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Biological membranes consist of integral and peripheral protein-associated lipid
bilayers. Although constituent lipids vary among cells, membrane lipids aremainly
classified as phospholipids, glycolipids, and sterols. Phospholipids are further
divided into glycerophospholipids and sphingophospholipids, whereas
glycolipids are further classified as glyceroglycolipids and sphingoglycolipids.
Both glycerophospholipids and glyceroglycolipids contain diacylglycerol as the
common backbone, but their head groups differ. Most glycerolipids have polar
head groups containing phosphate esters or sugar moieties. However, trace
components termed glycero-glycophospholipids, each possessing both a
phosphate ester and a sugar moiety, exist in membranes. Recently, the unique
biological activities of glycero-glycophospholipids have attracted considerable
attention. In this review, we describe the structure, distribution, function,
biosynthesis, and chemical synthetic approaches of representative glycero-
glycophospholipids—phosphatidylglucoside (PtdGlc) and enterobacterial
common antigen (ECA). In addition, we introduce our recent studies on the
rare glycero-glyco“pyrophospho”lipid, membrane protein integrase (MPIase),
which is involved in protein translocation across biomembranes.
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1 Introduction

Biological membranes are vital for cell survival and consist of lipid bilayers associated
with integral and peripheral proteins. The types of membrane lipids vary among species,
tissues, and organelles, and are also known to be asymmetric in the outer and inner leaflets
of a membrane (Escriba et al., 2015; Fujimoto and Parmryd, 2016). Membrane lipids are
mainly classified as phospholipids, glycolipids, and sterols. Sterols are not found in the
prokaryotic membranes. Animals, plants, and yeasts often contain cholesterol, phytosterols,
and ergosterol, respectively (Figure 1).

Phospholipids, the most abundant, are further categorized into glycerophospholipids
and sphingophospholipids (Casares et al., 2019). Glycerophospholipids are composed of
phosphatidic acid (PA), in which fatty acids are esterified to the C1 and C2 positions of
glycerol and a phosphate group is esterified to the C3 position. Saturated fatty acids are often
attached at the C1 position, whereas unsaturated fatty acids are attached at the C2 position.
The chain length of fatty acids generally falls within the range of 16–20 carbon atoms;
however, some cells and microorganisms may contain fatty acids with longer chains. In
archaeal cell membranes, ether-type lipids exist, where isoprenoid hydrocarbon alcohols,
such as archaeol and cardarchaeol, are linked via an ether bond. Remarkably, the
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stereochemistry of glycerol in archaea is reversed; a phosphate head
group is present at the C1 position. In biological membranes, most
phospholipids have polar head groups and only trace amounts are
present as PA. Phosphatidylcholine (PC) is the major component of
eukaryotic membranes (Figure 2A), followed by
phosphatidylethanolamine (PE), phosphatidylglycerol (PG),
phosphatidylserine (PS), and phosphatidylinositol (PI).
Prokaryotic membranes do not contain PC; however, PE and PG
are major components. Cardiolipin (CL), in which two PA moieties
connect with a glycerol backbone in the center to form a dimeric
structure, is found in the inner mitochondrial membrane and
in bacteria.

Sphingoid base, which forms the backbone of sphingolipids, is a
long-chain aliphatic amine containing 2–3 hydroxy groups.
Sphingosine is the most abundant sphingoid base in mammalian
cells. Ceramides are formed when fatty acids attach to the amino
groups of sphingoid bases. Sphingomyelin, an emblematic
sphingolipid, contains phosphocholine in the primary hydroxy
group of ceramide (Figure 2B). Sphingomyelin accounts for 2%–
15% of the total phospholipids in mammalian cells (Casares et al.,
2019). In addition, sphingolipids with phosphoethanolamine or
phosphonoethanolamine (C-P bond) esterified to ceramide are
found in lower animals. Yeasts, molds, and plants do not contain
sphingomyelin but do contain phosphoinositol-containing
sphingolipids, which are not found in higher animals (Sperling
andHeinz, 2003). Bacteria, with a few exceptions, do not contain any
sphingolipids.

Membrane glycolipids are also classified into glyceroglycolipids
and sphingoglycolipids. Glyceroglycolipids are composed of
1–4 sugars linked to the primary hydroxy group of diacylglycerol
(DAG). Galactose and fucose are the most common sugars, some of
which are sulfated. They are widely distributed in plants,
microorganisms, and some animal organs, such as the testes.
Monogalactosyldiacylglycerol (MGDG) and
digalactosyldiacylglycerol (DGDG) are the main components of
the thylakoid membranes, which are the sites of photosynthesis
in cyanobacteria and plants (Figure 2C). These two galactolipids
account for approximately 80% of the lipids in the thylakoid
membranes. In addition, sulfoquinovosyldiacylglycerol (SQDG), a
glycolipid containing sulfate esters, accounts for approximately 10%,
while phospholipids only account for the remaining 10%.

Sphingoglycolipids are sugar-bound ceramides (Ishibashi et al.,
2013). Several sugars, including galactose, glucose, and sialic acid,
are present in various arrangements (Figure 2D). Glycan structures
are diverse and range from monosaccharides to dozens of sugars.
The groups containing sialic acid are referred to as gangliosides.
Some sphingolipids undergo sulfation, and more than 400 types of
sphingolipids have been identified to date.

In addition, biological membranes contain many trace
components (Figure 1, right panel). This review focuses on
glycero-glycophospholipids, which have characteristics of both
glycerophospholipids and glyceroglycolipids. Glycero-
glycophospholipids contain PA as their basic backbone and
sugar(s) as the head group. Phosphoglycolipids, which are

FIGURE 1
Classification of membrane lipids.
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glycolipids modified with phosphoric acid, have a similar structure,
but they belong to a different category. Recently, the unique
biological activities of glycero-glycophospholipids, such as
involvement in cell differentiation, apoptosis, and bacterial
pathogenesis, have attracted attention; however, their scarcity has
hampered investigations into their functions. Unlike proteins that
can be produced and modified using established molecular
biological techniques, the biosynthesis of glycolipids is sometimes
difficult because multiple synthetic enzymes are required. Therefore,
a chemical synthesis that can supply structurally modified molecules
would be useful. Herein, we describe the structure, distribution,
function, biosynthesis, and chemical synthesis of representative
glycero-glycophospholipids. Moreover, we introduce our recent
studies on the rare glycero-glyco“pyrophospho”lipid, which
contains a pyrophosphate instead of a phosphate.

2 Phosphatidylglucoside (PtdGlc)

2.1 Structure, distribution, and functions
of PtdGlc

The simplest glycero-glycophospholipid, phosphatidyl α-
glucoside, was identified between 1970 and 1972 from several
bacterial species (Shaw et al., 1970; Short and White, 1970; Shaw
et al., 1972). In addition, its β-isomer, phosphatidylglucoside

(PtdGlc, 1), was detected in human cord red cells in 2001
(Nagatsuka et al., 2001) (Figure 3). Later, it was purified from
fetal mouse brains using a specific monoclonal antibody
immunized with detergent-insoluble membranes. The lipid
extract from brains was treated with PI-specific phospholipase C
to remove PI and was fractionated by using successive column
chromatography to give a single spot on thin layer chromatography
(TLC). Its structure was unambiguously determined by nuclear
magnetic resonance (NMR), gas chromatography (GC), and
Fourier transform mass spectrometry (FT-MS) (Nagatsuka et al.,
2006; Takahashi et al., 2012). Simultaneously, an analog whose 6-
position on glucose was O-acetylated was identified. Notably, with
respect to the stereochemistry of the glycerol backbone in PtdGlc,
the S isomer, which is rarely found in mammals, is present in
approximately 15% of the PtdGlc. Moreover, the fatty acid
composition of PtdGlc is limited to 18:0 at sn-1 position and 20:
0 at sn-2 position, whereas that of ordinary glycerophospholipids is a
mixture of several species, depending on the biomembrane
environment. It is unusual that both fatty acids are saturated. As
might be inferred from its lipid composition, PtdGlc forms
microdomains on the plasma membrane, which have been shown
to differ in function from the rafts formed by sphingolipids (Murate
et al., 2010). The expression of PtdGlc in the central nervous system
is cell type- and developmental stage-specific; it is expressed in
immature neural stem cells and is involved in their differentiation
into astroglia (Kinoshita et al., 2009). PtdGlc is strongly expressed in
embryonic rat astroglia. However, its expression is reduced and
limited to adult cells. Neurons are thought to hardly synthesize
PtdGlc. PtdGlc is also expressed in human neutrophils and is
involved in neutrophil differentiation and apoptosis at the final
stage (Oka et al., 2009; Kina et al., 2011). Furthermore, PtdGlc can be
hydrolyzed in glial membranes and released as LysoPtdGlc (2)
(Figure 3), a molecular species in which the fatty acid at the sn-2
position of glycerol is removed. LysoPtdGlc acts as an intercellular
signaling molecule that regulates glia-neuron intercellular
communication via the G protein-coupled receptor GPR55 to
guide nociceptive axons in the central nervous system (Guy et al.,
2015; Shimai et al., 2023).

2.2 Biosynthesis of PtdGlc

PtdGlc is synthesized in the endoplasmic reticulum (ER) via a
UDP-glucose-dependent reaction. Since glucosylceramide synthase
showed no PtdGlc synthesis activity, another β-glucosyltransferase
was expected to exist. It was reported that UDP-glucose:glycoprotein
glucosyltransferase 2 (UGGT2) produces PtdGlc by using a PA with
a saturated fatty acid acyl chain (sPA) as a physiological substrate
(Hung et al., 2022). UGGT2 exists in ERmembranes as well as in the
ER lumen. Remarkably, UGGT2 does not accept unsaturated fatty
acid-containing PAs as substrates. Saturated fatty acids (e.g., C18:0-
CoA) are converted into unsaturated fatty acids (e.g., C18:1-CoA) by
an oxygen-dependent enzyme, namely, ER-associated stearoyl-CoA
desaturase (SCD). Suppression of SCD under hypoxic conditions
results in an increase in sPA with cytotoxic activity.
UGGT2 synthesizes PtdGlc by using sPA, which is concentrated
in lysosomes and degraded by the autophagy pathway, thereby
avoiding ER stress.

FIGURE 2
Structures of (A) phosphatidylcholine, (B) sphingomyelin, (C)
monogalactosyldiacylglycerol, and (D) glucosylceramide.

Frontiers in Chemistry frontiersin.org03

Osawa et al. 10.3389/fchem.2024.1353688

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2024.1353688


2.3 Chemical synthesis of PtdGlc

In the synthetic approach for phosphatidyl-1-D-glucose, an
intermediate protected by benzyl groups was synthesized; however,
the configuration of the 1-position of glucose was not determined, and
deprotection of the benzyl groups was not successful (Ramirez et al.,
1983). The first stereoselective chemical synthesis of PtdGlc (1) was
achieved in 2008 (Greimel and Ito, 2008). Each enantiomer of solketal
[(S)-3 or (R)-3] was used as the starting material to yield chiral DAG
[(S)-6 or (R)-6], respectively (Scheme 1).

Based on the results obtained by Ramirez et al., the acetyl (Ac)
groupwas selected as the protecting group for the sugarmoiety (Scheme
2). Per-acetylated glucose (7) was selectively converted into β-
phosphonic acid (9) via t-butyl orthoester (8) using phosphonic acid
as an autocatalyst. Subsequently, the DAG moiety (6) was introduced,
and the phosphonate was oxidized to the phosphate diester. Finally, Ac
groups were deprotected to give the desired PtdGlc (1). Notably,
stereoselective synthesis allowed the utilization of both stereoisomers
as standards, which verified the presence of both diastereomers in
naturally occurring PtdGlc isolated from mammalian cells.

FIGURE 3
Structures of PtdGlc (1) and LysoPtdGlc (2).

SCHEME 1
Synthesis of diacylglycerol moiety (6).

SCHEME 2
First chemical synthesis of PtdGlc (1).
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Recently, protection-free synthesis of PtdGlc in aqueous media
was reported (Kano et al., 2023a; Kano et al., 2023b) (Scheme 3). The
β-glucosyl phosphate linkage was successfully constructed from
phospholipid and D-glucose using 2-chloro-1,3-
dimethylimidazolinium chloride (DMC) as a condensing reagent
and triethylamine in a mixture of water and propionitrile.
Subsequently, PtdGlc (1) was successfully obtained via only two
purification steps: silica gel column chromatography and gel
permeation column chromatography.

PtdGlc can be enzymatically synthesized from D-glucose and PC
(Inoue et al., 2016). In addition, several analogs have been
chemically synthesized; the glucose moiety of PtdGlc has been
converted into other monosaccharide components, or the
phosphate group has been converted into thiophosphate (Greimel
et al., 2008). The synthesis of LysoPtdGlc (2) (Kano et al., 2021) and
its analog, in which the phosphate moiety is converted into a squaryl
diamide group, has also been reported (Ding et al., 2018). The
biological activities of PtdGlc (1) and LysoPtdGlc (2) have been
investigated using these analogs.

3 Enterobacterial common antigen
(ECA) and membrane protein
integrase (MPIase)

3.1 Structure, distribution, and functions
of ECA

Enterobacterial Common Antigen (ECA) is a glycero-
glycophospholipid possessing a long sugar chain and is found on
the outer membrane of various enterobacteria, including Escherichia
coli, Shigella sonnei, and Salmonella enterica (Mäkelä and Mayer,
1976; Basu et al., 1987; Kuhn et al., 1988; Rai and Mitchell, 2020).
ECA was firstly discovered as Kunin antigen which was commonly
present in most enterobacteria (Kunin, 1963). ECA polysaccharide
chains are composed of the trisaccharide repeat unit; →3)-D-α-
Fuc4NAc-(1→4)-β-D-ManNAcA-(1→4)-α-D-GlcNAc(1→, where
Fuc4NAc, ManNAcA, GlcNAc are 4-acetamido-4-deoxyfucose, 2-

acetamido-2-deoxymannuronic acid, and 2-acetamido-2-
deoxyglucose (N-acetyl-glucosamine), respectively (Lugowski
et al., 1983; Basu et al., 1987; Bruix et al., 1995). The amino
group of each sugar is N-acetylated, and the 6-position of
GlcNAc is partially O-acylated (Figure 4A). Initially, only
GlcNAc and ManNAcA were characterized by gas-liquid
chromatography (GLC)-MS of the methylated components after
hydrolysis. However, afterward, very acid-labile Fuc4NAc was
detected as an additional component. The anchor moiety was
identified as a PA with an α-glycosyl linkage by GLC-MS and
sensitivity to phospholipase D (Kuhn et al., 1983; Kuhn et al.,
1988). In addition to ECAPG, a PA-bound ECA form, there are
two different forms. ECALPS, which is attached to the nonreducing
terminal sugar of lipid A instead of the O-antigen of LPS, is found in
the outer membrane (Gozdziewicz et al., 2014; Maciejewska et al.,
2020), whereas ECACYC, a cyclized oligosaccharide composed of
4–6 trisaccharide units, is found in the periplasm (Figure 4B). The
number of repeats of the ECAPG trisaccharide units was estimated to
range from 18 to 55, and the molecular weight distribution was
broad. Some studies have reported 1–14 trisaccharide repeats (Barr
et al., 1999; Rai and Mitchell, 2020); however, SDS-PAGE showed a
ladder with molecular weights above approximately 17 kDa (Barr
et al., 1988). Although it varies among bacterial species (Kuhn et al.,
1988), there seem to be at least 20 repeats in all species.

Because ECA is not essential for enterobacteria, its function is yet
to be clearly understood. Although the physiological roles of ECAmay
vary across bacterial species, ECA contributes to the resistance to toxic
molecules (Barua et al., 2002; Ramos-Morales et al., 2003) and the
barrier function of outer membrane (Mitchell et al., 2018; Jiang et al.,
2020). Additionally, it has been suggested that ECA is involved in the
pathogenicity of enterobacteria. In Salmonella enterica, ECA-lacking
mutant strain was sensitive to bile salts, powerful disruptors of
biological membranes, leading to reduced virulence (Ramos-
Morales et al., 2003). Despite infection with S. enterica serovar
Typhimurium causing debilitating inflammatory diarrhea, ECA-
lacking mutant strains displayed attenuation in vivo. Remarkably,
the ECA-deficient strains established a persistent low-level infection
and provided protection against a subsequent lethal challenge with

SCHEME 3
Protection-free synthesis in aqueous media.
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wild-type S. Typhimurium. (Gilbreath et al., 2012). These findings
suggest the possibility of using ECA-negative strains as live attenuated
vaccine candidates (Liu et al., 2020).

The immunogenicity differs between ECA forms (Rai and
Mitchell, 2020). ECAPG is antigenic but not immunogenic; the
production of antibodies requires a concomitant adjuvant or
protein antigen. In contrast, ECALPS stimulates the antibody
production because it possesses an intrinsic adjuvant Lipid A in
its structure (Maciejewska et al., 2020). ECA antibodies have been
detected in serum following infections by pathogenic bacteria, and
thus, they are useful for serodiagnosis.

3.2 Structure, distribution, and functions
of MPIase

Membrane protein integrase (MPIase) is a glycolipid found in
the inner membrane of E. coli (Figure 4C) (Fujikawa et al., 2022;
Nishikawa et al., 2022). Although its name is unlikely to indicate a
glycolipid, it is derived from the unique activity involved in
membrane protein integration (Nishiyama et al., 2006; Nishiyama
et al., 2010; Nishiyama et al., 2012). During membrane protein
integration, the nascent protein generated from a ribosome is
targeted to the membrane, and the first transmembrane region is
inserted into the membrane via protein complex channels called the
Sec translocon (Sec-dependent pathway). MPIase works with Sec
translocons and/or the membrane chaperone YidC to promote Sec-
dependent integration of membrane proteins and translocation of
secretory proteins (Nishiyama et al., 2006). Additionally, a Sec-
independent pathway is known for a subset of small membrane
proteins. MPIase is required for Sec-independent integration into
the E. coli inner membrane (Nishiyama et al., 2006). Although the
Sec translocon is conserved in all organisms, the presence of MPIase
in species other than E. coli has not yet been investigated.

MPIase was discovered in the process of studying the in vitro
reconstitution system of Sec translocon. Since an extract of the E. coli
inner membrane vesicles that did not contain proteinaceous

integration factors showed the membrane protein integration
activity in in vitro translation system, it was fractionated through
several column chromatography including a liquid-liquid partition
chromatography. NMR measurements and amino acid analysis of
purified MPIase indicated that it contains only sugars and lipids.
Matrix assisted laser desorption/ionization (MALDI) MS analyses
suggested that MPIase is a mixture of homologs with diversity in the
length of glycan, acetyl group modification, and fatty acid
components. Combination of extensive instrumental analyses,
such as MS/MS, GC-MS, and two-dimensional NMR, and the
comparison with synthetic substructures revealed that the glycan
moiety of MPIase is the same as that of ECA; it consists of repeating
trisaccharide units →3)-D-α-Fuc4NAc-(1→4)-β-D-ManNAcA-
(1→4)-α-D-GlcNAc-(1→. However, 31P-NMR indicated that
MPIase is connected to DAG by a pyrophosphate instead of a
phosphate (Nishiyama et al., 2012). Glycolipids with
pyrophosphorylated DAG are extremely rare, and those found to
date are likely the biosynthetic intermediates of MPIase (Rick et al.,
1998; Jiang et al., 2020). Similar to ECA, approximately one-third of
the 6-hydroxy group in GlcNAc is randomly O-acetylated. The
number of repeats in a trisaccharide unit is 9–11, which are much
fewer and less variable than that of ECA. The fatty acid composition
of DAG is similar to that of other phospholipids in the inner
membrane of E. coli and varies depending on the growth
environment.

3.3 Biosynthesis of ECA

Genes required for multiple steps in ECA biosynthesis are
located within the wec operon (Meier-Dieter et al., 1990; Daniels
et al., 1992; Meier-Dieter et al., 1992) (Figure 5A). The ECA
trisaccharide repeating unit is constructed on a lipid carrier,
undecaprenyl phosphate (Und-P) (Rick et al., 1998). Und-P
consists of phosphate and undecaprenol (Und), a 55-carbon
molecule composed of isoprenoid units. Und-P is a universal
lipid carrier required for the synthesis of glycans, and, in addition

FIGURE 4
Structures of (A) a trisaccharide unit of ECA, (B) three types of ECA, and (C)MPIase. GN, N-acetylglucosamine; MN, N-acetyl-D-mannosaminuronic
acid; FN, 4-acetamido-4,6-dideoxy-D-galactose; OS, oligosaccharides.
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to ECA, it is used for the production of O-antigens, peptidoglycans,
and capsules in E. coli (Rick et al., 1977). The first step is the synthesis
of the lipid IECA using UDP-GlcNAc and Und-P as substrates, which
is catalyzed byWecA (Barr and Rick, 1987). Subsequently,WecG adds
UDP-ManNAcA to the lipid IECA to produce the lipid IIECA (Barr and
Rick, 1987; Barr et al., 1988; Barr et al., 1989). UDP-ManNAcA, which
is rarely found in eukaryotes, is synthesized from UDP-GlcNAc using
WecB andWecC (Meier-Dieter et al., 1990). The third sugar is added
by WecF using dTDP-FucNAc as a substrate to form lipid IIIECA, a
trisaccharide linked to Und via pyrophosphate (Barr et al., 1989).
Lipid IIIECA is synthesized in the inner leaflet of the inner membrane
facing the cytoplasm. In contrast, the polymerization of trisaccharide
units occurs on the periplasmic side of the inner membrane. Thus,
lipid IIIECA is reversed by the flippase WzxE (Rick et al., 2003). The
trisaccharide units are then polymerized by WzyE on the Und-PP
carrier to form long sugar chains, the chain length of which is
determined by the chain length modulation factor, WzzE (Barr
et al., 1999; Kajimura et al., 2005). The hydroxy group at the 6-
position of the GlcNAc residues in both ECACYC and ECAPG is non-
stoichiometrically O-acetylated by WecH (Kajimura et al., 2006).
Recently, it was proposed that ECACYC, together with an inner
membrane protein ElyC, acts to regulate the reaction that removes
polymerized glycan fromUnd-PP and forms ECAPG (Rai et al., 2021).
The level of ECACYC in periplasm can be assessed by ElyC to provide
feedback regulation. The lipid donor was identified as PG, but the
enzyme that catalyzes this reaction is yet to be identified (Morris and

Mitchell, 2023). Biosynthesis after the polymerization of trisaccharide
units also occurs in the outer leaflet of the inner membrane, but the
final product exists in the outer leaflet of the outer membrane.
However, the mechanisms underlying this translocation remain
unclear. WaaL is involved in the biosynthesis of ECALPS (Pinta
et al., 2012), whereas WzzE is involved in ECACYC biosynthesis
(Kajimura et al., 2005), and deletion of these genes resulted in the
loss of these forms of ECA.

Because the biosynthesis of other glycans, such as peptidoglycan
andO-antigen, also uses Und-P as a carrier, loss of the common pool of
Und-P causes cell abnormalities, such as filamentation and swelling.
When the biosynthesis of dTDP-Fuc4NAc was interrupted, the
accumulation of lipid IIECA lead to a decrease in free Und-P and
bacterial cell shape alteration due to restricted peptidoglycan synthesis
(Jorgenson et al., 2016). The lack of the flippase WzxE or trisaccharide
polymerase WzyE resulted in the accumulation of lipid IIIECA, which is
lethal to cells (Rick et al., 2003; Kajimura et al., 2005).

3.4 Biosynthesis of MPIase

The trisaccharide moiety of MPIase is the same as that of ECA;
however, surprisingly, MPIase is produced even in ECA biosynthetic
enzyme-lacking E. coli (Kamemoto et al., 2020). Conversely, ECA
was normally expressed upon MPIase depletion. Therefore, a
biosynthetic pathway different from that of ECA is presumed to

FIGURE 5
Biosynthetic pathways of (A) ECA and (B) MPIase. PG, glucose 1-phosphate; UDP, uridine diphosphate; dTDP, thymidine diphosphate; TP-Cy,
Cytidine triphosphate; P-GN, N-acetylglucosamine 1-phosphate; G, glucose; GN, N-acetylglucosamine; MN, N-acetyl-D-mannosaminuronic acid; FN,
4-acetamido-4,6-dideoxy-D-galactose; CDP-DAG, cytidine diphosphate diacylglycerol; DGP, diacylglycerol pyrophosphate.
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exist (Figure 5B). When Fuc4NAc was depleted during ECA
biosynthesis, 1,2-diacyl-sn-glycero-3-pyrophosphoryl-GlcNAc-
ManNAcA (DGP-disaccharide), in which the disaccharide is
attached to DAG via pyrophosphate, was found to be associated
with Lipid IIECA (Rick et al., 1998). This may be a biosynthetic
intermediate for MPIase, suggesting that there is a system that
directly uses DAG rather than Und as an anchor to elongate the
glycan chain. There are no other examples in which a DAG was
initially used as a carrier. A search for the enzymes responsible
revealed that CdsA and its paralog, YnbB, are involved in the
production of GlcNAc-PP-DAG (compound I) (Sawasato et al.,
2019a; Sato et al., 2019). CdsA is known as the enzyme that
synthesizes cytidine diphosphate diacylglycerol (CDP-DAG), an
important biosynthetic intermediate of membrane lipids from PA
(Icho et al., 1985). When the inner membrane vesicles prepared
from CdsA-overexpressing cells were incubated with [14C]PA, CTP,
and possible GlcNAc donors [UDP-GlcNAc, CDP-GlcNAc, and
GlcNAc-1-phosphate (GlcNAc-P)], compound I was produced in a
GlcNAc-P-dependent manner (Sawasato et al., 2019a). When CdsA
was deficient in E. coli, MPIase depletion, abnormal protein membrane
transport, and inhibition of bacterial growth were observed, even when
membrane lipids syntheses were compensated for by the mitochondrial
CDP-DAG synthase Tam41P (Tamura et al., 2013). CdsA and YnbB
are temperature-sensitive, and incubation at low temperatures (<25°C)
elicited an upregulation of these genes and increased production of
MPIase (Sawasato et al., 2019b). The biosynthetic enzymes responsible
for the condensation of the second sugar and the subsequent reactions
are not known. Based on its function,MPIase is thought to be present in
the inner leaflet of the inner membrane; however, its distribution in
bacteria remains unknown. Identification of biosynthetic enzymes is
essential for understanding the localization and function of
MPIase in vivo.

3.5 Chemical syntheses of MPIase analogs

Chemical syntheses of the trisaccharide and hexasaccharide
moieties of ECA, which have the same glycan structure as MPIase,
were reported (Paulsen and Lorentzen, 1985; Liu et al., 2015);
however, these did not contain the phospholipid moiety. The first
synthesis of MPIase analog containing a pyrophospholipid moiety
was achieved using a minimal structure called mini-MPIase-3 (13)
(Fujikawa et al., 2018). Mini-MPIase-3 exhibited membrane protein
integration activity, indicating that glycolipids underlie membrane
protein integration. Following that, various analogs shown in Figure 6
were synthesized to elucidate the actionmechanism of MPIase: glycan
length variants [mini-MPIase-9 (20), mini-MPIase-6 (19), mini-
MPIase-3 (13), Nonasac-P (26), Hexsac-P (25), Trisac-P (24)],
modification of the functional group at C6 of GlcNAc [mini-
MPIase-3 (6-OH) (14), mini-MPIase-3 (6-F) (15), mini-MPIase-3
(6-OMe) (16), mini-MPIase-3 (6-OBz) (17)] or the carboxy group of
ManNAcA [mini-MPIase-3 (COOMe) (18)], and variants for the
pyrophosphate moiety [mini-ECA-6 (22), mini-ECA-3 (21), Trisac-
DAG (23)] (Fujikawa et al., 2023).

A retrosynthetic strategy for the MPIase analogs is shown in
Scheme 4. An unstable phospholipid moiety is introduced at the
end of the synthesis process. The MPIase-type (13–20) with a
pyrophosphate is constructed by the condensation of the lipidated
phosphoramidite reagent (27) and the monophosphoryl glycan,
whereas the ECA-type (21, 22) with a monophospholipid is
constructed by introducing 27 into the hemiacetal form of the
glycan. Because MPIase has a repeating trisaccharide structure,
glycan elongation is performed based on the trisaccharide unit.
The common trisaccharide intermediate (30) for both the donor
(28) and acceptor (29) is designed as follows: For the construction of
the α-glucosaminide bond between the trisaccharide units, the

FIGURE 6
Chemically synthesized MPIase analogs.
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GlcNAc donor has an azide group without a neighboring
participation effect at C2, bulky p-BrBn at O3, and TBDPS groups
at O6 (Zulueta et al., 2012; Zulueta et al., 2013). The TBDPS group is
also useful for selective deprotection because the O6 of GlcNAc is
converted into the Ac group or other substituents at a late stage of the
synthesis. Orthogonal deprotection of an allyl group at the
nonreducing end or a methoxyphenyl (MP) group at the reducing
end enables the conversion of 30 to the donor (28) or acceptor (29),
respectively. The β-mannosaminide bond in the trisaccharide unit is
constructed by steric inversion of C2 of Glc with NaN3 after obtaining
the β-glucoside using neighboring-group participation of the 2-OBz
group in the Glc donor (31) (Nishiyama et al., 2012).

3.6 Mechanism of membrane protein
integration of MPIase

The synthetic MPIase analogs enabled elucidation of the
mechanism of the Sec-independent pathway. The membrane
protein integration activity of the analog was evaluated using

liposome membranes and model proteins produced using an
in vitro translation system (Koch et al., 1999; Nishiyama et al.,
2006; Nishiyama et al., 2010). Liposomes were prepared from
E. coli phospholipids (PE, PG, and CL) and DAG, in which
spontaneous protein integration was completely inhibited
(Kawashima et al., 2008). When natural MPIase was
incorporated into liposomes, Sec-independent membrane
protein integration was observed in a dose-dependent manner
(Nishiyama et al., 2006; Kawashima et al., 2008; Nishiyama et al.,
2010; Nishiyama et al., 2012; Nishikawa et al., 2017; Sasaki et al.,
2019; Endo et al., 2021); and when SecYEG was incorporated into
liposomes together with MPIase, Sec-dependent membrane
protein integration was also reproduced (Nishiyama et al.,
2006; Sawasato et al., 2019a). When the aforementioned
synthetic MPIase analogs were reconstituted into liposomes,
membrane protein integration activity was observed according
to glycan length. The importance of pyrophosphate was clearly
demonstrated, because the activity of mini-ECA-6 (22) was
weaker than that of mini-MPIase-6 (19), reflecting the absence
of activity in natural ECA. The glycan moiety of MPIase devoid of

SCHEME 4
Retrosynthetic strategy for MPIase analogs.
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the lipid moiety did not exhibit integration activity; however, it
showed chaperone-like activity that prevented the aggregation of
substrate proteins. Detailed structure–activity relationship
studies are summarized in Figure 7 (Fujikawa et al., 2023).

The contributions of the 6-OAc group in GlcNAc, carboxy
group in ManNAcA, and pyrophosphate group are indicated.
Anchoring in the membrane by a lipid moiety is essential for
membrane protein integration. Long glycans enhance activity,
and the synergistic effect between MPIase and the membrane
chaperone YidC requires longer glycans than hexasaccharides.
Furthermore, physicochemical measurements, such as surface
plasmon resonance (SPR) and saturation transfer difference-
(STD)-NMR, using MPIase analogs have verified the direct
interactions between MPIase and the substrate protein (Mori
et al., 2022). Both hydrophobic and electrostatic interactions

contribute to this activity. Solid-state NMR and fluorescence
measurements revealed that MPIase increases membrane mobility
and exposes the deep hydrophobic core of the membrane,
facilitating the integration of the hydrophobic transmembrane
region of substrate proteins into the membrane (Nomura et al.,
2019; Nomura et al., 2022).

These studies demonstrated the mechanism through which the
glycolipid supports the Sec-independent membrane protein
integration in the inner membrane of E. coli, which is as follows
(Figure 8): (a) the glycan moiety of MPIase captures the substrate
protein using various functional groups, (b) the secondary structure of
the substrate protein is altered to prevent the aggregation of substrate
proteins, (c) the strong negative charges of pyrophosphate attract the
positive charges of basic amino acid residues, which generally exist in
the substrate protein as known “positive inside rule,” to themembrane

FIGURE 7
Structural requirements of MPIase.

FIGURE 8
Mechanism for Sec-independent integration involving MPIase. MPIase sequentially (a) captures a substrate protein, (b) inhibits its aggregation, (c)
attracts it to the membrane surface, (d) integrates it into the membrane, and (e) transfers it to YidC.
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surface, (d) the hydrophobic interactions between the substrate
protein and the membrane induce the substrate protein integration
in the membrane core area where the mobility is higher, and (e)
MPIase transfers the substrate protein to the membrane chaperone
YidC to regenerate the capability of substrate capturing. The localized
state of MPIase on themembrane and the cooperation ofMPIase with
Sec factors are still unresolved and are considered as future issues.

4 Lipids with similar structure

The lipids shown here are not glycero-glycophospholipids but
have similar structures. They were introduced to compare their
structures.

4.1 Glycosylphosphatidylinositol anchor

Molecules in which PA is attached to inositol-containing pseudo-
glycans are well-known. The most well-known of these is the
glycosylphosphatidylinositol (GPI) anchor (Figure 9A). GPI anchors
are glycolipids attached to the C-termini of proteins via post-

translational modifications. PI is linked to a linear core glycan
comprising three mannose (Man) residues and one GlcNAc residue.
At the nonreducing end of the glycan, phosphoethanolamine is attached,
whose amino group is bound to the C-terminus of the protein. The core
glycan can be further modified with a variety of sugars depending on the
type of protein. The lipid moiety onmammalian GPI-anchored proteins
is mostly of the 1-alkyl-2-acylglycerol type (alkyl type), but some are of
the diacylglycerol type (diacyl type). The fatty acid composition is
characterized by the presence of saturated fatty acids at the sn-2
position of the glycerol backbone.

Each step of GPI-anchor biosynthesis has been studied in detail
(Kinoshita, 2020). GPI-modified proteins have a GPI-attaching
signal at the C-terminus in addition to an N-terminal ER target
signal. The hydrophobic signal sequence is cleaved, and the newly
exposed C-terminus is linked to the amino group of the
phosphoethanolamine of the anchor via an amide bond.

GPI anchoring is a widely conserved post-translationalmodification
that occurs in eukaryotes. Awide variety of proteins, including receptors,
cell adhesion factors, and hydrolytic enzymes, undergo GPI
modification and bind to biomembranes. Typically, GPI
anchor–protein complexes are associated with raft domains in
membranes. Phospholipase C (PLC) cleaves the phosphoglycerol

FIGURE 9
Structures of (A) GPI anchor, (B) Glycerophospholipids with a linker of glycerol or glyceric acid, (C) Glycolipid phosphorylated at 6-position. PA,
phosphatidic acid; DAG, diacylglycerol; PG, Phosphatidylglycerol; PGDG, phosphatidylmonogalactosyldiacylglycerol; EPA, eicosapentaenoic acid.

Frontiers in Chemistry frontiersin.org11

Osawa et al. 10.3389/fchem.2024.1353688

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2024.1353688


bond of the GPI anchor, causing the release of GPI-binding proteins
from the cell membrane.

Chemical synthesis of GPI anchors has been actively studied by
many research groups since the 1990s (Murakata and Ogawa, 1991;
Mayer et al., 1994; Campbell and Fraser-Reid, 1995; Tailler et al.,
1999; Xue and Guo, 2003; Ali et al., 2005), which was summarized in
detail in an excelent review (Swarts and Guo, 2012). Synthetic
research has not only focused on inherent GPI anchors but has
also extended to analogs with labeling probes for clicks (Swarts and
Guo, 2011; Ding et al., 2017; Suazo et al., 2021; Yan and Guo, 2023)
or photoaffinity reactions (Mullapudi et al., 2022; Kundu
et al., 2023).

4.2 Glycerophospholipids with a linker of
glycerol or glyceric acid

Phosphatidyl glycerol analogs, in which a sugar is attached to
glycerol in the head group, have been observed in bacteria (Gurr
et al., 1968; Phizackerley and MacDougall, 1968; Peleg and Tietz,
1973) (Figure 9, B). Sugar is thought to enzymatically transfer from
UDP-hexose into PG. Examples include glucosamine,
galactosamine, GlcNAc, and glucose. Both 2′and 3′positions in
the glycerol can be substituted. The substitution of the glycerol
moiety in CL was also observed. Phospholipids containing glyceric
acids in their head groups have been isolated from bacteria and
archaea. Glyceric acid is amidated with long-chain amines
(Anderson and Hansen, 1985; Huang and Anderson, 1989).
These compounds are suggested to stabilize the membranes of
thermophilic bacteria when exposed to high temperatures.

4.3 Glycolipids phosphorylated at 6-position

There are some glycolipids in which PA is not glycosylated at the
1-position of the sugar, but rather binds to the hydroxy group at the
6-position (Figure 9C). These compounds can be classified as
phosphorylated glyceroglycolipids. Glucose derivatives were
isolated from Pseudomonas diminuta in 1970 (Shaw et al., 1970).
Recently, an unprecedented, polyunsaturated fatty acid-rich
phosphatidylmonogalactosyldiacylglycerol (PGDG) was isolated
from the marine diatom Thalassiosira weissflogii (Manzo et al.,
2019). PGDG exhibits immunostimulatory activity in human
dendritic cells. To explore the mechanism of action, analogs with
saturated lipids were synthesized, and Toll-like receptor-4 (TLR-4)
agonist activity was demonstrated to underlie the antigen-specific
T-cell activation of this class of molecules in human and mouse
dendritic cells.

5 Conclusion and outlook

The identification and functional analysis of rare glycolipids
including glycero-glycophospholipids are becoming increasingly
important, not only because of their structural interest but also
because of their unique biological activities, such as
immunostimulatory activity and involvement in translocation of
various proteins. The isolation of rare glycolipids and determination

of their structures are often difficult because they are trace components of
membranes and exhibit amphiphilic physicochemical properties. Mass
spectrometry is typically used for glycan identification. For example,
characterization of gangliosides using LC-MS is well-established.
However, authentic samples are necessary for the confirmation since
MS gives only molecular formula and cannot distinguish stereoisomers.
Consequently, regarding novel glycolipids, isolation, derivatization, and
NMR analyses are indispensable for determining the type of sugar,
position ofmodification, and stereoconfiguration of glycerol. Purification
methods, such as HPLC and liquid–liquid partition chromatography,
would be useful although separation of amphiphilic compounds might
require successive manipulations and complex mixture of solvents.

For biosynthetic supply and structural modification of glycolipids,
molecular biological approaches are limited because glycolipids are not
directly produced by the translation of genes. Chemical synthesis of the
glycolipids also includes challenging issues such as the stereocontrol of
glycosylation and the multistep protecting/deprotecting reactions.
Nevertheless, we consider that chemical synthesis is a powerful tool
for the investigation into their functions because it can supply sufficient
quantities of structurally defined molecules. By conducting studies on
structure-activity relationships, the detailed mechanism of the activity
would be elucidated at the atomic level, which may lead to therapeutic
applications. Furthermore, chemical biology using probes with
detectable and/or reactive functionalities can uncover novel biological
actions associated with these rare glycolipids and their target molecules.
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