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Background:Organic dyes often have shorter lifetimes in the excited state, which
is a major obstacle to the development of effective photoredox methods. The
scientific community has shown a great deal of interest in a certain class of
organic chromophores because of their unique characteristics and effectiveness.
One characteristic of themolecules under research is thermally activated delayed
fluorescence (TADF), which is only observed in molecules with a tiny energy gap
(often less than 0.2 eV) between their lowest two excited states, i.e., singlet
excited state (S1) and triplet excited state (T1). The extended singlet excited states
arising from TADF and the simplicity with which their redox potentials may be
altered make the isophthalonitrile family of chromophores an attractive option
for organic photocatalyst applications.

Methods: The Biginelli reaction between β-ketoesters, arylaldehydes, and urea/
thiourea has been used to build a sustainable technique for the production of 3,4-
dihydropyrimidin-2-(1H)-one/thione derivatives. In the present study, the
development of a green radical synthesis approach for this class of
compounds is addressed in depth. As a photocatalyst, a new halogenated
dicyanobenzene-based photosensitizer was employed in this study. As a
renewable energy source activated by a blue LED, it was dissolved in ethanol,
at room temperature in air atmosphere. The primary objective of this research is
to employ a novel donor-acceptor (D-A) based on halogenated cyanoarene that
is affordable, easily available, and innovative.

Findings: The 3DPAFIPN [2,4,6-tris(diphenylamino)-5-fluoroisophthalonitrile]
photocatalyst, a thermally activated delayed fluorescence (TADF), induces
single-electron transfer (SET) in response to visible light, offering a

OPEN ACCESS

EDITED BY

Takashi Ohshima,
Kyushu University, Japan

REVIEWED BY

Vinay S. Sharma,
Gujarat University, India
Raman Khurana,
O2M Technologies, LLC, United States

*CORRESPONDENCE

Farzaneh Mohamadpour,
f_mohamadpour@sums.ac.ir,
mohamadpour.f.7@gmail.com

Ali Mohammad Amani,
amani_a@sums.ac.ir,
aliamani@sums.ac.ir

RECEIVED 25 December 2023
ACCEPTED 15 February 2024
PUBLISHED 01 March 2024

CITATION

Mohamadpour F and Amani AM (2024),
Halogenated dicyanobenzene-based
photosensitizer (3DPAFIPN) as a thermally
activated delayed fluorescence (TADF) used in
gram-scale photosynthesis 3,4-
dihydropyrimidin-2-(1H)-one/thione
derivatives via a consecutive visible-light-
induced electron-transfer pathway.
Front. Chem. 12:1361266.
doi: 10.3389/fchem.2024.1361266

COPYRIGHT

© 2024 Mohamadpour and Amani. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Chemistry frontiersin.org01

TYPE Original Research
PUBLISHED 01 March 2024
DOI 10.3389/fchem.2024.1361266

https://www.frontiersin.org/articles/10.3389/fchem.2024.1361266/full
https://www.frontiersin.org/articles/10.3389/fchem.2024.1361266/full
https://www.frontiersin.org/articles/10.3389/fchem.2024.1361266/full
https://www.frontiersin.org/articles/10.3389/fchem.2024.1361266/full
https://www.frontiersin.org/articles/10.3389/fchem.2024.1361266/full
https://www.frontiersin.org/articles/10.3389/fchem.2024.1361266/full
https://www.frontiersin.org/articles/10.3389/fchem.2024.1361266/full
https://www.frontiersin.org/articles/10.3389/fchem.2024.1361266/full
https://www.frontiersin.org/articles/10.3389/fchem.2024.1361266/full
https://www.frontiersin.org/articles/10.3389/fchem.2024.1361266/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fchem.2024.1361266&domain=pdf&date_stamp=2024-03-01
mailto:f_mohamadpour@sums.ac.ir
mailto:f_mohamadpour@sums.ac.ir
mailto:mohamadpour.f.7@gmail.com
mailto:mohamadpour.f.7@gmail.com
mailto:amani_a@sums.ac.ir
mailto:amani_a@sums.ac.ir
mailto:aliamani@sums.ac.ir
mailto:aliamani@sums.ac.ir
https://doi.org/10.3389/fchem.2024.1361266
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org/journals/chemistry#editorial-board
https://www.frontiersin.org/journals/chemistry#editorial-board
https://doi.org/10.3389/fchem.2024.1361266


straightforward, eco-friendly, and highly efficient process. Additionally, we
determined the 3,4-dihydropyrimidin-2-(1H)-one/thione derivatives turnover
frequency (TOF) and turnover number (TON). It has also been demonstrated
that gram-scale cyclization is a workable method for industrial purposes.

KEYWORDS

dicyanobenzene-based photosensitizer (3DPAFIPN), renewable energy source, visible-
light-induced electron-transfer, photosynthesis, 3, 4-dihydropyrimidin-2-(1H)-one/
thione derivatives

Introduction

In recent literature, photoredox catalysis has served as a
foundation for novel approaches in organic chemistry
(Mohamadpour, 2021a; Mohamadpour, 2023a). The field of
photoredox catalysis, which combines metal-promoted
reactions with photoredox cycles, is gaining significant
attention from both academia and industry (Pinosa et al.,
2022). The main focus of research is the use of inexpensive,
readily manufactured, and efficient organic dyes to help create
novel, powerful, and selective metal-promoted reactions
(Gualandi et al., 2021). In this sector, organic dyes must take
the place of the commonly employed inorganic complexes that
are dependent on Ir(III) and Ru(II). When compared to organic
molecules, these compounds are known for their long excited
state lifetimes, which may tend toward dynamic quenching.
Organic dyes often have shorter lifetimes in the excited state,
which is a major obstacle to the development of effective
photoredox methods. The scientific community has shown a
great deal of interest in a specific class of organic chromophores
because of their unique characteristics and effectiveness (Bryden
and Zysman-Colman, 2021). One characteristic of the molecules
under study is thermally activated delayed fluorescence (TADF),
which is only observed in molecules with a tiny energy gap (often
less than 0.2 eV) between their lowest two excited states, i.e., S1
and T1. Under ambient conditions, the molecules under study
undergo reverse intersystem crossing (RISC), aided by a
thermally activated pathway from the triplet excited state
(T1) to the singlet excited state (S1). This results in a delayed
fluorescence phenomenon that is commonly observed in
systems similar to this one. The present goal is to combine
reduced instruction set computing’s (RISC) exceptional
efficiency with fluorescence’s great quantum yield. 2012 saw a
significant advancement in the field of organic light-emitting
diodes (OLEDs) with the release of a basic work by Adachi
(Uoyama et al., 2012). This approach covers the efficient usage of
dicyanobenzene molecules with suitable photophysical
properties as well as their demonstrated application in
OLEDs. Similar TADF chromophores have been used in other
domains, such as photocatalysis, since these initial discoveries
(Yang et al., 2017; Bryden and Zysman-Colman, 2021). The
extended singlet excited states arising from TADF and the
simplicity with which their redox potentials may be
altered make the isophthalonitrile family of chromophores a
viable option for organic photocatalyst applications
(Speckmeier et al., 2018). 2,4,6-tris(diphenylamino)-5-

fluoroisophthalonitrile (3DPAFIPN) is a chemical that is
widely used in a number of visible light-triggered synthetic
procedures. Intramolecular cyclizations (Flynn et al., 2020;
Wu et al., 2020) and the formation of C–C (Cardinale et al.,
2020; Donabauer et al., 2020), N–C (Zhou et al., 2020), and P–C
(Rothfelder et al., 2021) bonds (Pinosa et al., 2022) are a few
examples of these processes.

Because visible light irradiation has a large energy reserve, is
inexpensive, and can be used to access sustainable energy sources, it
is considered a reliable method for creating organic compounds
(Mohamadpour, 2021b; Mohamadpour, 2021c;
Mohamadpour, 2022a).

It is expected that dihydropyrimidine structures have potent
biological and pharmacological effects (Figure 1). Calcium channel
blockers, antihypertensive effects (Sujatha et al., 2006), anticancer
(Wisen et al., 2008), anti HIV agent (Heys et al., 2000), antibacterial
and antifungal (Ashok et al., 2007), antiviral (Hurst and Hull, 1961),
antioxidative (Magerramow et al., 2006), and anti-inflammatory
(Bahekar and Shinde, 2004).

To produce 3,4-dihydropyrimidin-2-(1H)-one/thione
derivatives, a number of catalysts are employed, including
Na2 eosin Y (Mohamadpour, 2022b), copper (II)sulfamate
(Liu et al., 2012), bakers, yeast (Kumar and Maurya, 2007),
hydrotalcite (Lal et al., 2012), hexaaquaaluminium (III)
tetrafluoroborate (Litvic et al., 2010), TBAB (Ahmed et al.,
2009), copper (II) tetrafluoroborate (Kamal et al., 2007),
[Btto][p-TSA] (Zhang et al., 2015), triethylammonium acetate
(Attri et al., 2017), saccharin (Mohamadpour et al., 2016),
caffeine (Mohamadpour and Lashkari, 2018), zirconium (IV)-
salophen perfluorooctanesulfonate (Li et al., 2020), H3

[PW12O40] (Chopda and Dave, 2020), Dioxane-HCl
(Choudhare et al., 2021), WSi/A15 (Bosica et al., 2021), H4

[W12SiO40] (V Chopda and Dave, 2020), Zr(H2PO4)2
(KÜÇÜKİSLAMOĞLU et al., 2010), and GO-chitosan
(Maleki and Paydar, 2016). Complex procedures, lengthy
reaction times, the use of costly chemicals, and lower yields
are just a few of the variables that significantly impact the
management and disposal of waste. Moreover, it might be
challenging to extract homogeneous catalysts from reaction
mixtures. Due to our interest in the development of
photocatalytic reactions (Mohamadpour, 2022c;
Mohamadpour, 2022d; Mohamadpour, 2023b; Mohamadpour,
2023c; Mohamadpour, 2023d), the current work discusses the
use of photocatalysts in the synthesis of heterocyclic
compounds, emphasizing the use of environmentally
acceptable practices. The investigation indicates that using
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photo-redox catalysts for halogenated organic dyes is also
financially feasible. A potent donor-acceptor (D-A)
cyanoarene is employed as an efficient organo-photocatalyst
by employing the previously outlined technique.

The primary focus of the investigation was 2,4,6-
tris(diphenylamino)-5-fluoroisophthalonitrile (3DPAFIPN)
because of its exceptional photophysical and photochemical
properties. Organic chemists now have access to a wider range

FIGURE 1
The dihydropyrimidine motifs exhibit pharmacological activity.
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of photocatalysts thanks to the development of dicyanobenzene-
based photosensitizers, which demonstrate exceptional
photoelectric activity and thermally activated delayed
fluorescence (TADF).

The current study has investigated 3DPAFIPN, a new
halogenated cyanoarene-based donor-acceptor (D-A)
photocatalyst that works by a sequence of visible-light-induced
electron transfers. The three-condensation domino Biginelli

FIGURE 2
The suitability of the catalyst was evaluated in this study.

SCHEME 1
Light-mediated synthesis of 3,4-dihydropyrimidin-2-(1H)-one/thione derivatives.
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reaction arylaldehydes with urea/thiourea and β-ketoesters are used
in this procedure. In addition, this process employs blue LED, a
sustainable and environmentally friendly energy source, in a room-
temperature, ethanol medium as a green solvent. Regardless of the
timely and effective completion of all obligations and adherence to
the agreed-upon budget.

Experimental

General

To find each compound’s melting point, an electrothermal
instrument, a 9,100, was employed. 1HNMR spectra were
collected using Bruker DRX-300 Avance equipment with DMSO-
d6. Materials and reagents were acquired from Acros, Merck, and
Fluka and utilized right away.

The sustainable method for 3,4-
dihydropyrimidin-2-(1H)-one/thione
derivatives (4a-t)

At room temperature in EtOH (3 mL), urea/thiourea (2,
1.5 mmol), ethyl/methyl acetoacetate (3, 1.0 mmol), and
arylaldehyde derivatives (1, 1.0 mmol) were stirred with
3DPAFIPN (0.2 mol%) and blue light (5 W) (Scheme 1). We
used thin-layer chromatography (TLC) to track the reaction’s
development. Without requiring any additional purification

procedures, the pure substance was obtained by screening,
washing with water and ethanol, and crystallizing the crude
solid from ethanol following the reaction. The Supplementary
Material file contains a report on spectroscopic data.

Results and discussion

The reaction was optimized in the current study using a
3 mL ethanol medium containing 1.0 mmol of benzaldehyde,
1.5 mmol of urea, and 1.0 mmol of ethyl acetoacetate. Without
the aid of a photocatalyst, a trace quantity of 4j was produced
for 20 min at room temperature in the presence of 3 mL of
EtOH. The pace of reaction was enhanced by the inclusion
of photocatalysts. The compounds include 3DPAFIPN,
3DPA2FBN, DCB, DCA, DCN, and diphenylamine, as
indicated by the data in Figure 2

The present technique can create 4j with varying yields. The
aforementioned data showed that 3DPAFIPN’s operational
efficacy has increased. A reaction with 0.2 mol% 3DPAFIPN
yielded a 97% yield, based on the data in Table 1, entry 2. Results
for solvent-free conditions, EtOAc, DMSO, toluene, H2O,
EtOH, MeOH, CHCl3, CH3CN, THF, and are displayed in
Table 2. In the presence of EtOH, the reaction was
demonstrated to have a notably enhanced rate and
subsequent yield. Based on the data in Table 2, especially
entry 5, a 97% yield was achieved. Table 2 lists the light
sources that have been used in studies to assess the impact of
blue light on production. In the assessment that was conducted

TABLE 1 This table optimizes the photocatalyst for the synthesis of 4ja.

Entry Photocatalyst Solvent (3 mL) Time (min) Isolated Yields (%)

1 3DPAFIPN (0.1 mol%) EtOH 5 84

2 3DPAFIPN (0.2 mol%) EtOH 5 97

3 3DPA2FBN (0.2 mol%) EtOH 5 82

4 DCB (0.2 mol%) EtOH 5 19

5 DCA (0.2 mol%) EtOH 5 27

6 DCN (0.2 mol%) EtOH 5 22

7 Diphenylamine (0.2 mol%) EtOH 5 31

8 3DPAFIPN (0.3 mol%) EtOH 5 97

9 — EtOH 20 trace

aReaction conditions: several photocatalysts were combined with benzaldehyde (1.0 mmol), ethyl acetoacetate (1.0 mmol), and urea (1.5 mmol) at room temperature.
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without the use of an illumination tool, the 4j was discovered in
extremely little amounts. The results of this investigation
demonstrate that 3DPAFIPN and visible light are essential
for the effective synthesis of product 4j. The top designs were
determined using blue light-emitting diode (LED) intensities of 3 W,
5 W, and 7 W. The results of the investigation showed that the
greatest results were obtained when blue light-emitting diodes
(LEDs) with a 5 W power output were used. The outcomes of
studies conducted on a range of substrates under optimal
conditions are displayed in Table 3; Scheme 1 (and also
Supplementary Table S1). The benzaldehyde substituent has no
effect on the reaction’s result (Table 3). Both polar and halide
substitutions were permitted in this reaction. In the current state
of the reaction, reactions involving both electron-donating and
electron-withdrawing functional groups are acceptable. Aromatic
aldehydes that are ortho, meta, and para-substituted have a very
high yield potential. The reactions of methyl and ethyl acetoacetate
are comparable. Urea and thiourea have comparable reactivities.

Table 4 presents the turnover number (TON) and turnover
frequency (TOF) as objective value measures. Yield/Amount of
Catalyst (mol) and Yield/Time/Amount of Catalyst (mol) are

two distinct forms of yield that are commonly expressed as TON
and TOF, respectively, in academic literature. The catalyst
performance may be enhanced by higher turnover number
(TON) and turnover frequency (TOF) values as they need less
catalyst to provide the required yields. A TOF of 97 and a TON of
485 are considered high values for 4j. In relation to 4s, a TON of
480 is likewise regarded as high, although a TOF of 96 is
deemed excessive. The aim of the inquiry was to reduce
reaction times, increase production, and utilize the fewest
amount of catalysts.

Gram-scale synthesis

The main emphasis of current research is whether the
aforementioned chemicals can be produced on a gram-scale for
use in pharmaceutical (R&D) procedures. In one experiment,
50 mmol of 4-methoxybenzaldehyde, 75 mmol of thiourea, and
50 mmol of ethyl acetoacetate were utilized. To retrieve the final
product, a standard filtering process was applied after the 6-min
reaction period. The 1HNMR spectroscopy results show that the

TABLE 2 The table for optimizing solvent and visible light in the synthesis of 4ja.

Entry Light source Solvent (3 mL) Time (min) Isolated yields (%)

1 Blue light (5 W) EtOAc 5 68

2 Blue light (5 W) DMSO 25 29

3 Blue light (5 W) toluene 25 26

4 Blue light (5 W) H2O 6 71

5 Blue light (5 W) EtOH 5 97

6 Blue light (5 W) MeOH 8 59

7 Blue light (5 W) — 8 46

8 Blue light (5 W) CHCl3 30 17

9 Blue light (5 W) CH3CN 5 75

10 Blue light (5 W) THF 25 15

11 White light (5 W) EtOH 5 82

12 Green light (5 W) EtOH 5 90

13 Blue light (3 W) EtOH 5 89

14 Blue light (7 W) EtOH 5 97

15 — EtOH 20 trace

aReaction conditions: a mixture of urea (1.5 mmol), benzaldehyde (1.0 mmol), and ethyl acetoacetate (1.0 mmol) was added to 0.2 mol% 3DPAFIPN.
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TABLE 3 Using 3DPAFIPN, a halogenated dicyanobenzene-based photosensitizer, 3,4-dihydropyrimidin-2-(1H)-one/thione derivatives be produced.

(Continued on following page)
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chemical compound in question exhibits a high degree of
spectroscopic purity.

Control experiments

Scheme 2 displays the outcomes of the control experiments
used to elucidate the process utilizing the visible-light-induced.
The synthesis of benzylideneurea (I) in the first stage and its
condensation with ethyl acetoacetate (3) in the second are
considered to be the two steps of the Biginelli reaction. Under
standard circumstances (3DPAFIPN in EtOH under blue LED),
benzaldehyde (1) and urea (2) were condensed by reducing H2O to
produce benzylideneurea (I). As a consequence, in 97% of

reactions between the iminium intermediate (I) and cation
radical (II), under normal conditions, the expected product 4j
was generated. Even though the reaction was carried out in total
darkness, there was still a trace of product 4j created. The results of
this experiment indicate that Scheme 3 presents a convincing and
rational chemical process.

The suggested mechanism

Scheme 3 provides a thorough description of the suggested
methodology. Using single-electron transfer (SET) processes, the
cyanoarene organic dye 3DPAFIPN has been utilized to develop
photocatalytic reactions that use visible light energy as a

TABLE 3 (Continued) Using 3DPAFIPN, a halogenated dicyanobenzene-based photosensitizer, 3,4-dihydropyrimidin-2-(1H)-one/thione derivatives be
produced.
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SCHEME 2
To comprehend the condensations of urea (2, 1.5 mmol), ethyl acetoacetate (3, 1.0 mmol), and benzaldehyde (1, 1.0 mmol), significant control tests
are conducted.

TABLE 4 The following calculated were used to determine the turnover frequency (TOF) and turnover number (TON).

Entry Product TON TOF Entry Product TON TOF

1 4a 480 96 11 4k 460 76.6

2 4b 465 93 12 4l 485 121.2

3 4c 475 79.1 13 4m 460 76.6

4 4d 480 120 14 4n 440 62.8

5 4e 445 63.5 15 4o 445 74.1

6 4f 455 75.8 16 4p 460 115

7 4g 485 121.2 17 4q 455 75.8

8 4h 465 77.5 18 4r 470 78.3

9 4i 450 64.2 19 4s 480 96

10 4j 485 97 20 4t 475 118.7

Frontiers in Chemistry frontiersin.org09

Mohamadpour and Amani 10.3389/fchem.2024.1361266

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2024.1361266


sustainable resource. Utilizing visible light expedites
the procedure. The ground-state 3DPAFIPN and the
intermediate (A) regenerate as a result of the electron transfer
(ET) activity between the arylaldehydes (1) and the 3DPAFIPN
radical anion. A reactive iminium intermediate (B) is formed
when this radical anion (A) is added nucleophilically to urea/
thiourea (2). The single-electron transfer (SET) technique is
utilized to enhance 3DPAFIPN*, which is produced by visible
light, and produce the cation radical (D). The iminium
intermediate (B) is attacked by the cation radical (D), leading
to the formation of the cyclized dehydrated (4).

Comparison of the catalytic activity of
different catalysts with 3DPAFIPN

Table 5 compares how well various catalysts work to
encourage the synthesis of 3,4-dihydropyrimidin-2-(1H)-one/
thione derivatives. The process in question precipitates rapid
chemical changes without generating any waste by using tiny
quantities of photocatalyst. When there are quantifiable light
wavelengths present, this approach can be used. At multigram
scales, atom-economical processes are very efficient and have a
big impact on the industrial domain.

SCHEME 3
This is a detailed illustration of the synthetic procedure that yields 3,4-dihydropyrimidin-2-(1H)-one/thione derivatives.
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Conclusion

We have green photosynthesized 3,4-dihydropyrimidin-2-(1H)-
one/thione derivatives from arylaldehydes, β-ketoesters, and urea/
thiourea by means of the radical-induced Biginelli reaction. In the
current work, a new halogenated dicyanobenzene-based
photosensitizer; 3DPAFIPN was employed as a donor-acceptor
(D-A) photocatalyst. It works by causing a sequence of electron
transfers that are triggered by visible light. Blue light-emitting diode
(LED) technology has been demonstrated to generate a sustained
energy-generating mechanism at room temperature and in an air
environment when used in an ethanol medium. The suggestedmethod
has significant advantages for the field of chemical synthesis. Fast
reaction times, the removal of hazardous solvents, higher product
yields, streamlined reaction mechanisms, and the utilization of a
sustainable energy source are some of these benefits. The separation
method does not need chromatography. By preserving the result, it is
possible to accelerate a multigram-scale reaction of model substrates.
As a result, the method may be used in an environment that promotes
long-term ecological and financial sustainability.
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TABLE 5 The results of assessing the various catalysts’ catalytic efficacy for the synthesis of 4ja.

Entry Catalyst Conditions Time/Yield (%) References

1 Bakers, yeast Room temperature 1,440 min/84 Kumar and Maurya (2007)

2 Hydrotalcite Solvent-free, 80°C 35 min/84 Lal et al. (2012)

3 [Al(H2O)6](BF4)3 MeCN, Reflux 1,200 min/81 Litvic et al. (2010)

4 Cu(BF4)2.xH2O Room temperature 30 min/90 Kamal et al. (2007)

5 [Btto][p-TSA] Solvent-free, 90°C 30 min/96 Zhang et al. (2015)

6 triethylammonium acetate Solvent-free, 70°C 45 min/90 Attri et al. (2017)

7 saccharin Solvent-free, 80°C 15 min/88 Mohamadpour et al. (2016)

8 caffeine Solvent-free, 80°C 25 min/91 Mohamadpour and Lashkari (2018)

9 3DPAFIPN Blue LED, EtOH, rt 5 min/97 This work

aThe synthesis requires three ingredients: urea, ethyl acetoacetate, and benzaldehyde.
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