AUTHOR=Wu Zhifeng , Zhang Qi , Yu Hongxiao , Fu Lili , Yang Zhen , Lu Yan , Guo Zhongya , Li Yasen , Zhou Xiansheng , Liu Yingjie , Wang Le TITLE=Quantitative analysis of pyrolysis characteristics and chemical components of tobacco materials based on machine learning JOURNAL=Frontiers in Chemistry VOLUME=12 YEAR=2024 URL=https://www.frontiersin.org/journals/chemistry/articles/10.3389/fchem.2024.1353745 DOI=10.3389/fchem.2024.1353745 ISSN=2296-2646 ABSTRACT=
To investigate the quantitative relationship between the pyrolysis characteristics and chemical components of tobacco materials, various machine learning methods were used to establish a quantitative analysis model of tobacco. The model relates the thermal weight loss rate to 19 chemical components, and identifies the characteristic temperature intervals of the pyrolysis process that significantly relate to the chemical components. The results showed that: 1) Among various machine learning methods, partial least squares (PLS), support vector regression (SVR) and Gaussian process regression (GPR) demonstrated superior regression performance on thermogravimetric data and chemical components. 2) The PLS model showed the best performance on fitting and prediction effects, and has good generalization ability to predict the 19 chemical components. For most components, the determination coefficients