, 67 (-CH-O-), 169.1, and 169.2 carbonyls for PHB
and adipic acid moieties, respectively.

TABLE 1 Synthesis conditions and results of the PHB-b-oligoEtOx block copolymer at room temperature for 24 h.

Code PHB(COOH)2 (g) PolyOx (g) (%) DMAP (g) DCC (g) Yield (g) (%)

PHB-Ox-21 1.08 0.18 14 0.044 0.82 1.04 83

PHB-Ox-23 2.02 0.67 25 0.242 5.03 2.24 83

PHB-Ox-22 1.08 0.56 34 0.092 2.45 1.19 73

PHB-Ox-24 2.02 1.41 41 0.131 3.12 2.34 68

FIGURE 3
1H NMR spectra of the oligooxazoline and the as-synthesized PHB-oligoEtOx-23 conjugate in CDCl3.
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Synthesis of PHB-oligoEtOx polymer
conjugates

OligoEtOx was capped with the carboxylic acid ends of PHB-
COOH to produce the novel PHB-b-oligoEtOx block copolymer.
The reaction pathways can be seen in Figure 2.

The reaction conditions and results are listed in Table 1.
Changing the feed percentage of oligoEtOx from 14% to 41%
against PHB(COOH)2 was reacted at room temperature. The
yield of the obtained block copolymer was gravimetrically
determined. The polymer obtained was precipitated from the
acidified diethyl ether and dried in vacuum. For further
purification, it was soaked in distilled water for 24 h in order to
remove the unreacted oligoEtOx residue.

Characterization of PHB-oligoEtOx conjugates was carried out
by 1H and 13C NMR, FTIR, differential scanning calorimeter (DSC),
and thermo-gravimetric analysis (TGA) techniques. PHB-Ox-
21, −22, −23, and −24 samples contained the characteristic

samples of oligoEtOx blocks at 3.4 and 3.6 ppm related to the
–CH2-N- groups. Chemical shifts at 1.2 ppm (CH2-CH2-) and
2.5 ppm (-CH2-C(O)-) were overlapped with those of PHB
blocks. The amount of oligoOx blocks in the obtained PHB-
oligoEtOx −21, −22, −23, and −24 conjugates was calculated
while comparing them with integral values of the signals at
5.2 ppm (PHB) and 3.5 ppm (oligoOx) 19, 52, 17, and 14%,
respectively. Figure 3 shows the 1H NMR spectra of the
comparison of oligoOx with the as-synthesized PHB-oligoOx-
23 conjugate in CDCl3.

13C NMR spectra of the PHB-oligoEtOx-23, -24 block
copolymers contained the characteristic signals of the PHB and
oligoOx blocks. Chemical shifts: 19, 20 ppm (-CH3, PHB,
oligoEtOx), 39, 40 ppm (-CH2-C(O)-, PHB, oligoEtOx), 58 ppm
(-N-CH2-, oligoEtOx), 67 ppm (-CH-O-, PHB), and 169.1 and
169.2 ppm (-C=O, PHB and oligoOx). Figure 4 shows the 13C
NMR spectra of the as-synthesized PHB-oligoEtOx-
23 and −24 conjugates in CDCl3.

FIGURE 4
13C NMR spectra of the as-synthesized PHB-oligEtOx-23, -24 block copolymers in CDCl3.
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Typical FTIR spectra of PHB-oligoOx-24, oligoOx, and pristine
PHB compared with each other are shown in Figure 5. The typical
characteristic signal of the oligoEtOx block was observed at
1,633 cm−1 related to the –N-C(O) group. The signals of the
characteristic groups were marked on the related spectra.

Thermal properties of the block copolymers were measured
using a differential scanning calorimeter (DSC). The oligoEtOx
sample has a wide glass transition (Tm) between 10 and 76°C
and the maximum at 64°C. In the PHB-oligoEtOx polymer
conjugate, the same wide melting transition between 6 and

FIGURE 5
FTIR spectrum of PHB-oligEtOx-24 compared with the pristine oligEtOx.
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80°C together with that of PHB at 128°C was observed. The PHB
homopolymer has a melting transition at 170°C. The lower
melting transition of the PHB block in the copolymer shows
the plasticizing effect of oligoEtOx. Figure 6 shows the DSC
curves of PHB-oligEtOx-21 and homo oligoOx. Homo
oligoEtOx showed the glass transition temperature (Tg) at 10°C.

TGA analysis was done in the PHB-oligoEtOx conjugates.
The all TGA/DTG curves contained two decomposition
temperatures (Td)s: 243 and 406°C (for PHB-oligoOx-22),
249 and 381°C (for PHB-oligoOx-23), and 247 and 381°C (for
PHB-oligoEtOx-24). The TGA/DTA curves of the PHB-
oligoEtOx-22 conjugate are given in Figure 7. Decomposition
of the PHB blocks changes between 243 and 249°C, while that of
the oligo oxazoline blocks changes between 386 and 406°C
(Bouten et al., 2015).

Conclusion

A fully biodegradable amphiphilic copolymer was obtained in this
work. The hydroxyl end of oligoEtOx can easily be reacted with some
other reagents to obtain polyoxazoline derivatives. Water-soluble
hydrophilic oligoEtOx makes the hydrophobic polymers amphiphilic,
which can be useful for medical applications. Combining natural and
biodegradable hydrophobic properties of PHB with hydrophilic
oligoEtOx yields a novel amphiphilic natural biopolymer.

Block copolymers containing hydrophilic and hydrophobic
blocks gain the unique properties of both the related blocks.
These different polymer blocks can be arranged linearly or as
brush-type copolymers. The insertion of the hydrophilic polymer
in a block copolymer can improve the colloidal stability of the
biologic active nanoparticles for biomedical applications. Therefore,
the PHB-b-oligoEtOx block copolymer can be a promising
biopolymer for medical applications.
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FIGURE 6
DSC curves of (A) PHB-oligoOx-21 and (B) oligoOx.

FIGURE 7
TGA/DTA curves of the PHB-oligoEtOx-22 conjugate.
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