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Synthesis and catalytic application of polymeric-based nanocomposites are
important subjects among researchers due to their high lipophilicity as well as
high chemical and mechanical stability. In the present work, a novel
nanocomposite material involving ionic liquid and high-density polyethylene
supported tungstate (PE/IL-WO4

=) is synthesized, characterized and its
catalytic application is investigated. The coacervation method was used to
incorporate 1-methyl-3-octylimidazolium bromide ([MOIm] [Br]) ionic liquid in
high-density polyethylene, resulting in a PE/IL composite. Subsequently,
tungstate was anchored on PE/IL to give PE/IL-WO4

= catalyst. The PXRD, FT-
IR, EDX, TGA, and SEM analyses were used to characterize the PE/IL-WO4

=

composite. This material demonstrated high catalytic efficiency in the
synthesis of bioactive tetrahydrobenzo[a]xanthen-11-ones under green
conditions. The recoverability and leching tests were performed to investigate
the stability and durability of the designed PE/IL-WO4

= catalyst under applied
conditions.
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1 Introduction

Nowadays, one of the most important challenges in organic chemistry is the synthesis
and development of chemically stable, highly efficient, and recoverable catalysts
(Oozeerally et al., 2018; Jiang et al., 2020; Chen et al., 2023; Jain et al., 2023). To
improve the activity and recoverability of homogeneous catalysts, a wide variety of solid
materials have been developed as support (Franco et al., 2020; Saito and Kobayashi, 2020;
Das et al., 2021). Some attractive supports that have been used for the heterogenization of
the catalysts are molecular sieves (Rimaz et al., 2022; Gao et al., 2023), magnetic
nanoparticles (Xie and Wang, 2021; Xie and Li, 2023), montmorillonite (Chellapandi
and Madhumitha, 2022; Liu et al., 2023), commercial silica (Peron et al., 2021;
Chandrashekhar et al., 2022), two-dimensional manganese dioxide (MnO2) (Das
et al., 2020), and metal-organic frameworks (MOFs) (Goetjen et al., 2020; Lin et al.,
2022). In particular, polymeric materials have drawn a lot of interest as potential catalytic
support due to their high stability, easy synthesis and functionalization, and strong

OPEN ACCESS

EDITED BY

Zhen Ma,
Fudan University, China

REVIEWED BY

Asim Bhaumik,
Indian Association for the Cultivation of Science
(IACS), India
Tushar Kanti Das,
Silesian University of Technology, Poland
Jian He,
Jishou University, China

*CORRESPONDENCE

Dawood Elhamifar,
d.elhamifar@yu.ac.ir

RECEIVED 28 November 2023
ACCEPTED 06 February 2024
PUBLISHED 29 February 2024

CITATION

Mousavi F, Elhamifar D, Kargar S and Elhamifar D
(2024), Ionic liquid containing high-density
polyethylene supported tungstate: a novel,
efficient, and highly recoverable catalyst.
Front. Chem. 12:1346108.
doi: 10.3389/fchem.2024.1346108

COPYRIGHT

© 2024 Mousavi, Elhamifar, Kargar and
Elhamifar. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Chemistry frontiersin.org01

TYPE Original Research
PUBLISHED 29 February 2024
DOI 10.3389/fchem.2024.1346108

https://www.frontiersin.org/articles/10.3389/fchem.2024.1346108/full
https://www.frontiersin.org/articles/10.3389/fchem.2024.1346108/full
https://www.frontiersin.org/articles/10.3389/fchem.2024.1346108/full
https://www.frontiersin.org/articles/10.3389/fchem.2024.1346108/full
https://www.frontiersin.org/articles/10.3389/fchem.2024.1346108/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fchem.2024.1346108&domain=pdf&date_stamp=2024-02-29
mailto:d.elhamifar@yu.ac.ir
mailto:d.elhamifar@yu.ac.ir
https://doi.org/10.3389/fchem.2024.1346108
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org/journals/chemistry#editorial-board
https://www.frontiersin.org/journals/chemistry#editorial-board
https://doi.org/10.3389/fchem.2024.1346108


corrosion resistance (Gokmen and Du Prez, 2012; Shi et al., 2013;
Aziz and Islam, 2018; Jiang et al., 2021; Jiang et al., 2022).
Moreover, functionalized polymers are extensively employed in
various industries such as packaging (Wan et al., 2020),
transportation (Sarkar et al., 2019), biomedical engineering
(Szymczyk-Ziółkowska et al., 2020), sporting goods (Sharma
et al., 2020), electronics (Zhang et al., 2020), energy storage
(Zhang et al., 2021), and water treatment (Khodakarami and
Bagheri, 2021; Das et al., 2023). Some recently developed
catalysts in this matter are Pd/PVPy (Fusini et al., 2020), Poly-
NHC-2–Pd2+ (Xu et al., 2015), Au-NWs@Pd@PEI (Xue et al.,
2018), PS-TRIP (Clot-Almenara et al., 2016), and Pd@PANI
(Wang et al., 2019), PEEK-TBD (Shi et al., 2023). Among
different polymers, polyethylene (PE) is widely regarded as a
highly versatile material owing to its exceptional workability,
chemical inertness, affordability, high resistance to elevated
temperatures, and extensive compatibility with various
processing techniques. Therefore, PE is a promising candidate
for the immobilization of homogeneous catalysts (Pribyl et al.,
2019; Mohebbi and Farajzadeh, 2020; Kargar et al., 2022). Different

studies such as LDPE-supported ZVI (Mossmann et al., 2019),
PEt@Zn/IL (Zaki et al., 2021), and PEolig-NHC-Ru (Hobbs et al.,
2011) have been recently reported in this regard. However, the
catalyst leaching and inaccessibility to the active catalytic sites are
limitations of the most of the aforementioned systems. Therefore,
the design and development of an effective and robust PE-
supported catalytic system is an important objective in this matter.

On the other hand, ionic liquids (ILs) are extremely
important compounds with a wide range of potential
applications because of their hydrophobicity that can be
adjusted, excellent solubility with numerous compounds, and
negligible vapor pressure. These compounds have a high ability
to stabilize polar and charged catalysts due to their inherent ionic
nature. For instance, imidazolium-based ionic liquids are highly
effective in stabilizing transition metal complexes, thereby
enhancing their catalytic activities (Ni and Headley, 2010;
Karimi et al., 2018; Gao et al., 2021; Taheri et al., 2023). Thus,
combining imidazolium-based ILs with polyethylene supports
provides remarkable properties, including high activity,
selectivity, and reproducibility.

FIGURE 1
Preparation of PE/IL-WO4

=.
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The synthesis of tetrahydrobenzo[a]xanthen-11-ones has
also gained significant attention from chemists due to their
notable biological features such as antibacterial, antiviral, anti-
tumor, and antimalaria activities (Chibale et al., 2003; Nandi
et al., 2011; Mohammadi et al., 2014; Soliman and Khatab, 2018).
Tetrahydrobenzo[a]xanthen-11-ones are synthesized via
condensation of aromatic aldehydes, 1,3-dicarbonyl
compounds, and β-naphthols in the presence of acid catalysts
such as NaHSO4-SiO2 (Das et al., 2007), p-toluenesulfonic acid

(Janardhan et al., 2012), InCl3/P2O5 (Nandi et al., 2009), Caro’s
acid-silica gel (Karimi et al., 2010), ruthenium chloride
(Tabatabaeian et al., 2011), MSNBA-5 (Ray et al., 2014) and
phenylboronic acid (Goswami et al., 2011). There have been
many reported methods to prepare tetrahydrobenzo[a]xanthen-
11-ones (Oskooie et al., 2011; Mirjalili et al., 2012; Mondal et al.,
2012; Moosavi-Zare et al., 2013; Bahrami et al., 2014). However,
these have several drawbacks, including high catalyst loading,
low yields of the desired products and the use of pricey ligands,
time-consuming workups, challenging product and catalyst
separation, and the use of dangerous solvents. Therefore, it is
very important to develop an environmentally benign and highly
efficient method for the synthesis of tetrahydrobenzo[a]xanthen-
11-ones.

In view of the above and considering the advantages of
ionic liquid/polymer composites, this study presents the
synthesis of a newly developed nanocomposite consisting of
polyethylene and an ionic liquid, which serves as a support
for tungstate (PE/IL-WO4

=). Furthermore, the catalytic
efficacy of this nanocomposite in the environmentally
friendly synthesis of tetrahydrobenzo[a]xanthen-11-ones is
investigated.

2 Experimental section

2.1 Synthesis of PE/IL

The synthesis of the [MOIm] [Br] ionic liquid was done by
using a previously reported procedure (Kargar and Elhamifar,
2020). The PE/IL was subsequently synthesized using the
coacervation method as described below. In the first step, 1 g
of high-density polyethylene (PE) was dissolved in 15 mL of

FIGURE 2
FT-IR of (A) PE, (B) PE/IL and (C) PE/IL-WO4

=.

FIGURE 3
PXRD pattern of (A) PE, (B) PE/IL, and (C) PE/IL-WO4

= catalyst.
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xylene at reflux temperature for 30 min. Afterward, IL (0.4 g) was
added to the obtained mixture, and it was heated to reflux for 2 h.
Next, the resulting mixture was precipitated in methanol at 4°C.
The product was washed completely with MeOH, dried at 70°C
for 6 h, and denoted as PE/IL.

2.2 Synthesis of PE/IL-WO4
= catalyst

Todo this, 1 g of PE/ILwas added toDMSOand thoroughly dispersed
under ultrasonic irradiation for 30min. Then 0.30 g (0.82mmol) of
Na2WO4.4H2O was added, and the resulting mixture was stirred at

FIGURE 4
EDX of PE/IL-WO4

=.

FIGURE 5
EDX mapping of PE/IL-WO4

=.
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room temperature for 24 h. After filtration, complete washing with EtOH,
and drying at 70°C for 5 h, the PE/IL-WO4

= product was obtained.

2.3 Synthesis of tetrahydrobenzo[a]xanthen-
11-ones in the presence of PE/IL-
WO4

= catalyst

To do this, 0.10 mol% of PE/IL-WO4
= catalyst (based on the

amount of W) was added to a mixture of aldehyde (1 mmol), 2-
naphthol (1 mmol), dimedone (1 mmol), and ethanol (5 mL).
This combination was stirred under reflux conditions. TLC was
utilized to monitor the progress of the reaction. After the

reaction was finished, the catalyst was removed via filtration,
and the pure products were obtained by recrystallizing the
residue in EtOH.

2.4 IR, 1H NMR and 13C NMR data of
tetrahydrobenzo[a]xanthen-11-ones

2.4.1 9,9-Dimethyl-12-phenyl-8,9,10,12-
tetrahydrobenzo[a]xanthen-11-one

White solid; M. P.: 151°C–152°C. FT-IR (KBr, cm−1): 3053
(=C–H, stretching vibration sp2), 2956 (C–H, stretching vibration
sp3), 1648 (C=O, stretching vibration), 1619 (C=C, stretching
vibration sp2), 1593, 1468 (C=C, Ar stretching vibration sp2),
1230 (C–O, stretching vibration). 1H-NMR (400 MHz, DMSO): δ
(ppm) 0.96 (s, 3H), 1.12 (s, 3H), 2.25 (d, 1H, J = 16 Hz), 2.30 (d, 1H,
J = 16.3 Hz), 2.56 (s, 2H), 5.70 (s, 1H), 7.07 (t, 1H, J = 7.5 Hz), 7.18 (t,
2H, J = 8 Hz), 7.31–7.45 (m, 5H), 7.77 (d, 1H, J = 8.3 Hz), 7.79 (d,
1H, J= 6.3 Hz), 8.02 (d, 1H J= 8.3 Hz). 13C-NMR (100 MHz,
DMSO) δ (ppm) 28.3, 33.0, 33.9, 40.7, 51.1, 117.4, 119.5, 124.1,
125.4, 127.1, 127.7, 128.1, 128.3, 129.0, 129.2, 130.4, 132.8, 142.4,
153.9, 164.4, 197.7.

2.4.2 9,9-Dimethyl-12-(4-chlorophenyl)-
8,9,10,12-tetrahydrobenzo[a]xanthen-11-one

White solid; M. P.: 181°C–183 °C. FT-IR (KBr, cm−1): 3068
(=C–H, stretching vibration sp2), 2958 (C–H, stretching vibration
sp3), 1652 (C=O, stretching vibration), 1621 (C=C, stretching
vibration sp2), 1594, 1479 (C=C, Ar stretching vibration sp2),
1225 (C–O, stretching vibration). 1H-NMR (400 MHz, DMSO): δ
(ppm) 0.97 (s, 3H), 1.08 (s, 3H), 2.28 (d, 1H, J = 16.5 Hz), 2.35 (d,
1H, J = 16.1 Hz), 2.64 (s, 2H), 5.73 (s, 1H), 7.36 (d, 1H, J = 9.1),
7.38–7.48 (m, 2H), 7.54 (d, 2H, J = 8.9 Hz), 7.84–7.87 (m, 3H), 8.10

FIGURE 6
TGA of the PE/IL-WO4

= catalyst.

FIGURE 7
SEM image of the PE/IL-WO4

= catalyst.
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(d, 2H, J= 8.5 Hz). 13C-NMR (100 MHz, DMSO) δ (ppm) 28.3, 33.5,
34.1, 40.7, 51.6, 118.1, 120.0, 123.9, 124.3, 125.6, 127.7, 128.2, 129.3,
129.4, 130.7, 132.8, 147.2, 147.5, 154.3, 164.2, 197.5.

3 Results and discussion

Figure 1 illustrates the preparation method for PE/IL-WO4
=.

Initially, the coacervation technique was used to immobilize the
[MOIm] [Br] into/onto polyethylene to create PE/IL. To synthesize
the PE/IL-WO4

= composite, the PE/IL material was subsequently
treated with Na2WO4.

FT-IR analysis was used to confirm the structure of all prepared
materials. Figure 2A shows the characteristic peaks of PE, including
the methylene (-CH2-) groups stretching vibration at 2920 and
2819 cm−1, the C-H deformation at 1453 cm−1, and the CH2 rocking
stretching vibration at 715 cm−1. The peaks that appeared at
1635 and 1530 cm−1 are attributed to the C=N and C=C bonds
of ionic liquid moieties, respectively, confirming the successful
incorporation/immobilization of ILs into/onto the polymer
framework (Figures 2B, C) (Kargar and Elhamifar, 2020). The
band of O-W-O bonds appeared at 828 cm−1 proving the
successful immobilization of WO4

= on PE/IL composite (Dkhilalli
et al., 2018) (Figure 2C).

The PXRD of PE, PE/IL, and PE/IL-WO4
= are shown in

Figure 3. As seen, all samples exhibit the typical orthorhombic
unit cell structure with the two crystal planes of (110) and (200) at
angles of 21.6° and 24.0°, respectively. Additionally, the relatively

low-intensity peaks at 2θ of 30.2° and 36.5°, are attributed to the
(210) and (020) crystal planes, respectively. These findings are in
good agreement with the PXRD pattern of high-density
polyethylene (Inci and Wagener, 2011; Chouit et al., 2014),
proving that the crystalline structure of PE is maintained
throughout the modification procedure. This indicates that the
incorporation of IL in the polymer matrix did not affect its original
crystalline structure.

Moreover, from the EDX analysis, the successful incorporation/
immobilization of IL-WO4

= complex into/onto the PE network was
confirmed by the presence of C, N, O, Br, andW elements (Figure 4),
which is in accordance with the FT-IR results.

In addition, the distribution of the above-mentioned elements
was studied by using the EDX mapping analysis (Figure 5),
indicating a uniform distribution for all elements throughout the
material framework.

TG analysis was performed to determine the thermal stability of PE/
IL-WO4

= composite. The TG curve of the designed catalyst showed two
weight losses (Figure 6). The first weight loss, approximately 2%,
occurred below 190°C, and resulted from alcoholic solvents and
water evaporation. The main weight loss (94%), observed between
400°C and 510°C, is attributed to the decomposition of polyethylene and
ionic liquid moieties. These findings demonstrate that the PE/IL-WO4

=

composite is very thermally stable.
SEM analysis indicates that the PE/IL-WO4

= particles have a
flower-like morphology with uniform size distribution (Figure 7).

After PE/IL-WO4
= was successfully characterized, its catalytic

activity was evaluated in the synthesis of tetrahydrobenzo[a]

TABLE 1 Effect of catalyst loading, temperature, and solvents in the preparation of tetrahydrobenzo [a]xanthen-11-ones.

Entry Solvent Catalyst Catalyst loading (mol%) Temperature (°C) Yield (%)

1 Toluene PE/IL-WO4
= 0.10 78 58

2 H2O PE/IL-WO4
= 0.10 78 78

3 EtOH PE/IL-WO4
= 0.10 78 93

4 EtOH PE/IL-WO4
= 0.05 78 77

5 EtOH PE/IL-WO4
= 0.15 78 94

6 EtOH PE/IL-WO4
= 0.10 40 52

7 EtOH PE/IL-WO4
= 0.10 RT 31

8 EtOH - - 78 -

9 EtOH PE/IL 0.01 g 78 12

10 EtOH PE 0.01 g 78 -

11 EtOH WO4= 0.10 78 75
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xanthen-11-ones. For this, the condensation between aldehyde
(1 mmol), 2-naphthol (1 mmol), and dimedone was considered as
a reaction model. To achieve the optimal conditions, the effect of
catalyst loadings, solvents, and reaction temperature were
investigated (Table 1). It was found that among different solvents
of toluene, ethanol, and water, in EtOH the highest product yield is
obtained (Table 1, entries 1–3). The amount of catalyst had an
impact on the reaction as well, and the highest yield resulted from
using 0.10 mol% of PE/IL-WO4

= (Table 1, entry 3). The study also
demonstrated that the rate of the reaction is affected by
temperature, in which the best result was obtained at 78°C
(Table 1, entries 6, 7). Accordingly, the use of 0.10 mol% of the
PE/IL-WO4

= catalyst and EtOH solvent under reflux conditions
(78°C) was selected as the optimum conditions. The activity of PE/
IL and PE materials was subsequently compared to that of PE/IL-
WO4

=. No conversion was observed with these W-free materials,
confirming that the reaction is actually catalyzed via supported
tungsten species (Table 1, entry 3 versus entries 9 and 10). In
addition, to elucidate the role of the imidazolium-based IL, the
reaction was carried out in the presence of the unsupported WO4

=

FIGURE 8
The recoverability and reusability of the PE/IL-WO4

= catalyst.

TABLE 2 Synthesis of the tetrahydrobenzo [a]xanthen-11-ones catalyzed by PE/IL-WO4
=.

Entry Aldehyde Time (min) Yield (%) Found M. P Reported M. P

1 45 93 151–152 151–153 (Nandi et al., 2009)

2 35 95 181–183 180–182 (Nandi et al., 2009)

3 30 96 167–169 166–167 (Zhang et al., 2010)

4 35 87 203–205 201–203 (Khazaei et al., 2012)

5 30 84 179–181 178–180 (Khazaei et al., 2012)
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(Table 1, entry 11). Attractively, this latter case showed a
significantly lower catalytic activity compared to the PE/IL-
WO4

=. These observations clearly indicate that the ionic liquid
moieties prevent the aggregation of WO4

= species and therefore
improve their stability and catalytic activity under applied
conditions (Wang et al., 2016).

Following the optimization of the experimental conditions
(Table 1, entry 3, a range of aldehydes were employed as
substrate. The tetrahydrobenzo[a]xanthen-11-ones were
obtained in high yields using all types of aldehydes, as indicated

in Table 2. It is noteworthy that the influence of electronic
characteristics and substituent positions on this process was
negligible, and the PE/IL-WO4

= catalyst can catalyze this
procedure effectively.

In the next study, the recoverability and reusability of PE/IL-
WO4

= were investigated under optimal conditions. For this, the
condensation between benzaldehyde, dimedone, and 2-
naphthol was used as a test model. After completing the
reaction, the PE/IL-WO4

= catalyst was separated via filtration
and reused under identical conditions as the initial run. These
steps were repeated and it was found that PE/IL-WO4

= can be
recovered and reapplied at least seven times without losing its
activity (Figure 8).

The SEM image of the recovered catalyst also showed no
significant change in the catalyst morphology after seven
recovery times confirming the high stability of the structure of
the designed material during the applied conditions (Figure 9).

The PXRD of the recovered PE/IL-WO4
= also showed four peaks

at 2θ = 22.1°, 24.7°, 30.8°, and 36.9°, which are in good agreement
with the PXRD pattern of the fresh catalyst. This analysis also
confirms the high stability of the crystalline structure of PE after
seven times of recovery and reuse (Figure 10).

In the subsequent study, a leaching test was conducted
under applied conditions. To do this, once the reaction had
reached approximately 50% completion, the PE/IL-WO4

=

catalyst was separated, and the progress of the filtrate was
monitored. After 120 min, no progress in the reaction was
observed. Moreover, the atomic absorption analysis showed
that the amount of W in the aforementioned filtrate is lower
than 1 ppm. These results confirm no leaching and high stability
of supported W sites and also the heterogeneous nature of the
designed catalyst.

A plausible mechanism for the synthesis of tetrahydrobenzo
[a]xanthen-11-ones using the PE/IL-WO4

= catalyst is outlined in
Figure 11. At the first step, a Knoevenagel condensation between
W-activated aldehyde (1) and 2-naphthol gives intermediate 2.
Then, intermediate 3 is formed via Michael-type addition
between intermediate 2 and the enol form of dimedone.
Finally, intermediate 3 undergoes an intramolecular
cyclization followed by tautomerization in the presence of
W-sites to give the desired product 5 with a high yield
(Ardeshirfard and Elhamifar, 2023).

Next, the efficacy of the PE/IL-WO4
= catalyst in the synthesis

of tetrahydrobenzo[a]xanthen-11-ones was compared to that of
previous catalysts (Table 3). Overall, the results showed that the
designed catalyst is better than the other catalysts in terms of
temperature, catalyst loading, and number of recycling cycles.
This better performance can be attributed to its highly lipophilic
backbone, the incorporation of ILs into the material network to
prevent leaching of the catalytic active site, and the bifunctional
properties (both Lewis acidic and Lewis basic sites) of the
supported tungstate. Moreover, PE, with its outstanding
properties such as high thermal and chemical resistance,
chemical inertness, and cost-effectiveness, provides distinct
advantages over other supports.

FIGURE 10
PXRD pattern of the recovered PE/IL-WO4

= catalyst.

FIGURE 9
SEM image of the recovered PE/IL-WO4

= catalyst.
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4 Conclusion

In conclusion, a new composite consisting of high-density
polyethylene (PE) and ionic liquid (IL)-WO4

= complex was
synthesized, characterized and its catalytic application was
investigated. The successful immobilization and great stability
of the IL-WO4

= complex into/onto the polyethylene framework
were confirmed through the utilization of FT-IR, TGA, SEM,
PXRD, and EDX techniques. The tetrahydrobenzo[a]xanthen-
11-one products were effectively prepared under green
conditions using the PE/IL-WO4

= catalyst, resulting in high
yields. With no appreciable decrease in efficiency, the PE/IL-

WO4
= catalyst was recovered and reused at least seven times.

The leaching test and also the atomic absorption analysis
showed high stability and no leaching of catalytic active WO4

=

species during reaction conditions. Moreover, the SEM and PXRD
analyses confirmed the high durability of the structure of the
designed catalyst under applied conditions. In light of these
findings, future investigations on PE/IL-WO4= are warranted to
advance its applicability and understanding. As an example, the
application of this catalyst in other catalytic processes such as
coupling and oxidation reactions is underway in our laboratory.
Moreover, both PE/IL and PE/IL-WO4= can also be used as
efficient adsorbents for the removal of pollutants from water.

TABLE 3 Comparative study of the performance of the present catalyst with that of previous catalysts.

Entry Catalyst Conditions (min) Recovery times Ref.

1 Fe3O4@nano-walnut shell/B
III Cat. 0.02 g, solvent-free, 80°C, 40 5 Abad et al. (2023)

2 HY zeolite Cat. 20 mg, solvent-free, 80°C, 60 5 Rama et al. (2012)

3 HBF4/SiO2 Cat. 10 mol%, solvent-free, 80°C, 65 4 Zhang et al. (2009)

4 Cu/Fe3O4@APTMS-DFXa Cat. 0.02 g, solvent-free, 120°C, 45 5 Sonei et al. (2019)

5 PE/IL-WO4
= Cat. 0.10 mol%, EtOH, reflux, 45 7 This work

a4-[3,5-Bis (2-hydroxyphenyl)-1,2,4-triazol-1-yl] benzoic acid (deferasirox).

FIGURE 11
A plausible mechanism for the synthesis of tetrahydrobenzo [a]xanthen-11-ones.
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