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The yolk-shell structured silica nanocomposites have been considered by many
researchers due to their specific physical and chemical properties. These
materials have been widely used in adsorption and catalysis processes.
Especially, the void space of yolk−shell nanostructures can provide a unique
environment for storage, compartmentation, and confinement in host−guest
interactions. In this paper, for the first time, the preparation, characterization, and
catalytic application of a novel amine-containing magnetic methylene-based
periodic mesoporous organosilica with yolk-shell structure (YS-MPMO/pr-NH2)
are developed. The magnetic periodic mesoporous organosilica nanocomposite
was synthesized through surfactant-directed co-condensation of
bis(triethoxysilyl)methane (BTEM) and tetraethoxysilane around Fe3O4

nanoparticles. After Soxhlet extraction, the surface of YS-MPMO
nanocomposite was modified with 3-aminopropyl trimethoxysilane to deliver
YS-MPMO-pr-NH2 nanocatalyst. This catalyst was characterized by using EDX,
FT-IR, VSM, TGA, XRD, nitrogen-sorption, and SEM analyses. The catalytic activity
of YS-MPMO/pr-NH2 was studied in the Knoevenagel reaction giving the
corresponding products in a high yield and selectivity. The YS-MPMO/pr-NH2

nanocatalyst was recovered and reused at least four times without a significant
decrease in efficiency and activity. A leaching test was performed to study the
nature of the catalyst during reaction conditions Also, the catalytic performance
of our designed nanocomposite was compared with some of the previous
catalysts used in the Knoevenagel reaction.
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1 Introduction

In recent years, silica-based nanocomposites have received much attention between
researchers in various fields of chemistry. These materials have been extensively employed
in chemical processes due to the good properties of silica such as high chemical and thermal
stability, high colloidal stability, biocompatibility and easy surface modification (Maleki
et al., 2015; Purbia and Paria, 2015; Sun et al., 2015; Cheng et al., 2017; Wang et al., 2019;
Gopalan Sibi et al., 2020). Among these, yolk-shell (YS) structured silica nanocomposites
have been considered and studied by many researchers (Nagaraju et al., 2017; Bai et al.,
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2018; Du et al., 2018). These nanocomposites have many
applications in the areas of drug delivery, catalysis, charge
transfer and storage in batteries, solar cells and supercapacitors,
adsorbents for gases and pollutants, gene therapy, etc (Nagaraju

et al., 2017; Xie et al., 2017; Bai et al., 2018; Du et al., 2018). For
example, recently, the YS-structured nanocomposites have been
used as catalyst in the synthesis of pyranopyrazoles (Neysi and
Elhamifar, 2023), the Chan-Lum coupling reaction (Shaker and

FIGURE 1
Preparation of the YS-MPMO/pr-NH2 nanocomposite.

FIGURE 2
FT-IR spectra of a) Fe3O4, b) YS-MPMO and c) YS-MPMO/
pr-NH2.

FIGURE 3
SEM image of the YS-MPMO/pr-NH2 nanocomposite.
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Elhamifar, 2021), and the reduction of nitrobenzenes (Wang
et al., 2018).

Among the various types of yolk-shell structured silica
nanocomposite, those that are composed of Fe3O4 core and PMO
shell have been highly regarded by researchers due to their unique
magnetic response, high adsorption capacity, high surface area, and
high hydrophobicity (Haffer et al., 2010; Croissant et al., 2014; Lu

et al., 2016; Wei et al., 2016; Abaeezadeh et al., 2019; Yu L. et al.,
2019; Liu et al., 2019; Kargar et al., 2020). These nanocomposites
have been used in various fields such as biomedicine, battery
development, fuel cell technology, sensor technology, gene
therapy, and nanocatalysis (Li H. et al., 2018; Li J. et al., 2018;
Lin et al., 2018; Wang et al., 2018; Li X.-P. et al., 2019; Yu K. et al.,
2019; Zhang et al., 2019). Some of recently reported nanocomposites

FIGURE 4
EDX analysis of YS-MPMO/pr-NH2. FIGURE 6

VSM analysis of the YS-MPMO/pr-NH2 nanocomposite.

FIGURE 5
EDX mapping analysis of YS-MPMO/pr-NH2.
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with Fe3O4 core and PMO shells are Fe3O4@SiO2@PMO
(Mirbagheri et al., 2021), Fe3O4-YS-PMO (Wei et al., 2016), YS-
Fe3O4@Au@PMO (Liu et al., 2019), Fe3O4@mSiO2 (Li Y. et al.,
2019), Fe3O4@PMO-NH2 (Rosso et al., 2020) and Fe3O4@MePMO-
IL/Pd (Shaker and Elhamifar, 2020).

On the other hand, the Knoevenagel reaction (Gordel-Wojcik
et al., 2022) is one of the most famous carbon-carbon coupling
process to synthesize α,β-unsaturated compounds. In recent years,
the synthesis of the Knoevenagel products in the presence of
heterogeneous and homogeneous catalysts has been investigated
under different conditions. Due to difficulty in the separation of
homogeneous catalysts, the use of magnetic heterogeneous
catalysts is a good option to improve the efficiency of the
catalytic processes. Some of recently reported studies in this
matter are Fe3O4@SiO2@propyl@DBU (Zhang et al., 2021),

L-proline-Cu/TCT@NH2@Fe3O4 (Kalantari et al., 2022),
MgFe2O4(Ghomi and Akbarzadeh, 2018) and Fe3O4–cysteamine
hydrochloride (Maleki et al., 2017).

In view of the above, in this research, a novel magnetic yolk-shell
structured PMO supported propylamine (YS-MPMO/pr-NH2) is
prepared, characterized and its catalytic application is developed in
the Knoevenagel reaction under green conditions.

2 Experimental section

2.1 Synthesis of Fe3O4 nanoparticles

Fe3O4 NPs were firstly prepared according to our previous
procedure (Neysi et al., 2020). According to this method,

FIGURE 7
Wide angle PXRD pattern of YS-MPMO/pr-NH2.

FIGURE 9
Nitrogen adsorption-desorption isotherm of YS-MPMO/pr-NH2.

FIGURE 8
TG analysis of the YS-MPMO/pr-NH2 nanocomposite.
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FeCl2.4H2O (1.5 g) and FeCl3.6H2O (3 g) were dissolved in 160 mL
of deionized water. Then, aqueous ammonia (40 mL, 28% wt) was
slowly added and the obtained mixture was stirred at room
temperature (RT) for 60 min under argon atmosphere. The
resulting product was collected using an external magnet and it
was washed completely with distilled water and EtOH. This product
was dried at 70°C for 12 h under vacuum and called Fe3O4

nanoparticles.

2.2 Preparation of yolk-shell structured
magnetic PMO (YS-MPMO)

To prepare of YS-MPMO, firstly, Fe3O4 NPs (1 g) were completely
dispersed in H2O (20 mL). Then, this mixture was added to a reaction
vessel containing H2O (36 mL), EtOH (16 mL),
cetyltrimethylammonium bromide (CTAB, 0.72 g), pluronic P123
(1.7 g) and ammonia (0.9 mL, 25% wt). The obtained combination

TABLE 1 The effect of solvent and catalyst loading in the Knoevenagel reaction of malononitrile with benzaldehydea.

Entry Catalyst Cat. (mol%) Solvent Yield (%)

1 YS-MPMO/pr-NH2 0.75 - 48

2 YS-MPMO/pr-NH2 1.5 - 73

3 YS-MPMO/pr-NH2 2.25 - 97

4 YS-MPMO/pr-NH2 3 - 97

5 YS-MPMO/pr-NH2 2.25 Toluene 60

6 YS-MPMO/pr-NH2 2.25 EtOH 83

7 YS-MPMO/pr-NH2 2.25 H2O 86

8 Fe3O4 0.015 g - <10

9 YS-MPMO 0.015 g - <10
aReaction conditions: Benzaldehyde (1 mmol), ethylcyanoacetate (1 mmol), RT, 70 min.

TABLE 2 Synthesis of the Knoevenagel products in the presence of the YS-MPMO/pr-NH2 nanocatalyst.

Entry Aldehyde Time (min) Yielda (%) TONb TOFc M. P. Ref.

1 PhCHO 70 97 4311 3717 50–53 50–51 (Heravi et al., 2006)

2 4-NO2-PhCHO 65 94 4178 3869 170–173 170–171 (Karimkhah et al., 2021)

3 4-Me-PhCHO 85 92 4089 2900 93–95 93–94 (Heravi et al., 2006)

4 4-Cl-PhCHO 80 93 4133 3107 88–90 87–89 (Heravi et al., 2006)

5 4-OH-PhCHO 90 87 3867 2578 171–173 170–171 (Karimkhah et al., 2021)

6 2-NO2-PhCHO 70 93 4133 3563 99–100 98–100 (Karimkhah et al., 2021)

7 4-Br-PhCHO 75 95 4222 3378 89–91 90–91 (Zhang et al., 2017)

8 2-Cl-PhCHO 90 89 3956 2637 52–54 52–54 (Kolahdoozan et al., 2013)

aIsolated yield.
bTurnover number [defined as yield (%)/cat. (mmol)].
cTurnover frequency [defined as TON/reaction time (h)].
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was stirred at 35°C–40°C for 30 min. Next, 1,2-bis(triethoxysilyl)
methane (BTEM, 2.1 g) and tetraethoxysilane (TEOS, 0.7 g) were
added while stirring under the same conditions for 1 h. After that,
the resulting mixture was heated at 100°C for 17 h under static
conditions. Finally, the product was magnetically separated, washed
with EtOH and H2O and dried. The surfactants were removed using a
Soxhlet apparatus to give the YS-MPMO product.

2.3 Synthesis of YS-MPMO/pr-NH2

For this, firstly, the YS-MPMO nanocomposite (1 g) was
dispersed in toluene (25 mL) at RT. Then, APTMS (3-
aminopropyltrimethoxysilane, 98%, 1 mmol) was added and the
resulting mixture was stirred at 100°C for 24 h. In the following,
the product was magnetically separated, washed with EtOH and H2O,
dried at 60°C for 12 h and called YS-MPMO/pr-NH2 nanocomposite.
According to the CHN and EDX analyses the loading of amine groups
on the designed nanocomposite surface was found to be 0.5 mmol/g.

2.4 Procedure for Knoevenagel reaction

For this, aldehyde (1 mmol), malononitrile (1 mmol) and
YS-MPMO/pr-NH2 catalyst (2.25 mol%) were added in a
reaction vessel while sonicating under solvent-free conditions
at RT. In the end of reaction, monitored by TLC, EtOH (5 mL)
was added and catalyst was magnetically removed. Then, the
EtOH solvent was evaporated and impure products were
recrystallized in EtOH and n-hexane solvents to give pure
Knoevenagel products.

2.5 IR, 1H and 13C-NMR data of
Knoevenagel products

2.5.1 2-(2-Chlorobenzylidene)malononitrile
IR (KBr, cm−1): 3035(=C–H, stretching vibration, sp2), 2223

(C≡N), 1480–1612 (C=C, Ar stretching sp2). 1H-NMR (400 MHz,
CDCl3): δ (ppm), 7.58–7.63 (m, 1H), 7.66–7.75 (m, 1H), 8.06 (d, 1H,
J = 6.0 Hz), 8.58 (d, 1H, J = 4.0), 8.70 (s, 1H). 13C-NMR (100 MHz,
CDCl3): δ (ppm), 63.1, 87.14, 112.8, 113.9, 130.3, 130.8,
134.7, 135.3, 159.5.

2.5.2 2-(4-Nitrobenzylidene)malononitrile
IR (KBr, cm−1): 3105 (C-H, stretching vibration, sp2), 2204

(C≡N), 1514, 1358 (NO2, stretching vibration), 1411–1609 (C=C,
Ar stretching sp2).1H-NMR (400 MHz, CDCl3): δ (ppm), 7.04 (d,
2H, J = 8.4 Hz), 6.6 (d, 2H, J = 8.4 Hz), 5.23 (s, 1H). 13C-NMR
(100 MHz, CDCl3): δ (ppm), 85.39, 113.08, 114.13, 125.32, 128.40,
136.33, 148.49, 159.74.

3 Result and discussion

Firstly, core-shell structured magnetic periodic mesoporous
organosilica (MPMO) was synthesized via hydrolysis and co-
condensation of BTEM and TEOS around Fe3O4 NPs in the
presence of CTAB and pluronic P123 surfactants. After Soxhlet
extraction of surfactants, the YS-MPMO was produced. This
material was then modified with 3-aminopropyltrimethoxysilane
(APTMS) to give YS-MPMO/pr-NH2 nanocomposite (Figure 1).

FIGURE 10
Recoverability and reusability of the YS-MPMO/pr-NH2 catalyst.

TABLE 3 Comparison of the catalytic activity of YS-MPMO/pr-NH2 with former catalysts.

Catalyst

Entry Catalyst Conditions Time (min) Recovery times Ref.

1 RhPt/TC@GO NPs H2O/Methanol, RT 40 2 Şen et al. (2018)

2 Fe3O4@PMO-ICS–ZnO EtOH, reflux 60 3 Safapoor et al. (2021)

3 Y2ZnO4 Solvent-free, under MW (420 W) 15 3 Ghosh et al. (2020)

4 YS-Fe3O4@PMO/Pr-NH2 Solvent free, RT 70 4 This study
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Figure 2 shows the FT-IR spectra of Fe3O4, YS-MPMO and YS-
MPMO/pr-NH2 nanoparticles. For all materials, the characteristic
peaks of Fe−O and O-H bonds are, respectively, appeared at 588 and
3,400 cm−1 (Figures 2A–C). In the FT-IR spectra of YS-MPMO and
YS-MPMO/pr-NH2, the peaks at 940 and 1,090 cm−1 are,
respectively, assigned to symmetric and asymmetric vibrations of
the Si-O-Si bonds proving the successful formation of silica layer
around the Fe3O4 NPs. Also, for YS-MPMO and YS-MPMO/pr-
NH2 nanocomposits, the C-H signals of aliphatic moieties are
appeared at 2,880–2,911 cm−1 (Figures 2B,C).

The SEM analysis of YS-MPMO/pr-NH2 demonstrated a
morphology with spherical particles and an average size of about
45 nm (Figure 3). These type nanoparticles are very important in the
fields of catalysis and adsorption processes.

The EDX analysis of YS-MPMO/pr-NH2 nanocomposite
successfully confirmed the presence of Fe, O, C, N and Si
elements in its framework (Figure 4).

Also, the EDX mapping analysis revealed the well distribution
of aforementioned elements in the framework of the YS-MPMO/
pr-NH2 nanocomposite (Figure 5). These are in good agreement
with the FT-IR results confirming well immobilization/
incorporation of methylene and propylamine moieties on/in the
material framework.

The magnetic properties of YS-MPMO/pr-NH2 nanocomposite
were evaluated by using VSM analysis. The result of this study
showed that YS-MPMO/pr-NH2 nanocomposite has a
superparamagnetic behavior. Also, the amount of magnetic
saturation of this nanocomposite was about 43 emu/g (Figure 6).

In the wide angle PXRD pattern of YS-MPMO/pr-NH2, the
presence of 6 peaks at 2θ: 30.3, 36, 43.5, 54.5, 57.5 and 63°,
corresponding to the crystalline structure of Fe3O4 NPs, affirms

the high stability of these nanoparticles during the preparation of the
YS-MPMO/pr-NH2 nanocomposite (Figure 7).

The TGA curve of YS-MPMO/pr-NH2 nanocomposite showed
three weight losses. The first one (about 2%) in the range of
25°C–130°C is assigned to removal of water and organic solvents.
The second one (about 2%) at 150°C–280°C is due to the elimination
of remained CTAB and pluronic P123 surfactants. The third one at
300°C–700°C (about 11%) is corresponded to the removal of grafted
propylamine moieties on the shell surface and also incorporated
methylene groups in the shell framework (Figure 8) (Neysi and
Elhamifar, 2023).

The N2 adsorption-desorption analysis of the YS-MPMO/pr-
NH2 showed a type IV isotherm with a H2 hysteresis loop,
corresponding to ordered mesostructured PMO shell (Figure 9).
According to this analysis, the BET surface area and pore volume of
the nanocomposite were found to be 470.67 m2/g and 0.973 cm3/g,
respectively.

After characterization of the YS-MPMO/pr-NH2 nanocomposite,
its catalytic activity was examined in the Knoevenagel condensation
under ultrasonic conditions. To optimize the reaction conditions, the
condensation between malononitrile and benzaldehyde was selected
as a model reaction. Examination of the amount of catalyst in this
reaction showed that the best yield is obtained in the presence of
2.25 mol% of YS-MPMO/pr-NH2 (Table 1, entries 1–4). Next, the
catalytic activity of YS-MPMO/pr-NH2 was investigated in different
solvents of H2O, EtOH and toluene and also solvent-free media. This
study showed that the best result is obtained under solvent-free
conditions. (Table 1, entry 3 vs. entries 5–7). The H-bonding
between protic EtOH and water solvents and malononitrile is a
parameter which prevents and restricts the activity of this
nucleophile in these solvents. Finally, the catalytic activity of

FIGURE 11
Proposed mechanism for the Knoevenagel condensation using YS-MPMO/pr-NH2.
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amine-free Fe3O4 and YS-MPMO materials were studied, in which
only a little yield of the desired product was obtained confirming that
the designed Knoevenagel reaction is catalyzed by supported
propylamine groups (Table 1, entry 3 vs. entries 8, 9).
Accordingly, the use of 2.25 mol% of catalyst, RT and solvent-free
media were selected as optimal conditions (Table 1, entry 3).

In the following, the catalytic activity of YS-MPMO/pr-NH2

nanocatalyst was investigated in the condensation of various
aldehydes with malononitrile under the optimal conditions. The
study demonstrated that all aldehydes, bearing both electron
withdrawing and electron donating substituents in various
positions, give the corresponding Knoevenagel products in high
yield and selectivity (Table 2). This confirms the high efficiency of
the designed catalyst for the preparation of a wide range of
important Knoevenagel products.

In the following, the recoverability and reusability of the YS-
MPMO/pr-NH2 nanocatalyst were investigated in the condensation
of malononitrile with benzaldehyde under optimal condition. After
completion of the reaction, the catalyst was magnetically removed
and reused in the next run under the same conditions as the first run.
Based on this study, it was found that YS-MPMO/pr-NH2 can be
recycled and reused for four runs without a significant decrease in its
performance (Figure 10).

Next, a leaching test was performed to study the nature of
catalyst under applied conditions. For this, the YS-MPMO/pr-NH2

nanocatalyst was added to a flask containing benzaldehyde and
malononitrile at RT. After the reaction progressed about 50%, the
catalyst was separated using an external magnet and the reaction of
residue was monitored for 60 min under optimal conditions. The
result demonstrated no further progress of the reaction, confirming
no leaching and also heterogeneous nature of active catalytic species
under applied conditions.

Finally, a comparison study was performed between the present
catalyst and a number of former catalysts applied in the Knoevenagel
reaction (Table 3). This showed that YS-MPMO/pr-NH2 is better
than others in parameters of recovery times, reaction temperature
and stability.

The mechanism of the Knoevenagel reaction is shown in
Figure 11. As seen, firstly, one of the active hydrogens of
malononitrile methylene is taken by YS-MPMO/pr-NH2

nanocatalyst to deliver anion I. Then, this anion, as a
nucleophile, reacts with carbonyl carbon of aldehyde to give
anion II. Next, this anion takes a proton from protonated
catalyst to deliver intermediate III. Finally, the desired product is
formed after elimination of a water molecule.

4 Conclusion

A novel amine-containing magnetic periodic mesoporous
organosilica with yolk-shell structure (YS-MPMO/pr-NH2) was
successfully synthesized and characterized. The TGA, EDX and

FT-IR analyses showed the successful immobilization/
incorporation of propylamine and methylene groups into/onto
material framework. The SEM image confirmed that the YS-
MPMO/pr-NH2 has a spherical morphology. Also, the
superparamagnetic behavior of the YS-MPMO/pr-NH2

nanocomposite was proved by VSM analysis. The nitrogen-
sorption analysis showed the presence of a shell with high
surface area for the designed nanocamposite. The PXRD analysis
demonstrated high stability of Fe3O4 NPs during the catalyst
preparation. Examination of the catalytic activity of YS-MPMO/
pr-NH2 in the Knoevenagel reaction showed that this catalyst has an
excellent performance in this process. The leaching test confirmed
the heterogeneous nature of active catalytic sites under applied
conditions. The catalyst was also recovered and reused several
times with maintaining its efficiency.
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