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Ancient glass products have suffered from the baptism of time and experienced
changes in the burial environment and weathering, resulting in a change in the
proportions of their chemical composition and interfering with their accurate
identification by later generations. In this paper, the chemical composition of
ancient glass products is predicted and identified. First, the multivariate statistical
ANOVA test is applied to explore the relationship between whether the cultural
relics samples are weathered or not and the glass type, decoration, and color to
derive a law of chemical composition of the cultural relics and to analyze the
correlation and difference among the four factors. Second, compared with the
relevant data of the existing glass products, the missing values are processed by
using the method of filling in the plurality. The weathering condition of the
sampling points of the samples whose surfaces are not weathered is judged by
the “distance discrimination method.” Combined with the characteristics of the
lead-barium glass and the high-potassium glass, the law of the chemical
composition content on the surface of the samples, weathered or not, is
explored. The modeling of the gray prediction method was applied again to
predict the chemical composition content before weathering. Finally, the
generalized Shapley function of fuzzy measurement was used to analyze the
correlation between indicators and the chemical compositions and their
differences. The scheme proposed in this paper can solve the difficult
problem of category judgment in archeology, which is of great significance in
promoting the smooth progress of archaeological work.
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1 Introduction

The identification of the production age of ancient glass products is one of the research
topics in the field of archeology. Scientists determine the age of ancient glass products by
analyzing and identifying their composition. However, the difference in chemical composition
and quantity ratio during the glass production process leads to differences in its main chemical
composition. For example, lead-barium glass contains high levels of lead oxide (lead monoxide)
and barium oxide (barium oxide) due to the addition of a certain amount of lead ore; potassium
glass contains substances with high potassium content (such as grass ash). The ancient glass had
a certain degree of weathering before excavation, and due to the influence of the burial
environment, its composition ratio changed, which, in turn, affected the correct judgment of its
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category by future generations. Therefore, understanding the chemical
composition of ancient glass products has become an important factor
in determining their classification.

In this paper, we analyze the relationship between the degree of
weathering on the surface of cultural relics and the three aspects of glass
type, ornamentation, and color for the available data related to glass
products. We combine the characteristics of lead-barium glass and
high-potassium glass to explore the pattern of chemical composition
content on the surface of the samples with or without weathering.
Finally, based on the given data, the chemical composition content
before weathering is predicted. The generalized Shapley function of
fuzzy measurement is applied to analyze the correlations between
indicators and chemical compositions and to compare the
differences in the correlations between the chemical compositions of
the different categories. This paper provides a solution to the difficulty
of judging categories in archaeological work, which is of great
significance to the smooth progress of archaeological work.

2 Literature review

The current methods regarding the compositional exploration of
glass artifacts are divided into two main categories: first, predictive
analysis based on the chemical composition of glass, viscosity,
temperature, fusion, surface weathering, and other data, and
second, compositional exploration based on mathematical statistics.

Heredia-Langner et al. (2022) presented a model based on
3,935 viscosity-temperature data for 574 types of glass, aiming to
predict the melting of alkaline-aluminum-viscous borosilicate glasses
as a function of composition and temperature. Panova et al. (2021)
described the three main types of Bohemian historical glass melting
processes, illustrating the complexity of historical glass melting, as well
as technological advances between periods. Liu et al. (2019)
summarized the glass compositional system and production process
of glass bead ornaments unearthed from the Han tombs in Lingnan
and explored the provenance sources of the glass bead ornaments
based on the chemical compositions and the style of the vessels.

Zhang et al. (2022) introduced seven simulation methods for glass
component properties such as the summation method, the phase
diagram method, Priven’s method, topological bound theory,
molecular dynamics simulation, and mathematical-statistical
simulation and summarized the main theoretical basis of each
simulation method, the simulation process and the current status of
its application. Alex (2004) investigated a method based on
thermodynamic equations using the calculation program of MDL
SciGlass and its database and using experimental data instead of
some of the parameters of thermodynamic equations. Xu et al.
(2021) vitrified low-activity waste (LAW) and high-level waste
(HLW) and utilized the power of artificial intelligence to address the
limitations of the existing models. Sharma et al. (2022) analyzed
25 “received” windshield samples from six automobile manufacturers
for glass origin or complete chemical characterization using K-mean,
cluster analysis, and principal component analysis (PCA) methods.
Wang et al. researched the conservation and management strategies
of cultural relics in archaeological excavations (Wang and Zheng, 2022).

Yang et al. (2022) proposed a feature study of glass artifacts based
on BiLSTM-CRF. Lu (2023) integrated feature selection methods and
classification algorithms in machine learning into the study of ancient

glass artifact composition analysis and category identification problems
and attempted to construct an integrated feature selection model for the
chemical composition selection of ancient glass artifacts and a random
forest model for identification and classification, using accuracy and
AUC as the classification performance metrics. Kumiko et al. (2012)
applied multiple regression analysis to predict glass structure. Melcher
and Schreiner (2004) constructed two potassium-lime silica model
glasses with compositions similar to medieval stained glasses. Qu
et al. (2018) investigated some new generalized dual hesitant fuzzy
generalizedChoquet integral operators based on Shapley fuzzymeasures.

Zou (2023) used time series and clustering methods for molecular
compositional analysis of glass chemical compositions. Ye et al. (2015)
investigated new gray prediction models to predict four typical interval
gray number sequences separately. Zeng et al. (2014) developed a new
interval gray number prediction model using kernel and area sequences
of gray number bands. Meng et al. (2014) defined two generalized
hesitant fuzzy Shapley–Choquet integral operators that globally
consider the importance of the elements in a set as well as the
correlation between them. Liu et al. (2022) investigated the
topological properties of benzenoid planar octahedron networks.

3 Data sources and assumptions

The data in this paper come from Question C of the 2022 China
University Student Mathematical Modeling Competition.
Archaeologists categorized a batch of ancient glassware into two
types, lead-barium glass and high-potassium glass, and measured
the proportions of the main chemical components. The specific data
are shown in Table 1. If the cumulative sums of the proportions of the
components were not equal to 100% due to the means of detection
and other reasons, any data with the cumulative sum between 85%
and 105%were regarded as valid data. In order to facilitate the study of
the problem, the following assumptions are made: 1) All data sources
are authentic and reliable. 2) The steps of data cleaning and data
preprocessing are accurate; that is, they are able to exclude outliers.
Missing values of the chemical components that were not detected in
the data were filled in with a value of 0, which had no effect on the rest
of the data. 3) Some of the undetected trace data had no effect on the
results. 4) Archeologists judged the known glass categories through
conditions such as glass ornamentation and color.

4 Research ideas

In this paper, themissing values are processed by the plurality filling
method, the weathering conditions of the sampling points of the
samples with unweathered surfaces are judged by the “distance
discrimination method,” and the relationship between the
weathering and the glass types, decorations, and colors are analyzed.
It is hypothesized that the decoration of glass, as a symbol of regional
culture, represents the geographical environment of different regions,
and the natural environment of different regions is an important factor
affecting the weathering results. When analyzing the relationship
between glass type and weathering, this article takes ornamentation
as a control variable. When analyzing the relationship between
ornamentation and weathering, the special Type B ornamentation is
analyzed first.
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For the statistical analysis of the chemical composition content,
this paper is divided into two parts of the study: high-potassium
glass and lead-barium glass.

R software was used to test the gray prediction model addressing
the chemical composition content of cultural relics before
weathering, which includes the examination and processing of
data, the establishment of the model, the examination of the
predicted values, and the prediction of the forecast. The
prediction model was solved, and the data were analyzed by
MATLAB. The generalized Shapley function based on fuzzy
measures analyzes the correlation relationship between indicators,
analyzes the correlation relationship between their chemical
compositions, and compares the differences in the correlation
relationship of chemical compositions between different categories.

5 Exploring the characteristics of
cultural relics

5.1 Data processing

5.1.1 Missing color fill—plurality fill
Some values are missing from the color column in the given

data. This paper uses the plurality filling method to deal with the
missing values (Antti et al., 2010; Deng et al., 2019; Chen et al., 2020;
Wang et al., 2022). Through reviewing the literature, it is known that
the decoration of ancient glass is closely related to its use, and the
color of cultural relics of the same use is also generally similar. In this
paper, color data were missing for artifacts with ornamentation
Types A and C. The statistics of these two types of decoration were

used to obtain “pale blue” for the color of the mode. The color
distributions of Type A and Type C decoration are shown
in Figure 1.

5.1.2 Outlier identification and handling—distance
discriminant method

In the following, the weathering condition of the sampling
points on the surface of the unweathered samples was judged by
the distance discrimination method (Gong and Lu, 2014; Flamary
et al., 2018; Ye et al., 2018). A schematic diagram of the distance
discrimination method is shown in Figure 2.

TABLE 1 Selected data to be explored.

AN Ornamentation Typology Color Surface
weathering

AN Ornamentation Typology Color Surface
weathering

1 C High
potassium

Blue-
green

Unweathered 11 C Lead-barium Pale blue Weathered

2 A Lead-barium Pale blue Weathered 12 B High
potassium

Blue-
green

Weathered

3 A High
potassium

Blue-
green

Unweathered 13 C High
potassium

Pale blue Unweathered

4 A High
potassium

Blue-
green

Unweathered 14 C High
potassium

Dark
green

Unweathered

5 A High
potassium

Blue-
green

Unweathered 15 C High
potassium

Pale blue Unweathered

6 A High
potassium

Blue-
green

Unweathered 16 C High
potassium

Pale blue Unweathered

7 B High
potassium

Blue-
green

Weathered 17 C High
potassium

Pale blue Unweathered

8 C Lead-barium Purple Weathered 18 A High
potassium

Deep
blue

Unweathered

9 B High
potassium

Blue-
green

Weathered 19 A Lead-barium - Weathered

10 B High
potassium

Blue-
green

Weathered 20 A Lead-barium Pale blue Unweathered

*Where AN is the cultural relic number.

FIGURE 1
Color distribution of ornamentation as A and C.
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D �

������������∑n
i�1

Xobs − Yi( )2

n
,

√√
(1)

where D represents the mean relative error, Yi represents the known
SiO2 content of weathered or unweathered samples at the sampling
point, Xobs represents the SiO2 content of a particular sampling
point of an observed surface of an unweathered sample, and n
represents the number of samples within the weathered or
unweathered set at the sampling point. The outliers are obtained
from this process, and the outliers are corrected to the actual amount
of weathering.

5.2 Weathering in relation to glass type,
texture, and color

After consulting relevant information, it is found that the degree
of weathering of glass is affected by both the type of glass itself and
other external factors, such as the burial environment. An important
result of weathering is the change of glass color: some areas of glass
that were originally green may become purple or gray-yellow. The
decoration of the glass does not affect weathering. However, there is
a close correspondence between different types of decoration and
weathering results, which is contrary to the known theory that
ornamentation has little effect on weathering. Therefore, this paper
speculates that the decoration of glass, as a symbol of regional
culture, represents the geographical environment of different
regions, and the natural environment of different regions is an
important factor influencing the weathering results. A graph of the
relationship between weathering and glass type, decoration, and
color is shown in Figure 3.

The glass type and decoration were first analyzed in relation to
weathering, and the statistical results are shown in Table 2.

Table 2 suggests the following conclusions: three types of
ornamentation, A, B, and C, are present in high-potassium glass.
Of these, the Type B samples are all weathered, while the Type A and
Type C samples are unweathered. In the lead-barium glass, the Type
A samples are weathered, and the Type C samples are unweathered.

When analyzing the relationship between glass type and
weathering, this article uses ornamentation as a control variable.
Because lead-barium glass does not contain samples with Type B
ornamentation, this paper analyzes Types A and C. Among them, all
of the high-potassium glass is not weathered, while the total
weathering rate of the Types A and C lead-barium glass is 70%.
Therefore, it is concluded that high-potassium glass is less
susceptible to weathering than lead-barium glass.

Analyzing the relationship between ornamentation and
weathering began with the analysis of Type B ornamentation. In
the given sample, all of the glass with Type B ornamentation was
weathered, probably because the geographic environment in which
the Type B ornamentation was found made it more susceptible to
weathering. Therefore, it is speculated that all glass with Type B
motifs would be weathered.

5.3 Statistical analysis of chemical
composition content

The statistical analysis of the chemical composition content is
divided into two parts: high-potassium glass and lead-barium glass.

(1) In high-potassium glass, the means, standard deviations, and
standard errors of the mean of each component in the
weathered and unweathered cases were calculated, and the
variance was tested by an independent sample test.

Hypothesis. testing of the variance: Consider the statistical
hypothesis H0: σ21 � σ22;H1: σ21 ≠ σ22, and μ1, μ2 are unknown.
This hypothesis can be transformed:

H0:
σ21
σ22

� 1, (2)

H1:
σ21
σ22

≠ 1. (3)

Because S1X, S
2
X is the minimum variance unbiased statistic for

the variance σ21, σ
2
2, respectively,

S1X
S2X
should be in the neighborhood of

1 in caseH0 holds, and therefore, the rejection domain ofH0 can be
chosen to be of the form:

K0 � S2X
S2Y

< c1, or
S2X
S2Y

> c2{ }, c1 < c2 (4)

By:

P
S2X
S2Y

< c1( ) ∪
S2X
S2Y

> c2( ) | H0 is established( ) � α (5)

Order:

P
S2X
S2Y

< c1( ) � P
S2X
S2Y

> c2( ) � α

2
, (6)

P
S2X
S2Y

<F α
2
n − 1, m − 1( )( ) � P

S2X
S2Y

>F1−α
2
n − 1, m − 1( )( ) � α

2
.

(7)
Get the denial field of H0 as follows:

FIGURE 2
Schematic diagram of distance discrimination method.
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S2X
S2Y

<F α
2
n − 1, m − 1( ) or S

2
X

S2Y
>F1−α

2
n − 1, m − 1( ) (8)

The test revealed that the p-value > 0.05 for the differences
between the relative amounts of potassium oxide, aluminum
oxide, copper oxide, phosphorus pentoxide, and tin oxide in
the weathered and unweathered cases. Therefore, the original
hypothesis could not be rejected. It was concluded that the
relative amount of these five compounds did not change due
to weathering.

At this point, comparisons of the means of these five
components will be made with equal variances. A hypothesis test
is performed on the means of two components, at which point the
σ21, σ

2
2 of the two components is known.
When H0 holds, there is as follows:

�X~ N μ1,
σ21
n

( ), (9)

�Y~ N μ2,
σ22
m

( ). (10)

So, there is as follows:

�X − �Y~ N 0,
σ21
n
+ σ22
m

( ), (11)

u � �X − �Y�����
σ21
n + σ22

m

√ ~ N 0, 1( ), (12)

P
�X − �Y�����
σ21
n + σ22

m

√ > u1−α
2

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ � α, (13)

P �X − �Y
∣∣∣∣ ∣∣∣∣> u1−α

2

������
σ21
n
+ σ22
m

√( ) � α. (14)

In this paper, R software was used to test the results obtained. The
test results show that the p-value > 0.05 for the different amounts of
copper oxide and tin oxide with and without weathering, which does
not reject the original hypothesis. That is to say, the amounts of copper
oxide and tin oxide with and without weathering are equal. The
p-value < 0.05 for the different amounts of potassium oxide,
alumina, and phosphorus pentoxide, which rejects the original
hypothesis, that is to say, the relative amounts of potassium oxide,
alumina, and phosphorus pentoxide change with weathering.

This results in unequal variances for the residual components of
the weathered and unweathered cases. R software is still utilized to
realize the hypothesis test for the comparison of two overall means.

From the test results, it can be seen that the test results show that
the p-value > 0.05 for the different relative amounts of silicon oxide,
sodium oxide, lead oxide, barium oxide, and sulfur dioxide with and
without weathering, which does not reject the original hypothesis.
That is, the relative amounts of silicon oxide, sodium oxide, lead
oxide, barium oxide, and sulfur dioxide do not change with
weathering.

The p-value < 0.05 for the different amounts of calcium oxide,
magnesium oxide, iron oxide, and strontium oxide, which rejects the
original hypothesis. That is, the relative amounts of calcium oxide,
magnesium oxide, iron oxide, and strontium oxide do not change
with weathering. However, the total relative amount of silicon oxide
is larger before weathering, and the difference between the silicon
oxide content in the weathered and unweathered samples is larger;
this paper considers that the mean values are unequal.

Therefore, the following equations can be established to
determine the pattern of chemical content with and without
weathering.

yi � xi, i � 2, 8, 9, 10, 13, 14 (15)
yi � aixi, i � 1, 3, 4, 5, 6, 7, 11 (16)

yi � xi + ai, i � 12 (17)

FIGURE 3
Graph of weathering in relation to glass type, ornamentation and color.

TABLE 2 Statistics on weathering and glass types and ornamentation.

Glass type Ornamentation Weathering Quantities

High-potassium
glass

A Unweathered 6

B Weathered 6

C Unweathered 6

Lead-barium
glass

A Weathered 11

Unweathered 5

C Weathered 17

Unweathered 7
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Eq. 15, Eq. 16, and Eq. 17 express the relationship between the
components with and without weathering.

Eq. 15 expresses the relationship between the content of the six
constituents, sodium oxide, copper oxide, lead oxide, barium oxide,
tin oxide, and sulfur dioxide, with or without weathering when the
mean values are equal, that is, the content of the unweathered
constituents is equal to the content of the weathered constituents.

Eq. 16 represents the relationship between the content of silica,
potassium oxide, calcium oxide, magnesium oxide, alumina, iron
oxide, and phosphorus pentoxide with and without weathering
when the mean values are not equal, that is, the content of the
weathered component multiplied by the coefficient ai equals the
content of the non-weathered component, of which the values of
a1, a3, a4, a5, a6,, a7, a11 are 0.74, 17.98, 6.69, 5.35, 3.36, 6.67, and
4.29, respectively. The vector can be expressed as
(a1, a3, a4, a5, a6,, a7, a11) � (0.74, 17.98, 6.69, 5.35, 3, 36, 6.67, 4.29).

Eq. 17 expresses the relationship between strontium oxide
content with and without weathering when the mean values are
unequal, that is, the content of the weathered component multiplied
by the coefficient ai is equal to the content of the non-weathered
component, where the value of a12 is 0.03, which can be expressed by
the vector (a12) � 0.03.

(2) In lead-barium glass, the mean, standard deviation, and
standard error of the mean were calculated for each
component in the weathered and unweathered cases, and
the independent sample test was conducted to determine the
variance. The test revealed that the p-values < 0.05 for the
difference in the relative amounts of sodium oxide and
phosphorus pentoxide with and without weathering. The
original hypothesis was rejected. The relative amounts of
sodium oxide and phosphorus pentoxide change with
weathering. The other components of lead-barium glass
did not change with weathering.

Sodium oxide and phosphorus pentoxide have unequal
variances with and without weathering, in which case the
hypothesis test for the comparison of the two overall means is
carried out. From the test results, the p-value > 0.05 for the amounts
of sodium oxide with and without weathering, which does not reject
the original hypothesis that the means with and without weathering
are equal. The p-value < 0.05 for the relative amounts of phosphorus
pentoxide with and without weathering, which rejects the original
hypothesis.

The variance of other elements in the weathered and
unweathered cases are equal, and the hypothesis test of
comparing the two overall means is still carried out. From the
test results, it can be seen that the p-value > 0.05 for nine
components (potassium oxide, magnesium oxide, aluminum
oxide, iron oxide, copper oxide, barium oxide, strontium oxide,
tin oxide, and sulfur dioxide), which does not reject the original
hypothesis, that is, the means with and without weathering are
equal. The p-value < 0.05 for the amounts of silicon dioxide, calcium
oxide, and lead oxide with and without weathering, and the
hypothesis is rejected. The relative amounts of silicon dioxide,
calcium oxide, and lead oxide change with weathering. The
following equation was established to determine the chemical
content pattern with and without weathering.

yi � xi, i � 2, 3, 5, 6, 7, 8, 10, 12, 13, 14 (18)
yi � bixi, i � 1, 4, 9, 11 (19)

Eq. 18 expresses the relationship between the relative amounts of
nine constituents (sodium oxide, potassium oxide, magnesium
oxide, aluminum oxide, iron oxide, copper oxide, barium oxide,
strontium oxide, tin oxide, and sulfur dioxide), with or without
weathering when the mean values are equal, that is, the relative
amounts of the unweathered constituents is equal to the relative
amounts of the weathered constituents.

Eq. 19 expresses the relationship between the relative amounts of
silica, calcium oxide, lead oxide, and phosphorus pentoxide with and
without weathering when the mean values are not equal, that is, the
content of the weathered component multiplied by the factor ai
equals the content of the unweathered component, where
(b1, b4, b9, b11) � (1.97, 0.38, 0.51, 0.20).

6 Prediction of chemical content of
artifacts prior to weathering

6.1 Selection and establishment of
predictive models

Due to the small amount of sample data explored in this article, a
gray prediction model was used to predict the chemical composition
content of artifacts before weathering. Gray prediction is a method
for predicting systems that contain uncertainties. Gray prediction
analyzes the degree of correlation between the various systems and
the original data and does a cumulative generation of the sequence
and the mean of the sequence to generate the sequence, resulting in a
strong regularity of the data sequence. Then, gray prediction
establishes a corresponding differential equation model to predict
the status of future development trends. Its solving steps are shown
in Figure 4.

6.1.1 Examination and processing of data
In order to ensure the feasibility of the modeling method, it is

necessary to do the necessary test processing of the “known” data
columns. For the high-potassium glass category, the statistical laws
already determined show that the content of the four chemical
components, silicon dioxide, potassium oxide, calcium oxide, and
alumina, changed significantly after weathering. Only these four
chemical components are considered in the data predictions. Taking
silica as an example, the chemical component content composition
sequence of silica for high-potassium glass without weathering is
as follows:

x 0( ) � x 0( ) 1( ), x 0( ) 2( ), . . .x 0( ) 12( )( ) (20)

Immediately after that, the level ratio of the sequence is
calculated:

λ k( ) � x 0( ) k − 1( )
x 0( ) k( ) , k � 2, 3, . . . , 12. (21)

Then, the sequence can be used as data for the gray prediction
model, and all the level ratios fall to satisfy the requirement of
tolerable coverage:
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θ � e−
2
13, e−

2
14( ). (22)

If it does not satisfy this condition, the sequence x(0) needs to be
processed with the necessary transformations to make it fall within
the admissible cover. In other words, take the appropriate constant c
and perform a translation transformation:

y 0( ) k( ) � x 0( ) k( ) + c, k � 2, 3, . . . , 12 (23)
such that the sequence has a grade ratio of

λy k( ) � y 0( ) k − 1( )
y 0( ) k( ) ∈ θ, k � 2, 3, . . . , 12. (24)

6.1.2 Modeling
The data column x(0) � (x(0)(1), x(0)(2), . . .x(0)(12)) is

obtained by accumulating the generated sequences one at a time:

x 1( ) � x 1( ) 1( ), x 1( ) 2( ), . . .x 1( ) 12( )( )
� x 0( ) 1( ), x 0( ) 1( ) + x 0( ) 2( ), . . .x 0( ) 1( ) + . . . + x 0( ) 12( )( ). (25)

The mean value of x(1) generates the sequence
z(1) � (z(1)(2), z(1)(3), . . . z(1)(12)), where:

z 1( ) k( ) � 0.5x 1( ) k( ) + 0.5x 1( ) k − 1( ), k � 2, 3, . . . , 12. (26)

Subsequently, the gray differential equation is established:

x 0( ) k( ) + az 1( ) k( ), k � 2, 3, . . . , 12. (27)

The three matrices of u, Y, B are established, and the
corresponding whitened differential equations are as follows:

dx 1( )

dt
+ ax 1( ) t( ) � b, (28)
u � a, b[ ]T, (29)

Y � x 0( ) 2( ), x 0( ) 3( ), . . .x 0( ) 12( )[ ]T, (30)

B �
z 1( ) 2( ) 1
z 1( ) 3( ) 1

..

. ..
.

z 1( ) 12( ) 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (31)

Then, by least squares, find the make:

J u( ) � Y − Bu( )T Y − Bu( ). (32)

The estimate of μ that reaches the minimum value is
as follows:

û � â, b̂[ ]T � BTB( )−1BTY. (33)

From there, solving the whitening differential equation yields
the predicted values:

x̂ 1( ) k + 1( ) � x 0( ) 1( ) − b̂

â
( )e−âk + b̂

â
, k � 0, 1,/ (34)

x̂ 0( ) k + 1( ) � x̂ 1( ) k + 1( ) − x̂ 1( ) k( ), k � 0, 1, . . . (35)

6.1.3 Testing the predicted value
Residuals:

ε k( ) � x 0( ) k( ) − x̂ 0( ) k( )
x 0( ) k( ) , k � 1, 2, 3, . . . , 12 (36)

In the above equation, x(0)(1) � x̂(1)(0). If ε(k)< 0.2, it is
considered to meet the general requirements; if ε(k)< 0.1, it is
considered to meet the higher requirements.

FIGURE 4
Gray prediction flowchart.
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6.1.4 Forecasting
The predicted values of the artifacts before weathering are

obtained from the GM(1,1) model, and the corresponding
predictive forecasts are given according to the actual situation.

6.2 Solution of the prediction model

After solving, it can be concluded that the data series of the silica
content of high-potassium glass is as follows:

x 0( ) � x 0( ) 1( ), x 0( ) 2( ), . . .x 0( ) 12( )( )
� 69.33, 87.05, 61.71, 65.88, 61.58, 67.65, 59.81,(

62.47, 65.18, 79.46, 76.68) (37)
Its class ratio is as follows:

λ k( ) � 0.7964, 1.4106, 0.9367, 1.0698, 0.9103, 1.1311, 1.0136,(
0.9446, 0.9584, 0.8203, 1.0363). (38)

Because all the λ(k) ∈ [0.7964, 1.4106], k � 2, 3,/, 12, this can
be used as the model of the sequence of data for gray prediction; the
original data at a time cumulative obtained:

x 1( ) � 69.33, 156.38, 218.09, 283.97, 345.55, 413.20, 473.01, 532.02,(
594.49659.67, 739.13, 815.81) (39)

Construct data matrices and data vectors:

B �

−112.855 1
−187.235 1
−251.03 1
−314.76 1
−379.375 1
−443.105 1
−502.515 1
−563.255 1
−627.08 1
−699.4 1
−777.47 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(40)

Y �

87.05
61.71
65.88
61.58
67.65
59.81
59.01
62.47
65.18
79.46
76.68

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(41)

Calculated through the matrix:

û � â, b̂[ ]T � BTB( )−1BTY � −0.0015
67.1997

[ ] (42)

This can be obtained from â � −0.0015, b̂ � 67.1997. Thus, the
differential equation is established:

dx 1( ) t( )
dt

+ ax 1( ) t( ) � b (43)

Eventually available:

x̂ 1( ) k + 1( )

� x 0( ) 1( ) − b̂

â
( )e−âk + b̂

â

� 44869.13e0.0015k − 44799.8

(44)

Representative chemical components of high-potassium glass
and lead-barium glass, such as silica, potassium oxide, and lead
oxide, are selected for analysis. The predicted content map of the
main elements in the high-potassium category is shown
in Figure 5.

The data analysis was carried out by MATLAB, and it can be
seen from Figure 5 that the predicted silica content of weathered
high-potassium glass increases continuously with the amount of
weathering, while the relative amounts of potassium oxide and
calcium oxide decrease. The silica content of unweathered high-
potassium glass varies. The prediction of the main components of
the lead-barium glass is shown in Figure 6.

Figure 6 shows that the predicted values of silica content in lead-
barium glass before weathering are 57.534%, 58.171%, and 60.787%
for the three severe weathering sample points of 08, 26, and 54,
respectively. That is to say, the silica content decreases while the
percentages of lead oxide and barium oxide increase with increased
weathering.

The results of the calculations are shown in Table 3 and Table 4
as an example. Due to space limitations in the main text, only some
of the detailed data are shown.

7 Exploring differences in chemical
constituent associative relationships

7.1 Disparity modeling

This article will further analyze the correlations between
chemical compositions for different categories of glass artifact
samples and compare the differences in the correlations between
different categories.

In this article, the generalized Shapley function based on a better
is selected to analyze the correlation relationship between indicators,
where λ denotes the fuzzy measure that can analyze the interactions
between individual indicators relative to other remaining arbitrary
indicator sets and is also able to analyze the interactions between
arbitrary indicator sets relative to the remaining arbitrary indicator
sets. This fuzzy measure can make the analysis results more accurate
and more in line with the reality.

The use of this analysis requires data standardization, and when
the indicator Cj is numerical, the data are processed and
standardized to obtain it:

yij � aij�������∑n
i�1

aij( )2√ (45)

Let X � x1, x2, . . . , xn{ } be a nonempty set and P(X) be a power
set on X λ ∈ (−1,∞), μ: P(X) → [0, 1], if P(X) satisfies the
following three points: (i) μ(0) � 0, μ(X) � 1; ②

∀A, B ∈ P(X), A ⊂ B, then μ(A)≤ μ(B); ③
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FIGURE 5
Lead-barium major element projections.

FIGURE 6
Lead-barium major element projections.

TABLE 3 Predicted chemical composition content of glass before weathering.

ASP SiO2 Na2O K2O CaO MgO Al2O3 Fe2O 3

11 25.1 0.0 0.0 1.2 0.0 1.9 0.0

25 UP 25.1 0.0 0.0 1.2 0.0 1.9 0.0

34 33.6 0.0 0.0 1.2 0.0 1.9 0.0

36 33.6 0.0 0.0 1.2 0.0 1.9 0.0

37 67.8 2.1 14.5 8.3 0.5 6.2 0.4

38 33.6 0.0 0.0 1.2 0.0 1.9 0.0

*Where ASP is artifact sampling points, SiO2 is silicon dioxide, Na2O is sodium oxide, K2O is potassium oxide, CaO is calcium oxide, MgO is magnesium oxide, Al2O3 is aluminum oxide, Fe2O3

is iron oxide, and UP is unweathered points.

Frontiers in Chemistry frontiersin.org09

Cai et al. 10.3389/fchem.2024.1351143

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2024.1351143


μ(A ∪ B) � μ(A) + μ(B) + λμ(A)λμ(B), then μ is said to be the λ -
fuzzy measure on X can be found: ① When λ � 0, which can be
obtained from μ(A ∪ B) � μ(A) + μ(B), then A and B are
independent of each other; ② When λ< 0,
μ(A ∪ B)< μ(A) + μ(B), then A and B have a cross-relationship;
③ When λ> 0, μ(A ∪ B)> μ(A) + μ(B), then A and B have a
complementary relationship.

Based on the correlation relationship between indicators of λ -
fuzzy measure, let μ(xi) denote the fuzzy measure. Then, the fuzzy
measure formula of A is as follows:

μ A( ) �
1
λ

∏
xj∈A

1 + λμ xj( ) − 1[ ]⎛⎝ ⎞⎠, λ ≠ 0

∑
xj∈A

μ xj( ), λ � 0

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (46)

Let A = X, then μ(A) � μ(X) � 1 can be obtained:

λ + 1 � ∏m
j�1

1 + λμ xj( )[ ],−1< λ<∞, λ ≠ 0 (47)

The Shapley function formula based on the λ - fuzzy measure is
as follows:

gs g,X( ) � ∑
T⊆ X−S( )

n − s − t( )!t!
n − s + 1( )! μ A ∪ T( ) − μ T( )[ ] (48)

whereX denotes the full set of indicators, S denotes a subset inX,X-S
is the difference set between the set X and the set S, T denotes a
subset in X-S, and n, T, S denotes the base of X, T, S.

7.2 Differential modeling solutions for
exploring chemical compositional
correlations

The above study makes it clear that studying the relationship
between the chemical composition of different glass artifact samples
requires consideration of weathering. Hence, we address four
categories.

(1) High-potassium glass in a weathered background

First, for weathered high-potassium glass, the standard values of
individual chemical components are shown in Table 5, and the

importance of each component is shown in Table 6. The calculated
fuzzy measurements are shown in Table 7.

According to the fuzzy measurements in Table 12, the chemical
composition of weathered high-potassium glass is not highly
correlated, and its correlation is weak.

(2) Lead-barium glass in a weathered context

For weathered lead-barium glass, the standard values of the
individual chemical compositions are shown in Table 8. The
resulting calculated chemical compositional importance is shown
in Table 9. The calculated fuzzy measurements are shown
in Table 10.

According to the fuzzy measure, there is a medium degree of
correlation for the chemical composition of weathered lead-barium
glass: there is a correlation between the chemical content of silica,
barium oxide, and lead oxide.

(3) High-potassium glass in an unweathered background

For unweathered high-potassium glass, the standard values for
individual chemical compositions are shown in Table 11. The
resulting calculated chemical compositional importance is shown
in Table 12. The calculated fuzzy measurements are detailed
in Table 13.

According to the fuzzy measurements in Table 13, it can be
seen that the degree of correlation is not high for the chemical
composition of unweathered high-potassium glass, but there is a
correlation between the chemical content of silica and
calcium oxide.

(4) Lead-barium glass in an unweathered background

For unweathered lead-barium glass, the standard values for the
individual chemical constituents are shown in Table 14. The
resulting calculated chemical compositional importance is shown
in Table 15. The calculated fuzzy measurements are shown
in Table 16.

Table 16 shows the degree of correlation for the chemical
composition of unweathered lead-barium glass is high, and there
is a certain correlation consistency relationship.

The Shapley function values for each category are then
calculated according to Eq. 48. For weathered high-potassium
glass, g1(g,X) � 0.305; for weathered lead-barium glass,

TABLE 4 Predicted chemical composition content of weathered high-potassium glass before weathering.

ASP CuO PbO BaO P2O5 SrO SnO2 SO2

11 0.8 41.3 15.5 2.5 0.0 0.0 0.0

25 UP 0.8 41.3 15.5 2.5 0.0 0.0 0.0

34 0.8 41.3 15.5 2.5 0.0 0.0 0.0

36 0.8 41.3 15.5 2.5 0.0 0.0 0.0

37 1.1 0.1 0.0 0.0 0.0 0.0 0.0

38 0.8 41.3 15.5 2.5 0.0 0.0 0.0

*Where ASP is artifact sampling points, CuO is copper oxide, PbO is lead oxide, BaO is barium oxide, P2O5 is phosphorus pentoxide, SrO is strontium oxide, SnO2 is tin oxide, SO2 is sulfur

dioxide, and UP is unweathered points.
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g2(g,X) � 0.431, for unweathered high-potassium glass,
g3(g,X) � 0.394, and for unweathered lead-barium glass,
g4(g,X) � 0.497.

It is clear that there is a difference between these correlations.
The Shapley function values progressively decrease, and the
correlations become weaker from unweathered lead-barium glass
to weathered lead-barium glass to unweathered high-potassium
glass and finally to weathered high-potassium glass.

8 Conclusion

This paper focuses on the statistical analysis, prediction, and
correlation analysis of the chemical and molecular composition of
ancient glassware.

R software is used to realize the hypothesis test for the comparison of
two overall means. Equations are established to determine the pattern of
the chemical content of different types of glass with and without

TABLE 5 Standard values of each component of high-potassium glass in the context of weathering.

Chemical composition SiO2 Na2O KO2 CaO MgO Al2O3 Fe2O3

Standard value 0.9 0 0.0 0.0 0.0 0.0 0.0

Chemical composition CuO PbO BaO P O25 SrO SnO2 SO2

Standard value 0.0 0 0 0.0 0 0 0

TABLE 6 Importance of each component of high-potassium glass in the context of weathering.

Entropy weight μ(C1) μ(C2) μ(C3) μ(C4) μ(C5) μ(C6) μ(C7)
Significance 0.1 0 0.2 0.1 0.1 0.1 0.2

Entropy weight μ(C8) μ(C9) μ(C10) μ(C11) μ(C12) μ(C13) μ(C14)

Significance 0.1 0 0 0.1 0 0 0

TABLE 7 Fuzzy measures of the chemical composition of high-potassium glasses in the context of weathering.

Fuzzy measure Fuzzy
measurements

Fuzzy
measure

Fuzzy
measurements

Fuzzy
measure

Fuzzy
measurements

μ(C1 , C3) 0.3 μ(C3 , C8) 0.3 μ(C1 , C3 , C9) 0.2

μ(C1 , C4) 0.5 μ(C3 , C9) 0 μ(C1 , C4 , C9) 0.2

μ(C1 , C8) 0.4 μ(C3 , C10) 0 μ(C1 , C9 , C10) 0.2

μ(C1 , C9) 0 μ(C3 , C11) 0 μ(C3 , C9 , C10) 0.1

μ(C1 , C10) 0 μ(C9 , C10) 0 μ(C3 , C9 , C11) 0.2

μ(C1 , C11) 0.3 μ(C9 , C11) 0 μ(C1 , C3 , C9 , C10) 0.1

TABLE 8 Standard values for each component of lead-barium glass in the weathering background.

Chemical composition SiO2 Na2O KO2 CaO MgO Al2O3 Fe2O3

Standard value 0.3 0.0 0.0 0.0 0.0 0.0 0.0

Chemical composition CuO PbO BaO P O25 SrO SnO2 SO2

Standard value 0.0 0.4 0.1 0.0 0.0 0.1 0.0

TABLE 9 Importance of each component of lead-barium glass in the context of weathering.

Entropy weight μ(C1) μ(C2) μ(C3) μ(C4) μ(C5) μ(C6) μ(C7)
Significance 0.1 0.1 0.0 0.1 0.1 0.1 0.1

Entropy weight μ(C8) μ(C9) μ(C10) μ(C11) μ(C12) μ(C13) μ(C14)

Significance 0.1 0.1 0.1 0.1 0.1 0.0 0.0
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weathering. A gray prediction model was used to predict the chemical
content of artifacts before weathering. Data analysis was carried out
through MATLAB. With increased weathering degree, the relative
content of silica gradually decreases while the content of both lead

oxide and barium oxide increases. The generalized Shapley function
based on fuzzy measurements is selected to analyze the correlation
relationship between indicators, to analyze the correlation relationship
between their chemical compositions, and to compare the differences in

TABLE 10 Degree of correlation between the components of lead-barium glass in the context of weathering.

Fuzzy measure Fuzzy
measurements

Fuzzy
measure

Fuzzy
measurements

Fuzzy
measure

Fuzzy
measurements

μ(C1 , C3) 0.4 μ(C3 , C8) 0.3 μ(C1 , C3 , C9) 0.5

μ(C1 , C4) 0.4 μ(C3 , C9) 0.4 μ(C1 , C4 , C9) 0.5

μ(C1 , C8) 0.3 μ(C3 , C10) 0.4 μ(C1 , C9 , C10) 0.6

μ(C1 , C9) 0.5 μ(C3 , C11) 0.4 μ(C3 , C9 , C10) 0.5

μ(C1 , C10) 0.6 μ(C9 , C10) 0.5 μ(C3 , C9 , C11) 0.5

μ(C1 , C11) 0.4 μ(C9 , C11) 0.5 μ(C1 , C3 , C9 , C10) 0.6

TABLE 11 Degree of correlation of the components of high-potassium glass in the context of no weathering.

Chemical composition SiO2 Na2O KO2 CaO MgO Al2O3 Fe2O3

Standard value 0.7 0.0 0.1 0.1 0.0 0.1 0.0

Chemical composition CuO PbO BaO P O25 SrO SnO2 SO2

Standard value 0.0 0.0 0.0 0.0 0.0 0.0 0.0

TABLE 12 Importance of each component of high-potassium glass in the context of no weathering.

Entropy weight μ(C1) μ(C2) μ(C3) μ(C4) μ(C5) μ(C6) μ(C7)
Significance 0.1 0.1 0.1 0.1 0.1 0.1 0.0

Entropy weight μ(C8) μ(C9) μ(C10) μ(C11) μ(C12) μ(C13) μ(C14)

Significance 0.1 0.1 0.0 0.1 0.1 0.0 0.1

TABLE 13 Degree of correlation of the components of high-potassium glass in the context of no weathering.

Fuzzy measure Fuzzy
measurements

Fuzzy
measure

Fuzzy
measurements

Fuzzy
measure

Fuzzy
measurements

μ(C1 , C3) 0.7 μ(C3 , C8) 0.4 μ(C1 , C3 , C9) 0.4

μ(C1 , C4) 0.6 μ(C3 , C9) 0.3 μ(C1 , C4 , C9) 0.5

μ(C1 , C8) 0.5 μ(C3 , C10) 0.3 μ(C1 , C9 , C10) 0.2

μ(C1 , C9) 0.3 μ(C3 , C11) 0.4 μ(C3 , C9 , C10) 0.4

μ(C1 , C10) 0.2 μ(C9 , C10) 0.5 μ(C3 , C9 , C11) 0.4

μ(C1 , C11) 0.4 μ(C9 , C11) 0.4 μ(C1 , C3 , C9 , C10) 0.3

TABLE 14 Degree of correlation between the components of lead-barium glass in the context of no weathering.

Chemical composition SiO2 Na2O KO2 CaO MgO Al2O3 Fe2O3

Standard value 0.5 0.0 0.0 0.0 0.0 0.0 0.0

Chemical composition CuO PbO BaO P O25 SrO SnO2 SO2

Standard value 0.0 0.2 0.1 0.0 0.0 0.0 0.0
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the correlation relationship of chemical compositions between different
categories. It can be clearly seen that there are differences between these
correlations. The Shapley function values gradually decrease, and the
correlations become weaker from unweathered lead-barium glass to
weathered lead-barium glass to unweathered high-potassium glass and
finally to weathered high-potassium glass. The scheme proposed in this
paper can solve the difficult problemof category judgment in archeology,
which is of great significance in promoting the smooth progress of
archaeological work.
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TABLE 15 Importance of each component of lead-barium glass in the context of no weathering.

Entropy weight μ(C1) μ(C2) μ(C3) μ(C4) μ(C5) μ(C6) μ(C7)
Significance 0.1 0.1 0.0 0.1 0.1 0.1 0.1

Entropy weight μ(C8) μ(C9) μ(C10) μ(C11) μ(C12) μ(C13) μ(C14)

Significance 0.1 0.1 0.1 0.0 0.1 0.1 0.0

TABLE 16 Degree of correlation of the components of lead-barium glass in the context of no weathering.

Fuzzy measure Fuzzy
measurements

Fuzzy
measure

Fuzzy
measurements

Fuzzy
measure

Fuzzy
measurements

μ(C1 , C3) 0.6 μ(C3 , C8) 0.3 μ(C1 , C3 , C9) 0.5

μ(C1 , C4) 0.6 μ(C3 , C9) 0.4 μ(C1 , C4 , C9) 0.4

μ(C1 , C8) 0.6 μ(C3 , C10) 0.4 μ(C1 , C9 , C10) 0.5

μ(C1 , C9) 0.5 μ(C3 , C11) 0.3 μ(C3 , C9 , C10) 0.5

μ(C1 , C10) 0.4 μ(C9 , C10) 0.5 μ(C3 , C9 , C11) 0.5

μ(C1 , C11) 0.4 μ(C9 , C11) 0.4 μ(C1 , C3 , C9 , C10) 0.6
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