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To investigate the quantitative relationship between the pyrolysis characteristics
and chemical components of tobacco materials, various machine learning
methods were used to establish a quantitative analysis model of tobacco. The
model relates the thermal weight loss rate to 19 chemical components, and
identifies the characteristic temperature intervals of the pyrolysis process that
significantly relate to the chemical components. The results showed that: 1)
Among various machine learning methods, partial least squares (PLS), support
vector regression (SVR) and Gaussian process regression (GPR) demonstrated
superior regression performance on thermogravimetric data and chemical
components. 2) The PLS model showed the best performance on fitting and
prediction effects, and has good generalization ability to predict the 19 chemical
components. For most components, the determination coefficients R2 are above
0.85. While the performance of SVR and GPR models was comparable, the R2 for
most chemical components were below 0.75. 3) The significant temperature
intervals for various chemical components were different, and most of the
affected temperature intervals were within 130°C–400°C. The results can
provide a reference for the materials selection of cigarette and reveal the
possible interactions of various chemical components of tobacco materials in
the pyrolysis process.

KEYWORDS

tobacco material, chemical components, thermogravimetric analysis, machine learning,
characteristic temperature range

1 Introduction

The chemical components of tobacco raw materials affects the quality of tobacco and its
products (Thielen et al., 2008). The conventional chemical components of tobacco rawmaterials
such as total sugars, reducing sugars, nicotine, total nitrogen, potassium and chlorine are widely
used in the formulation design of cigarette (Xia et al., 2009; Chen et al., 2021), quality control of
rawmaterial (Tang et al., 2020; Losso et al., 2022), and grading of rawmaterial (Krüsemann et al.,
2019; Kurt, 2021) At present, the continuous flow analyzer method is mainly used to detect the
content of conventional chemical components of tobacco. However, this method is complex,
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time-consuming, and environmental pollution caused by the
consumption of a large number of organic reagents during the
detection process (Peng et al., 2022).

In view of the problems of long cycle time and poor reproducibility
of conventional chemical content determination, Near Infrared
Reflectance Spectroscopy (NIRS) has become an important method
for the quantitative analysis of tobacco chemical components due to its
simple sample preparation and fast analysis speed (Duan et al., 2012).
The combination of chemical compositional measures with
spectroscopic methods capable of characterizing the chemical
information of a sample has been widely used in many practical
applications. For example, Bi et al. (2015) combined infrared spectral
data from petrol and tobacco with machine learning algorithms to show
superior prediction performance for octane number in petrol and
nicotine content prediction in tobacco, respectively. Zhang et al.
(2008) analyzed the near-infrared spectral differences of tobacco
samples, it was found that the support vector machine method can
be effective for rapid and accurate analysis of conventional chemical
components in tobacco. Wei et al. (2022) utilized NIRS and machine
learning method to realize online monitoring of moisture, starch and
other components of tobacco raw material.

The pyrolysis of tobacco, as a special type of biomass, is a very
complex process due to the simultaneous presence of cellulose,
hemicellulose, lignin and extractives in different ratios, resulting in
multiple simultaneous reactions occurring in series parallel (Balsora
et al., 2022; Guo et al., 2022). Tobacco components are degraded by
different mechanisms and pathways in different temperature ranges.
Pyrolysis as a thermochemical conversion process can be used to
extract valuable chemicals from tobacco biomass. In addition to the
NIR method discussed earlier, Thermogravimetry Analysis (TGA) is
also widely used in classification, sensory quality evaluation and
aroma type judgment of tobacco raw material (Guo et al., 2019;
Danieli et al., 2022; Heng et al., 2022). In addition, pyrolysis data were
used to predict pyrolysis products and to model kinetics in many
previous studies. For example, Sun et al. (2016) developed and trained
an artificial neural network (ANN) to investigate the effects of
operating temperature, biomass particle size and space velocity on
the pyrolysis products of pine shavings, and good agreement was
achieved between the experimental and simulation results. Yin et al.
(2021) classified tobacco raw materials and growth region using TGA
data information sources by the SVM method, and achieved high-
precision classification of tobacco raw material grade and
growth region.

Based on the pyrolysis characteristics of tobacco, the biggest
obstacle to building fast and accurate models for quantitative
chemical composition analysis is the complex, non-linear
relationship between the pyrolysis behavior of tobacco and its
complex chemical composition (Strandberg et al., 2017). The
potential of machine learning methods to reveal the relationship
between several independent variables and several dependent
variables is considerable (Jordan and Mitchell, 2015; Dobbelaere
et al., 2021). Machine learning methods have been shown to be
powerful in dealing with non-linear problems, for example, by using
Partial Least Squares (PLS) to model the fitted data or by putting
complex relationships into black boxes to build neural network models,
both of which are effective in solving non-linear problems associated
with complex data. This has been demonstrated in many chemical
analyses related to spectra. However, it is rarely reported the

quantitative analysis of pyrolysis characteristics and chemical
components of tobacco raw materials by TGA methods. Based on
the above background, the aim of this study is to model the quantitative
relationship between pyrolysis properties and chemical composition of
tobacco using machine learning methods. Specifically, 157 tobacco
samples were first analyzed chemically and thermogravimetrically,
respectively. Then the DTG data and chemical composition were
used as inputs to establish quantitative relationships using different
machine learningmodels, and the preferredmodels were used to screen
the characteristic temperature intervals.

The study has the following novelty. Firstly, it is the first to directly
model the quantitative analysis between the pyrolysis behavior of
tobacco and 19 types of chemical information. Second, this paper
finds the best model applicable between complex thermogravimetric
data and chemical information by comparing different machine
learning methods. Third, the temperature intervals with high
correlation between different chemicals corresponding to the
pyrolysis reaction process are screened out, which can provide a
basis for the possible synergistic, coupling and other interaction effects
of different chemicals in the pyrolysis process.

2 Materials and methods

2.1 Materials and sample preparation

The 157 tobacco samples originated from Brazil, Zimbabwe, and
104 counties in six provinces in China’s major tobacco producing
regions, including Henan, Yunnan, and Guizhou provinces. The
tobacco collection years included 2017, 2018, and 2019. Tobacco can
be classified into 35 grades according to the national standard GB
2635-1992.After being placed in a constant temperature and
humidity chamber with a temperature of (22 ± 1) °C and relative
humidity of (60 ± 2)% for 48 h to reach equilibrium, the tobacco leaf
samples were pulverized by means of a high-speed grinder and
screened by a 60 mesh (250 μm) sieve for further use.

A total of 157 tobacco samples were studied. The chemical
information included total phytoaloids, reducing sugars, total sugars,
total nitrogen, potassium, chloride, starch, dichloromethane extract,
solanasol, phosphate, magnesium, calcium, polyphenols, refractory
acid, total amino acids, amadori compounds, neophytadiene, and
PH. Tobacco samples were treated as solution according to tobacco
industry standards and then analysed directly for total phytoaloids,
reducing sugars, total sugars, total nitrogen, potassium, chloride, starch,
dichloromethane extract, phosphate, magnesium, calcium, refractory
acids, total amino acids, amadori compounds, neophytadiene, using a
flow analyser (Alliance-Futura). The content of polyphenols, solanasol
were determined using a liquid chromatograph. PH values were
measured by a Mettler-Toledo Seven Compact PH meter.

2.2 Methods

2.2.1 Thermogravimetric analysis
Thermogravimetric analyses of tobacco samples were finished by

using discovery thermogravimetric Analyzer produced by TA
Instruments. Weighing (10.0 ± 0.5) mg tobacco powder for the
thermogravimetric test, the flow rate of purge gas (nitrogen) in the
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reaction zone of the thermogravimetric analyzer was set at 30 mL/min,
and the flow rate of protection gas (nitrogen) was set at 20 mL/min. The
samples were heated up from 40°C to 105°C at a rate of 10°C/min and
kept for 30 min to remove the water in the samples, then heated up to
800°C at an elevated temperature rate of 10°C/min. During the test,
120 data points were recorded per minute for each sample, and the
time-dependent mass loss data in the range of 105–800°C were selected.
The correspondingDTG results were then obtained by normalizing and
differencing the temperature-based TGA curves.

2.2.2 Machine learning methods
Partial Least Squares Regression (PLS) is a multivariate statistical

analysis method that extracts the latent variables with the highest
correlation to the dependent variable by reducing the dimensionality of
the independent variables, and then performs regression analysis on
these latent variables. Compared to Principal Component Regression
(PCR), PLS combines the advantages of multivariate linear regression
methods and considers the relationship between independent variables
and dependent variables in the selection of latent components, making
it effective in handling high-dimensional data. Based on Bayesian
methods, Gaussian Process Regression (GPR) is a non-parametric
regression method. GPR uses a Gaussian process as a prior
distribution of the data and updates the posterior distribution based
on observed data to predict the new input. Support Vector Regression
(SVR) is a regression method based on Support Vector Machines,
minimizing loss and maximizing margin to derive the model. SVR can
perform linear regression in a multidimensional feature space and
achieve non-linear regression through the use of kernel functions.
Random Forest Regression (RF) is a regression algorithm based on
ensemble learning that constructs multiple decision trees and averages
their predictions to obtain the final result. Neural Networks (NN)
estimate or approximately estimate functions by connecting a large
number of neurons, which can handle high-dimensional data and
adapt to non-linear or complex data relationships.

2.2.3 Model evaluation index
There are various metrics for machine learning to assess the

effectiveness of model fitting. RootMean Squared Error (RMSE) and
coefficient of determination (R2) are usually used to evaluate the
regression models. RMSE measures the degree of deviation between
the predicted values and the actual values, where a smaller RMSE
indicates a higher level of model fitting accuracy. R2 measures the
extent to which the model can explain the variability in the data, also
known as the coefficient of determination. It ranges from 0 to 1. The
values closer to 1 indicate an improved fit of the model to the data,
and closer to 0 indicate an inferior fit.

RMSE �
�������������
1
n
∑n

i�1 yi − ŷi( )2√

R2 � 1 − ∑n
i�1 yi − ŷi( )2∑n
i�1 yi − �y( )2

2.3 Data processing

In the analysis of pyrolysis characteristic parameters of tobacco
leaf samples, it is necessary to confirm the reliability of the pyrolysis

characteristic data, which relies on a good repeatability of
thermogravimetric experiments. Figure 1 illustrates the DTG
curves of three repeated experiments carried out on a particular
sample, and it can be visually observed that there are no significant
differences between the three experiments. In addition, the
differences between the three experiments are described
quantitatively using the Normalized Root Mean Squared Error
(NRMSE). NRMSE between trial 1 and trial 2 is 1.85%, and
NRMSE between trial 1 and trial 3 is 0.57%. It indicates that
there is a good repeatability for the thermogravimetric
experiments, which is sufficient to meet the experimental
requirements.

Since the temperature intervals of the original differential
thermogravimetric data (DTG) are not equal, interpolation is
required to obtain thermogravimetric data from different tobacco
samples at the same temperature points. The temperature range of
the interpolation is from 105°C to 900°C, with a temperature interval
of 0.1°C. The DTG curves of 157 samples are shown in Figure 2, with
a total of 8436 points obtained for each sample. As can be seen from
Figure 2, in general, the DTG curves of the 157 tobacco samples were
similar in shape. The differences in the DTG curves between the
tobacco samples were mainly reflected before 500°C, with less
variability in the rest of the temperature range. This is because
there are two distinct stages in the pyrolysis process of tobacco. The
first stage is 100°C–230°C, this stage is mainly monosaccharides, free
amino acids and other thermally unstable, volatile components
degradation. The second stage is at 230°C–500°C, which is mainly
the pyrolysis of biological components such as hemicellulose,
cellulose and lignin of tobacco species (Barontini et al., 2013; Ma
et al., 2022).

For each chemical index, the maximum and minimum values
were counted, then the distribution range was divided into a number
of intervals, the number of samples in each interval was counted, and
the distribution probability was calculated to make a densities plot of
the distribution of the chemical content of tobacco samples. Figure 3
shows the distribution densities of 19 chemical constituents of
157 tobacco samples. The horizontal axis represents the interval
of content values, and the vertical axis represents the probability

FIGURE 1
Repeatability comparison chart.
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density distribution. It can be seen from the figure that the
distributions are not uniform for various chemical constituents.

The linear correlation coefficients among 19 chemical
components of 157 tobacco samples are shown in Figure 4. The
values in the heat map reflect the strength of the correlation between
the chemical components (the higher the value, the stronger the
correlation). It can be seen that the correlation coefficients between
most components are very low, and the correlation coefficients
above 0.9 are only total sugar, reducing sugar, methylene chloride
extract, solanesol, calcium and nonvolatile acid. These results
suggest that each chemical components needs to be modelled
independently due to the dependence between different chemical
components is minimal. In the end, we considered all 19 chemical
information as features as inputs for machine learning.

3 Results and discussion

3.1 Performance comparison of different
machine learning models

To explore quantitative analysis models between DTG data and
chemical components, Partial Least Squares (PLS), Support Vector
Regression (SVR), Gaussian Process Regression (GPR), Multiple
Linear Regression (MLS), Random Forest (RF) and Shallow Neural
Network (SNN) were used to establish fitting models for the
representative chemical components of tobacco materials,
including total alkaloids, reducing sugars, and total nitrogen. The
regression performance of each model on the training set and
validation set are shown in Table 1. It can be observed that for

FIGURE 2
DTG curves of 157 samples.

FIGURE 3
Density distribution of 19 chemical components in 157 samples.
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the three chemical components, the R2 of the MPL, RF and RNN
model training sets and test sets are below 0.7, indicating poor fitting
performance for these three models on the high-dimensional DTG
data. Among them, the R2 of MPL for the three chemical
components are all less than zero, indicating that linear
regression cannot fit DTG data effectively. On the other hand,
the R2 of the training set and test set of the PLS, SVR and GPR
models are all above 0.7, indicating good fitting and prediction
performance relatively. Therefore, PLS, SVR and GPR models are
selected to build quantitative analysis models between DTG data and
19 chemical components for comparison in the following analysis.

3.2 Comparison of fitting performance for
different chemical components

It is crucial to select the number of latent variables in the PLS
modeling process. The model will be overfitted when there are too
many latent variables, while selecting too few latent variables will
result in loss of sample information and insufficient model fitting.
Therefore, the number of latent variables that cumulative
contribution rate of each variable reached 90% was set in the
experiment, and considering the root mean square error of cross-
validation (RMSECV), the number of latent variables with a

FIGURE 4
Chemical components correlation coefficient matrix.

TABLE 1 Performance comparison of different models.

Components PLS SVR GPR MPL RF SNN

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE

Training set Total phytoaloids % 0.97 0.098 0.73 0.334 0.77 0.306 −0.18 0.615 0.59 0.3625 0.46 0.414

Reducing sugar % 0.95 0.839 0.76 1.822 0.78 1.844 −0.87 5.464 0.67 2.3032 0.31 3.324

Total nitrogen % 0.90 0.090 0.85 0.110 0.85 0.11 −0.9 0.381 0.57 0.1817 0.30 0.231

Test set Total phytoaloids % 0.87 0.299 0.71 0.278 0.76 0.267 −1.24 2.619 0.41 0.684 0.33 0.874

Reducing sugar % 0.93 2.036 0.71 2.021 0.73 1.922 −3.52 8.429 0.53 2.814 0.18 4.924

Total nitrogen % 0.88 0.136 0.81 0.129 0.80 0.132 −2.67 1.727 0.48 0.205 0.21 0.289
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TABLE 2 Comparison results of performance parameters of each model.

Components Model Training set Test set Latent variables

R2 RMSE R2 RMSE

Total phytoaloids % PLS 0.97 0.098 0.87 0.299 18

SVR 0.73 0.334 0.71 0.278 —

GPR 0.77 0.306 0.76 0.267 —

Reducing sugar % PLS 0.95 0.839 0.93 2.036 16

SVR 0.76 1.822 0.71 2.021 —

GPR 0.76 1.721 0.73 1.922 —

Total sugar % PLS 1.00 0.328 0.88 1.743 24

SVR 0.79 2.028 0.72 2.249 —

GPR 0.80 1.994 0.75 1.532 —

Total nitrogen % PLS 0.90 0.090 0.88 0.136 6

SVR 0.85 0.110 0.81 0.129 —

GPR 0.85 0.110 0.80 0.132 —

Potassium % PLS 0.89 0.273 0.86 0.104 8

SVR 0.68 0.296 0.66 0.297 —

GPR 0.71 0.280 0.68 0.207 —

Chlorine % PLS 1.00 0.014 0.89 0.123 18

SVR 0.53 0.139 0.48 0.150 —

GPR 0.55 0.136 0.47 0.150 —

PH PLS 0.90 0.044 0.89 0.083 14

SVR 0.67 0.079 0.66 0.077 —

GPR 0.70 0.083 0.68 0.059 —

Starch % PLS 0.98 0.152 0.87 0.633 22

SVR 0.68 0.716 0.63 0.707 —

GPR 0.65 0.741 0.63 0.708 —

Dichloromethane extract % PLS 0.93 0.216 0.89 0.488 25

SVR 0.50 1.234 0.46 1.624 —

GPR 0.47 1.492 0.43 1.788 —

Solanesol mg/g PLS 0.97 0.606 0.90 2.106 16

SVR 0.53 2.395 0.49 2.085 —

GPR 0.59 2.239 0.59 1.634 —

Sulfate mg/g PLS 0.92 1.208 0.87 2.516 12

SVR 0.67 2.289 0.60 2.202 —

GPR 0.79 1.815 0.78 2.057 —

Phosphate mg/g PLS 0.90 0.275 0.84 0.245 10

SVR 0.61 0.299 0.58 0.289 —

GPR 0.65 0.281 0.63 0.187 —

Magnesium % PLS 0.99 0.009 0.78 0.073 26

(Continued on following page)
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cumulative contribution rate of about 90% and relatively small
RMSECV were selected comprehensively.

When establishing the SVR model, the cross-validation loss is
used as the goal to find the optimal penalty parameters. Considering
that the GPR model performance of different kernel functions may
be different, the square exponential kernel (SE), exponential kernel
(Exp) and rational quadratic kernel (RQ) were selected to build
models respectively, and the performance average of the three
models were taken as the output result of the GPR model.

The performance comparison of the PLS, SVR and GPR models
is shown in Table 2. It can be observed that for the 19 components
predicted, the PLS model has higher R2 values (0.76–0.99) and most
of them are above 0.85. Moreover, it has lower RMSE for most
chemical components, indicating its optimal performance. For
19 chemical components, the performance of SVR and GPR
models are similar, with only a few R2 values above 0.8 and most
R2 values below 0.75, but some RMSE values are smaller than PLS.
The R2 variation between the training sets and test sets of PLS is
small, indicating that the model effectively balances fitting
performance and generalization ability when selecting the
number of latent variables.

Figure 5 shows the fitting performance of the three models for
each chemical composition in the training and test sets (only three
compositions are listed, the details of the models for the other

chemical compositions are presented in Table 2). Where the x-axis is
the true value, the y-axis is the model prediction, and the black
diagonal line is the best fit line. It can be seen that of the three
constituent predictions listed, compared to the other two models,
the training and test sets of the PLS model have a relatively high and
high agreement between the prediction results and the ground truth,
which is closer to the black diagonal line. This indicates excellent
fitting and prediction performance with high accuracy. In addition,
it can be seen that under the three models, the difference in R2 and
RMSE between the test set and the training set is not large, indicating
that the models are not overfitted. For the PLS model in the vast
majority of the above discussion shows that the PLS model used can
effectively characterize the complex relationship between DTG
curves and the chemical composition of tobacco materials. The
PLS model with higher accuracy can be further used to investigate
the relationship between the content of other components and the
pyrolysis process.

3.3 Characteristic temperature
interval analysis

PLS is a supervised multivariate statistical analysis method that
combines the variability information of the dependent variable to

TABLE 2 (Continued) Comparison results of performance parameters of each model.

Components Model Training set Test set Latent variables

R2 RMSE R2 RMSE

SVR 0.44 0.066 0.38 0.082 —

GPR 0.48 0.063 0.41 0.076 —

Calcium % PLS 0.97 0.119 0.86 0.312 15

SVR 0.48 0.402 0.43 0.494 —

GPR 0.55 0.369 0.49 0.399 —

Polyphenols PLS 0.80 2.634 0.76 2.554 8

SVR 0.48 2.944 0.44 2.972 —

GPR 0.36 3.243 0.28 2.073 —

Refractory acid PLS 0.99 2.214 0.95 7.702 19

SVR 0.78 9.231 0.75 7.828 —

GPR 0.81 7.518 0.79 6.837 —

Amino acids PLS 1.00 0.093 0.99 1.899 30

SVR 0.75 1.707 0.72 1.925 —

GPR 0.75 1.717 0.73 1.253 —

Amadori compounds PLS 0.99 0.425 0.96 1.680 20

SVR 0.81 1.645 0.75 1.864 —

GPR 0.78 1.758 0.76 1.777 —

Neophytadiene mg/g PLS 0.90 0.082 0.78 0.105 11

SVR 0.42 0.101 0.33 0.089 —

GPR 0.37 0.106 0.34 0.064 —
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extract latent variables. It can describe the degree and direction of
the dependence of each latent variable on the original variables. The
VIP (Variable importance in the projection) scores can be obtained
to evaluate the contribution and explanatory ability of each variable
to the model by calculating the variable coefficients, model weights
and residuals of PLS regression. A higher VIP score indicates a more
important variable that has a greater impact on the overall model.
Given the good performance of the PLS regression model,
calculating the VIP scores of the PLS regression model for the
DTG of tobacco materials and the content of chemical components
can help identify and select temperature points that contribute to the
prediction of chemical component content significantly. This allows
for the identification of temperature ranges that influence the
chemical component content during pyrolysis. Generally, a VIP
score greater than 1 indicates that it has important influence on
the model.

The VIP score plot of the temperature points for chemical
components is shown in Figure 6, which shows the VIP score
plots for total alkaloids, reducing sugars and total nitrogen. The
x-axis represents the temperature points, starting from 105°C. From
the figure, it can be observed that the VIP scores of the temperature
points for total alkaloids greater than 1 appeared within the range of
135°C–263°C and 332°C–385°C, and four distinct peaks appeared in

the range of 135°C–263°C. The VIP scores of the temperature points
for total nitrogen greater than 1 appeared within the range of
153°C–246°C and 260°C–399°C. The VIP scores of the
temperature points for reducing sugars greater than 1 appeared
within the range of 150°C–390°C, 510°C–520°C, and 688°C–701°C,
and the peaks occurred near the temperature points of 135°C, 215°C,
345°C, respectively. It indicates that the pyrolysis rate in these
temperature ranges has a significant impact on the regression
model for the corresponding component content, especially near
the peaks.

The pyrolysis temperature ranges of VIP scores greater than
1 for the 19 chemical components are shown in Table 3. It indicates
that different temperature ranges have significant influences on the
regression of different components of tobacco materials. The
temperature ranges of VIP scores greater than 1 for chemical
components are mostly within the range of 130°C–400°C, and a
few of them are above 400°C. Moreover, the temperature ranges
above 400°C are relatively short, indicating that the temperature
ranges that have the most impact on the regression of chemical
components of tobacco materials are mostly below 400°C.
Combined with the samples DTG curve in Figure 2, it can be
seen that the differences in the DTG curves between samples are
mostly reflected within the first 400°C. This means that the DTG

FIGURE 5
The prediction results of each model.
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curves before 400°C contain the main information, and the PLS
regression model effectively captures the characteristics of the
DTG curves.

To validate the effectiveness of the selected temperature ranges, the
characteristic temperature ranges were used as independent variables to
establish PLS models for total alkaloids, reducing sugars and total
nitrogen. The results are shown in Table 4. Compared with the full
temperature data as input, the regression performance of the models
slightly decreased after the feature temperature range selection. The R2

reduction of the training set and test set of three chemical components
are within 0.1. For total alkaloids, the difference inR2 between the test set
and training set decreased after feature selection, which may be due to
overfitting in the original model. For reducing sugars and total nitrogen,
the difference in R2 between the test set and training set increased after
feature selection, indicating that valuable information in the independent
variables was lost during the selection of the feature temperature ranges.
Overall, the performance of the PLS models after feature temperature
range selection did not change significantly compared with the original
models, suggesting that the selected feature temperature ranges contain
the main information of samples DTG curves.

It is generally believed that temperature below 400°C is the main
pyrolysis temperature range of monosaccharides, oligosaccharides,
small organic acids, other heat-unstable, volatile components, as well
as cellulose (Strandberg et al., 2017). By correlating the characteristic
temperature ranges of different chemical components with the
pyrolysis reaction processes of tobacco materials, it is possible to
reveal the potential synergistic, coupling and catalytic effects that may
exist among various components during the pyrolysis process of
tobacco materials. Furthermore, the chemical component content
in tobacco materials is related to sensory quality. For example,
reducing sugars and total sugars are significantly positively
correlated with comfort, while total alkaloids and total nitrogen are
significantly negatively correlatedwith sensory indicators. By selecting
the pyrolysis characteristic temperature ranges of different
component regression models, the pyrolysis parameters within
these ranges can be used as references for the selection of tobacco
materials in cigarette formulation.

FIGURE 6
VIP score map of temperature points in components regression model.

TABLE 3 19 components correspond to temperature ranges with a VIP
score greater than 1.

Chemical components Temperature range/°C

Total phytoaloids 150-390,510-520,688-701

Reducing sugar 153-246,260-399

Total sugar 149-235,248-369

Total nitrogen 135-263,332-385

Potassium 193-281,339-382

Chlorine 135-252,238-371

pH 168-367,675-708

Starch 175-235,290-372

Dichloromethane extract 162–395

Solanesol 181-244,261-390

Sulfate 131-182,190-233,240-374,750-809

Phosphate 177-263,390-530

Magnesium 131–530

Calcium 150-275,305-373,675-710

Polyphenols 129-387,747-772

Refractory acid 150-276,300-370,375-495,683-712

Amino acids 132-234,258-295,325-370

Amadori compounds 130-229,250-342,506-512

Neophytadiene 231-284,300-374
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4 Conclusion

In this study, 157 kinds of tobacco materials from different
growing regions, years and grades were used as samples, and the
machine learning model database was constructed through
experiments on the thermogravimetric analysis and chemical
analysis methods of the samples. Using the differential
thermogravimetric curve as the independent variable and the
chemical composition content as the dependent variable,
quantitative analysis and prediction models were built using
different machine learning methods to predict the relationship
between the heat loss rate of the differential thermogravimetric
curve and the chemical composition content. The regression
performance of the different machine learning models was
compared, and the temperature ranges with significant effects on
the chemical component content were screened based on the VIP
scores of the independent variables of the best performing PLS
regression model. The results show that 1) the PLS, SVR and GPR
models have relatively good regression performance on DTG data
and chemical component contents for the three representative
chemical components tested. 2) For the prediction of 19 chemical
components, the PLS model showed the best fitting, prediction and
generalization ability. In addition, the R2 values of the PLS model for
most of the components were above 0.85, and the mean square
errors were small. 3) The temperature range that has a large
influence on most components of tobacco materials is from
130°C to 400°C, and the characteristic temperature ranges of
different chemical components are different.
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