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The CaFe12O19/MnFe2O4 composites with the hard (CaFe12O19) and soft
(MnFe2O4) magnetic phases, were prepared by chemical co-precipitation
method. The prepared composites were calcined at three different
temperatures to form different phases. The structural, morphological, and
magnetic properties of composite were analyzed by X-ray diffraction (XRD),
Fourier transform infrared spectroscopy (FTIR), room temperature vibrational
sample magnetometer (VSM), and transmission electron microscopy (TEM). The
presence of the hard and soft phases has been confirmed without any secondary
phase from XRD analysis, indicating the formation of composite. The crystallite
size is found to be in the range of 24–44 nmcalculated by Scherrer’s formula. The
TEM revealed hexagonal platelets of CaFe12O19 with spinel MnFe2O4 particles
with an average particle size of 48 nm formed at the surface of the CaFe12O19/
MnFe2O4 composite. The room temperature magnetic properties of composite
were evaluated by employing VSM. The magnetic measurements have displayed
enhancement in coercivity and magnetization for CaFe12O19/MnFe2O4,
indicating that the composite possessed excellent exchange coupling. The
composite’s enhanced energy product ((BH)max) made it highly promising for
biomedical applications such as hyperthermia. The exchange-spring coupled
magnetic composite was coated with dextran to make it biocompatible, which is
necessary for hyperthermia applications. The coating was confirmed using
Fourier transform infrared spectroscopy (FTIR). Cytotoxicity tests on Vero cell
lines showed that the coated composites had an excellent (>95%) cell survival
rate. The hyperthermia heating of composite was measured for different
concentrations of composite (0.25, 0.5, 1, 2, and 4 mg/mL) from which
specific loss power (SLP) was calculated. From these SLP values, the
optimized concentration was identified.
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1 Introduction

The exchange-spring mechanism is a process by which the
magnetic properties of soft and hard ferrites can be coupled
together. It is a type of magnetic coupling that occurs between
two magnetic materials with different coercivities. The soft magnetic
material, which has a low coercivity, is coupled to the hard magnetic
material, which has a high coercivity. This coupling is caused by the
exchange interaction, which is a quantum mechanical effect that
occurs between neighboring magnetic moments. This is achieved by
creating a composite material that contains both soft and hard
ferrites (Skomski and Coey, 1994; Hoque et al., 2013; Remya et al.,
2016; Song et al., 2011). In the early 1990s, Kneller and Hawig
proposed the theory of the exchange coupling concept between hard
and soft phases (Kneller and Khan., 1987).

Exchange-spring magnetic composites are a type of magnetic
composite that is particularly well-suited for magnetic particle
hyperthermia (Lee et al., 2011). These nanoparticles consist of
two different magnetic phases. In an exchange-spring system, two
magnetic phases are coupled together, such that the magnetization
of the soft phase is “pinned” to the magnetization of the hard phase.
This means that when an alternating magnetic field is applied to
exchange-spring magnetic nanoparticles, the two magnetic phases
try to align with the field.

However, the exchange interactions prevent them from fully
aligning. This creates a state of stress in the composites, which leads
to the generation of heat (Peiravi et al., 2022).

Exchange-spring composites are typically made of a hard
magnetic core and a soft magnetic shell. The hard core provides
a high coercive field, which helps to keep the soft shell aligned with
the applied magnetic field. The soft shell has a higher saturation
magnetization than the hardcore, which means that it can generate
more heat when it is rotated by the applied field (Roy and
Kumar, 2009).

Exchange-spring magnetic composites have been shown to be
more effective at generating heat than single-phase magnetic
particles. This is because the exchange-spring coupling helps to
prevent the soft phase from demagnetizing, which would otherwise
reduce the amount of heat that is generated. The heat generated by
exchange-spring magnetic particles is more localized than the heat
generated by other types of magnetic particles. This is because the
exchange interactions between the two magnetic phases help to
prevent the heat from spreading. This makes exchange-spring
magnetic particles more suitable for treating tumors that are
close to sensitive tissues, such as the brain, spinal cord, eyes,
blood vessels, etc. (Lee et al., 2011).

Calcium and manganese are two very essential body elements
that play an important role in bodily functions. Moreover, they are
non-toxic. The composites made by with those two ferrites will be
highly efficient for hyperthermia application and their intake rate
would be minimum.

2 Experimentation

CaFe12O19/MnFe2O4 composite ferrites were generated in this
study using the chemical co-precipitation process. The chemical co-
precipitation method is a simple, versatile, and scalable method for

synthesizing CaFe12O19/MnFe2O4 composite. Again, the method is
relatively inexpensive and does not require the use of toxic chemicals
(Amighian et al., 2006; Pullar, 2012). This process was used to
produce the composites of hard and soft ferrites in a 1:3 weight ratio.
To produce the CaFe12O19/MnFe2O4 composite, CaCl2.2H2O,
MnCl2.4H2O, FeCl3 salts were dissolved in deionized water under
vigorous stirring at 95°C. After 8M NaOH solution (excess base
concentration) was added to the solution, the pH of the solution was
maintained at 11. The solution’s color swiftly changed from brown
to black. The composite was filtered and extensively washed with
deionized water to remove chloride ions, followed by multiple
washes with ethanol to remove any remaining unwanted salts,
and lastly dried in a vacuum at 90°C for 72 h. The sample was
then ground in a mortar to separate the agglomerated particles to get
fine powder which was in an amorphous state. The fine powder was
first pelletized, and then it was calcined at three different
temperatures (600°C, 800°C, 1,000°C). After the calcination
process, the final product was ready, and in this product, all the
phases of the composite were formed. CaFe12O19/MnFe2O4

composite were coated with dextran for magnetic particle
hyperthermia. After several steps, dextran coated CaFe12O19/
MnFe2O4 composite samples with a concentration of 20 mg/mL
were prepared. The concentration of the prepared samples was
diluted to three different concentrations of 2 mg/mL, 1 mg/mL,
and 0.5 mg/mL for hyperthermia application.

3 Results and discussions

Qualitative X-ray diffraction analysis is a technique that uses
X-rays to identify the crystalline phases present in a material. X-ray
diffraction technique has been utilized to determine the structure,
crystallite size, and lattice parameter of prepared CaFe12O19/
MnFe2O4 composite ferrites. In this composite, hard ferrite and
soft ferrite are mixed in 1–3 ratio.

CaFe12O19:MnFe2O4 = 1:3.
The XRD pattern in Figure 1 shows the mixed ferrite phases of

the CaFe12O19/MnFe2O4 composite ferrites. Phase formation
usually is identified by the comparison of peaks with standard

FIGURE 1
X-ray diffraction pattern of CaFe12O19/MnFe2O4 composite
ferrites at three different calcination temperatures (600°C,
800°C, 1,000°C).
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JCPDS card (card no. 00-049-1,586 and card no.01-073–1964)
reference data values. The highest intensity diffraction peak of all
the samples was found at (107) orientation. The XRD pattern

consists of standard reflecting planes (006), (107), (202), (109),
(214), (303), and (222) confirming that the prepared samples belong
to M-type hexaferrite, and the structure of the crystal is a hexagonal

FIGURE 3
(A) M-H loop for uncoated CaFe12O19/MnFe2O4 composites at three calcination temperatures (600°C, 800°C, 1,000°C), (B) M-H loop for dextran-
coated CaFe12O19/MnFe2O4 composites at three calcination temperatures (600°C, 800°C, 1,000°C).

FIGURE 2
FTIR spectra for CaFe12O19/MnFe2O4 nanocomposite sample when the calcination temperatures are respectively 600°C, 800°C, and 1,000°C.
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close-packed structure. Again, it is also clear from the phase
identification that the phase is indeed of the crystalline MnFe2O4

particles, and the crystal structure is cubic spinel structure.
The lattice parameter of manganese ferrite (soft ferrite), which

has a cubic spinel structure, was determined using the formula
(Dhiman et al., 2008),

a � d
���������
h2 + k2 + l2

√

Where, the lattice parameter is denoted by a, interplanar spacing
is denoted by d, and h, k, and l are the miller indices for the
respective planes. The lattice constants (a and c) and lattice Volume
of unit cell (Vcell) of calcium hexaferrite (hard ferrite), which has a
hexagonal close packed (hcp) structure, were calculated by using
following equations (Shinde et al., 2020),

1
d2

� 4
3

h2 + hk + k2

a2
( ) + l2

c2

Vcell �
�
3

√
2
a2c

The lattice parameter for manganese ferrite (MnFe2O4) is
8.590Å. The c/a ratio of 3.667, which is slightly below the

standard value of 3.77, confirms the hexagonal close-packed
crystal structure of calcium hexaferrite.

FTIR spectrum is a measurement which can detect whether a
specific bond with a certain bond strength is present in a
compound. In this study, FTIR analysis was performed to
confirm successful dextran coating on CaFe12O19/MnFe2O4

composite ferrites. Possible interactions between composites
calcined at three temperatures (600°C, 800°C, and 1,000°C)
were analyzed. FTIR spectra for bare CaFe12O19/MnFe2O4

composite ferrites, dextran solution, dextran-coated sample
solutions are depicted in Figure 2.

In Figure 2, FTIR spectrum of the bare composites exhibits the
peak at 300–400 cm-1 which corresponds to the stretching vibrations
of intrinsic metal oxygen at octahedral sites while the peak at
580–440 cm-1 represents the stretching vibrations of metal oxides
at the tetrahedral and octahedral positions (Islam, K et al., 2020).
Stretching peak at 541 cm-1 and 474 cm-1 indicates existence of
metal-oxygen vibration mode of hexaferrite structure including
octahedral and tetrahedral sites respectively. For dextran and
coated composites, broad absorption peaks appeared at about
3,275 cm-1 which can be related to the presence of abundant
hydroxyl (-OH) groups (Predescu et al., 2018). Comparing

FIGURE 4
(A) TEM micrograph of uncoated composite calcined at 600°C, (B) TEM micrograph of dextran-coated composite calcined at 600°C, (C) TEM
micrograph of uncoated composite calcined at 800°C, (D) TEM micrograph of dextran-coated composite calcined at 800°C, (E) TEM micrograph of
uncoated composite calcined at 1,000°C, (F) TEM micrograph of dextran-coated composite calcined at 1,000°C.
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spectra for bare and dextran-coated composites, the appearance of
some new absorption bands can be observed. For instance, the bands
at about 1,147 cm-1 are due to the stretching vibration of C-N, and
the band at 1,352 cm-1 is attributed to the bending vibration of the
C–Hbond. These data prove that the surface of magnetic composites
has been covered with dextran polymer. It is believed that different
interactions such as van der Waals force, hydrogen bond, and
electrostatic interactions keep dextran on the surface of composites.

A physical property measurement system (PPMS) was used to
investigate the magnetic properties of synthesized CaFe12O19/
MnFe2O4 composite ferrites.

In this study, dextran-coated CaFe12O19/MnFe2O4 composite
ferrites calcined at three different temperatures (600°C, 800°C,
1,000°C) were studied as magnetic hyperthermia agents. The
amount of heat generated in magnetic hyperthermia depends on
the heating potential, so magnetic characterization schemes were
performed to determine the crucial factors for optimizing the
heating potential.

Soft ferrites have high magnetic saturation (MS), high
magnetic retentivity with low coercivity resulting in easy
magnetization and demagnetization. Hard ferrites have high
magnetic saturation with very high coercivity making them

FIGURE 5
Selected area diffraction pattern for- (A) uncoated composite at calcination temperature 600°C, (B) dextran-coated composite at calcination
temperature 600°C, (C) uncoated composite at calcination temperature 800°C, (D) dextran-coated composite at calcination temperature 800°C, (E)
uncoated composite at calcination temperature 1,000°C, (F) dextran-coated composite at calcination temperature 1,000°C.
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difficult to demagnetize and magnetize. The prepared
CaFe12O19/MnFe2O4 composite shows exchange-spring
coupling behavior, as evidenced by its saturation
magnetization (MS) and remanent magnetization (MR)
values that are higher than CaFe12O19 but lower than
MnFe2O4. The coercivity (HC) of the prepared sample is also
higher than MnFe2O4 but lower than CaFe12O19. Exchange-spring
coupling in magnetic materials can increase saturation
magnetization and remanent magnetization, which in turn
decreases coercivity and increases magnetic energy product
(Pahwa et al., 2017). In an exchange-spring magnet, the soft
and hard magnetic phases are mixed on a nanometer scale.
This allows the magnetic moments of the two phases to couple
together, resulting in a material with high saturation

magnetization, remanent magnetization, and coercivity (Ye
et al., 2020). So, the prepared CaFe12O19/MnFe2O4 composite,
which behaves like an exchange-spring coupling material, is highly
applicable for hyperthermia application.

Figure 3 (b) shows the M-H loop for dextran-coated
CaFe12O19/MnFe2O4 composite samples calcined at three
different temperatures. The hysteresis loops of the uncoated
and coated composites ferrites are similar in shape, but the
coated composites have a smaller coercivity and a lower
magnetic saturation (MS). The smaller coercivity is due to the
dextran coating, which provides a barrier to the movement of
domain walls. This makes it more difficult to magnetize the
composites, and hence the coercivity is reduced (Shaterabadi
et al., 2017).

FIGURE 6
High resolution TEM (HRTEM) image for uncoated composite when calcination temperature 1,000°C.

FIGURE 7
Medium (Vero) (A) sample without solvent, (B) sample with solvent, (C) 2 mg/mL concentrated uncoated sample calcined at 600°C, (D) 2 mg/mL
concentrated coated sample calcined at 600°C, (E) 2 mg/mL concentrated uncoated sample calcined at 800°C, (F) 2 mg/mL concentrated coated
sample calcined at 800°C, (G) 2 mg/mL concentrated uncoated sample calcined at 1,000°C, (H) 2 mg/mL concentrated coated sample calcined
at 1,000°C.
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The lowerMS is due to the dextran coating, which interacts with the
surface of the magnetite composites and disrupts the magnetic order.
This reduces the overall magnetization of the composites (Shaterabadi
et al., 2017). The remanent magnetization (MR) of the dextran-coated
composites is nearly zero, indicating the superparmagnetic behavior of
these samples (Shaterabadi et al., 2017). So, the prepared dextran-
coated CaFe12O19/MnFe2O4 composites are superparamagnetic in
behavior. The magnetic properties of the coated and uncoated
samples changed in a similar way, although the values for the
coated samples were slightly lower due to the coating.

Transmission Electron Microscopy (TEM) is an extremely strong
technique for examining the particle shape. The TEM image clearly
shows the crystal size and shape. TEM bright field images of uncoated
and coated samples of CaFe12O19/MnFe2O4 composites calcined at three
different temperatures (600°C, 800°C, 1,000°C). In the uncoated samples,
the particles are aggregated; however, the dextran coating in the coated
samples prevents aggregation and results in a dispersed sample
(Figure 4). The average particle size was found to be greater due to
the coating. The result from TEM is inconsistent with the result from
XRDbecauseXRDusuallymeasures the average particle size, while TEM
images can show individual, larger particles. From the TEM image, it can
be seen that uniform distribution of hard and soft phases, which
facilitates the exchange coupling between them. The hexagonal close-
packed structure of the calcium hexaferrite (CaFe12O19) and cubic spinel
structure ofmanganese ferrite (MnFe2O4) are confirmed by TEM image.

The different rings in the selected area diffraction pattern (SAED)
correspond to different crystal planes that are present in the sample.
From the SAEDpattern, it can be seen that uniform distribution of hard
and soft phases, which facilitates the exchange coupling between them.
The hexagonal close-packed structure of the calcium hexaferrite
(CaFe12O19) and cubic spinel structure of manganese ferrite
(MnFe2O4) are confirmed by TEM images. The SAED pattern of
nanocomposite ferrite confirms the presence of both the hard and
soft phases. The coexistence of both the hard and soft phases was
confirmed by selected area electron diffraction (SAED) pattern of (006)
(107), (202) (303) planes of calcium hexaferrite (CaFe12O19) and (311)
(511), (440) of planes of manganese ferrite (MnFe2O4).

SAED is a powerful tool for characterizing the crystal structure
of materials (Tivol, 2010). It can be used to identify the crystal
structure of materials. The series of rings in Figure 5 confirms the
polycrystallinity of the prepared CaFe12O19/MnFe2O4 composite.

Figure 6 provides the details of the interplanar distance of hard
magnetic phase 0.27nm, which belongs to CaFe12O19 (107)
crystallographic plane (Shinde and Dahotre, 2021) and soft
magnetic 0.25 nm magnetic phases belongs to MnFe2O4 (311)
crystallographic plane (Zipare et al., 2015). The lattice fringes of
both hard and soft magnetic phases are well matched with the
theoretical values from P63/mmc and Fd-3m for the calcium
hexaferrite (CaFe12O19) and manganese ferrite (MnFe2O4)
phases, respectively.

For employing any sample in a biomedical experiment, it is
essential to know whether it is biocompatible or not. In this study,
the cytotoxicity of dextran-coated CaFe12O19/MnFe2O4

composite ferrites was evaluated on the Vero cell line, a
kidney epithelial cell extracted from an African green monkey
(Figure 7). For this test, samples having a concentration of 2 mg/
mL were provided.

The survival of the cell is more than 95% for Vero cell lines
which can be said to be nontoxic easily (Figure 8). So, the prepared
dextran-coated CaFe12O19/MnFe2O4 composites are nontoxic.

Magnetic composites suspended in a liquid medium (ferrofluid)
can create heat due to magnetic losses when exposed to a high
frequency alternating magnetic field. Localized heat can cause
cancer cells to die. Composites that can increase temperature up
to 46°C are suitable for cancer treatment. Faster treatment with a low
metal content is highly desirable for hyperthermia applications (Li et
al., 2013; Yu et al., 2021). Furthermore, for effective therapy, the
temperature of cancerous tissue needs to reach 42°C − 46°C (Kim et
al., 1982; Garcia et al., 2012; Wolf., 2008).

Magnetic composites should be synthesized with the following
restrictions in mind for hyperthermia application: To begin, they
should have the maximum feasible specific loss power (SLP) within
the field and frequency range considered safe for the human body in
order to minimize any adverse effects and to be beneficial for
treating tiny tumors [Dutz and Hergt (2014)], second, they
should be near superparamagnetic with minimal magnetostatic
interactions in order to minimize aggregating, and third, they
should be biocompatible with moderate cytotoxicity.

Hyperthermia data analysis is used to measure the heating
properties of dextran-coated CaFe12O19/MnFe2O4 nanocomposite
ferrites with varying concentrations (0.25 mg/mL, 0.5 mg/mL, 1 mg/
mL, 2 mg/mL, and 4 mg/mL) to determine the relation between time
and temperature. The heating property of prepared nanoparticles
upon using an AC magnetic field with frequency 327 kHz and the
amplitude of the applied current was 239.4A.

The specific loss power (SLP) is defined as the amount of
electromagnetic energy lost per unit mass of magnetic material
and is represented in watts per Gram (Wgm−1). In a magnetic
hyperthermia experiment, it is proportional to the slope of the initial
heating curve.

SLP is calculated in the following way for magnetic
hyperthermia measurement (Kötitz et al., 1999),

SLP � cmS

m

dT

dt

FIGURE 8
Cell survival rate of the prepared composite at 2 mg/mL
concentrations on Vero cell lines.
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Where, the specific heat of the solvent is denoted by c, the mass of the
particle is denoted by m, the mass of the solvent is denoted by mS and
the slope of the linear region of the Temperature vs time curve is
denoted by dT/dt.

SLP estimate is critical for determining the heating
efficiency of magnetic composites and designing composites
optimally in order to establish the effectiveness of magnetic
hyperthermia.

The initial rise in the temperature with time was
approximately linear. The Figure 9 illustrates the rate of
heating increased with the concentration, as shown in the
temperature vs time curves. To kill cancer cells, 42°C-46°C
temperature is enough, and temperatures above 50 °C can
cause damage to healthy cells (Baronzio and Hager, 2008).

From the graphs (Figure 10), it can be observed that 0.5 mg/mL to
1.5 mg/mL concentration is optimal for hyperthermia treatment at
calcination temperature 600°C. Similarly, for calcination temperatures
800°C, and 1,000°C optimal concentrations are respectively 0.5 mg/mL
to 1.2 mg/mL, and 0.25 mg/mL to 0.5 mg/mL.

4 Conclusion

The heating profile shows that the necessary heat for the destruction
of cancerous cells can be easily obtained from this material at three
different calcination temperatures. The minimum concentration of
foreign particle intake for hyperthermia is o.25 mg/mL for
CaFe12O19/MnFe2O4 composite when calcined at 1,000°C.

FIGURE 9
(A) Heating property of dextran-coated CaFe12O19/MnFe2O4 composites (calcination temperature 600°C) at different concentrations, (B) Heating
property of dextran-coated CaFe12O19/MnFe2O4 composites (calcination temperature 800°C) at different concentrations, (C) Heating property of
dextran coated CaFe12O19/MnFe2O4 composites (calcination temperature 1,000°C) at different concentrations.
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