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Alzheimer’s disease and Parkinson’s disease are the two most common
neurodegenerative diseases globally. These neurodegenerative diseases have
characteristic late-stage symptoms allowing for differential diagnosis; however,
they both share the presence of misfolded protein aggregates which appear years
before clinical manifestation. Historically, research has focused on the detection
of higher-ordered aggregates (or amyloids); however, recent evidence has shown
that the oligomeric state of these protein aggregates plays a greater role in disease
pathology, resulting in increased efforts to detect oligomers to aid in disease
diagnosis. In this review, we summarize some of the exciting new developments
towards the development of fluorescent probes that can detect oligomeric
aggregates of amyloidogenic proteins present in Alzheimer’s and Parkinson’s
disease patients.
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1 Introduction

The misfolding and aggregation of proteins into amyloids is characteristic of many
neurodegenerative diseases (NDs). Of the NDs, the two most common globally are
Alzheimer’s disease (AD) and Parkinson’s disease (PD) (Nussbaum and Ellis, 2003). AD
is a progressive disease continuum that affects cognition, function, and behavior, while PD is
a multi-attribute disorder that combines motor and nonmotor symptoms (Váradi, 2020;
Porsteinsson et al., 2021). Diagnosis of these diseases, when a patient is already exhibiting
clinical symptoms, is often too late for the efficacies of many current therapeutics. However,
research has shown that the deposition of these amyloids in the brain appears years before
the manifestation of clinical AD and PD symptoms; therefore, the early detection of amyloid
biomarkers may aid in diagnosis at a stage where therapeutic intervention could be effective
(Taylor et al., 2002). On a molecular level, patients who develop AD symptoms accumulate
beta-amyloid (Aβ) aggregates and tau neurofibrillary tangles (NFTs) (Selkoe, 2001; Aisen
et al., 2017; Porsteinsson et al., 2021). For PD patients, α-Synuclein is a major component
underlying the Lewy body deposits associated with the disease (Meade et al., 2019). The
monomeric forms of these proteins undergo misfolding, putatively resulting in a similar
cascade of events that lead to various aggregation states. These monomers aggregate into
soluble dimers, trimers, oligomers, and eventually into insoluble, higher-ordered aggregates
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rich in β-sheet content. For AD patients, the aberrant cleavage of the
amyloid precursor protein results in the formation of Aβ plaques,
while the hyperphosphorylation of tau precedes the formation of
neurofibrillary tangles (NFTs) (Figure 1A). The balance between α-
Synuclein production and clearance in PD patients is disrupted,
causing monomers to aggregate into Lewy bodies/neurites
(Figure 1B).

Imaging the brain and detecting protein biomarkers has
become the gold standard for aiding in diagnosis of AD and
PD in the clinic. Magnetic resonance imaging (MRI) of the brain
allows for visualization of atrophy; however, at this stage,
diagnosis is too late for current drug treatments. Amyloid-
targeting radiolabeled probes visualized through positron
emission tomography (PET) are presently used in the clinic to

aid in diagnosing AD and PD in living patients (Ono et al., 2017;
Bao et al., 2021). While PET is widely used in the clinic to detect
amyloids in the brain, PET-enabling radioligands are limited by
short half-lives, high production costs, and limited accessibility
outside of the clinic. These limitations have resulted in an urgent
need for more accessible diagnostic methods for AD and PD. The
development of fluorescent molecules as a sensitive and
noninvasive method for detecting proteins is widely used
throughout modern research. Compared to PET, fluorescence
combined with optical imaging provides an alternative approach
that is more cost-effective, has improved resolution (higher
spatiotemporal control), and can be used as a diagnostic tool
for the detection of amyloid biomarkers in cerebrospinal fluid
(CSF), urine, and the eye (Cao and Yang, 2018).

FIGURE 1
Misfolding of Aβ, tau in (A) Alzheimer’s Disease (B) and α-Synuclein in Parkinson’s Disease into higher-ordered aggregates.
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Numerous research groups have focused heavily on the
detection of higher-ordered aggregates of amyloidogenic proteins.
Their common high β-sheet content is a structural motif that can be
targeted by multiple fluorescent dyes. However, more recent
evidence has shown that the oligomeric state of these proteins is
more neurotoxic, which has led to increased efforts towards the
development of probes that can also detect oligomeric species
(Glabe, 2008; Larson and Lesné, 2012; Kayed and Lasagna-
Reeves, 2013; Verma et al., 2015). While numerous fluorescent
probes have been developed to detect highly aggregated species,
detecting these oligomeric species by fluorescence has proven more
challenging. The difficulty in detecting these oligomers can be
attributed to several factors: 1) heterogeneity and metastability of
oligomers, 2) oligomers and higher-ordered aggregates sharing the
same primary amino acid sequence, and 3) the lack of structural
information of oligomers that enables reliable design of small
molecules for targeting oligomers (Lo et al., 2019; Pilkington and
Legleiter, 2019; Lo, 2022; Shea and Daggett, 2022; Vaikath et al.,
2022; Wang et al., 2023).

In this review, we will discuss efforts reported in the literature
towards the development of fluorescent probes that can detect
oligomeric species of Aβ, tau, and α-Synuclein. We will highlight
potential design guidelines for advancing fluorophores with
improved specificity for oligomers. A survey of literature
emphasizes the urgent need for fluorescent probes with oligomer
specificity. This review will discuss fluorescent probes that bind to
various aggregation states, including oligomers. The strategies for
detecting oligomers varies depending on the target protein;
therefore, we will summarize tools that multiple researchers have
used for each protein used to generate oligomers individually.

2 Fluorescent probes that detect
aggregated amyloidogenic species
found in Alzheimer’s disease

Much of AD research towards the development of diagnostic
agents has focused on detecting amyloid deposits comprised
primarily of insoluble Aβ plaques and tau NFTs. These
higher-ordered aggregates possess β-sheet-rich character,
allowing for a common structural motif that small molecule
fluorescent probes can target. We will refer the reader to other
reviews for a comprehensive discussion of fluorescent probes
reported to detect higher-ordered amyloid deposits of Aβ and tau
(Nilsson, 2009; Reinke and Gestwicki, 2011; Tong et al., 2015; Su
et al., 2022).

Although the deposition of insoluble Aβ plaques and tau NFTs
in the brain serve as pathological hallmarks in AD, recent evidence
of the detrimental role of oligomers and the lack of accessible and
reliable chemical tools for their detection has resulted in increased
recent efforts towards developing fluorescent probes to detect these
soluble, toxic oligomeric species. Many fluorescent probes that
detect these higher-ordered aggregates show no binding
capability to oligomers. The development of fluorescent probes
that can detect oligomeric species of Aβ has proven to be a more
challenging and largely underdeveloped area of research.
Furthermore, progress in developing an oligomer-specific
fluorescent probe for tau is even more limited.

2.1 The development of fluorescent probes
that target Aβ oligomers

Of the three proteins that form amyloid deposits in AD and
PD (Aβ, tau, α-Synuclein), more reported efforts have been made
towards the development of fluorescent probes for Aβ oligomers,
which can be partially attributed to the increased availability of
structural models for varying Aβ species. We will first highlight
the development of fluorescent probes that can detect all
aggregated Aβ species, including oligomers. Many reports on
these probes have speculated on potential binding motifs that
may allow for targeting Aβ oligomers. Structures of various
fluorescent probes that have been reported to detect Aβ
oligomers are presented in Figure 2.

Most researchers who have reported on detecting soluble,
oligomeric Aβ have employed computer-aided analysis to
understand how their fluorescent probes can detect soluble Aβ
species. Initial design principles for binding to Aβ oligomers, for
instance, were based on structural analysis of fragments of
monomeric Aβ. For example, Ran and coworkers hypothesized
that interactions with the HHQKLVFF segment on the Aβ
peptide would allow for binding to all forms of Aβ, including the
more toxic oligomeric species. The HHQK fragment is a hydrophilic
segment representative of soluble Aβ species, and the LVFF segment
is a more sterically hindered hydrophobic segment. The authors
reported on the ability of curcumin analogs, CRANAD-58 and
CRANAD-3, to bind to all Aβ species in solution and in the brain of
a transgenic mouse model (Zhang et al., 2013; Zhang et al., 2015).
Molecular docking studies of CRANAD-58 suggest that the
hydrophilic segment of the probe interacts with the hydrophilic
part of Aβ allowing for the detection of oligomers, and the
hydrophobic moiety of the probe interacts with the hydrophobic
components of Aβ allowing for the simultaneous detection of
aggregates (Figure 3). Focusing on interactions with an even
smaller segment of Aβ, the Wu lab synthesized BF2-
dipyrrolmethane fluorescence-imaging probe (NB) (Figure 2) that
can detect different aggregation states of Aβ (Quan et al., 2023). The
design ofNBwas based on the detection of diphenylalanine (FF), the
smallest unit and core recognition motif of Aβ that plays a crucial
role in AD pathogenesis (Görbitz, 2006; Ji et al., 2021).

The emergence of a trimeric Aβ model, Protein Data Bank
(PDB) model 4NTR by the Nowick lab (which will be referred to as
PDB 4NTR in the remainder of this review), significantly paved the
way for developing fluorescent probes with improved specificity to
Aβ oligomers (Spencer et al., 2014). A survey of the literature shows
that many research groups utilized this model in their
computational studies to rationalize the ability of their probes to
detect oligomers. This structure is based on a synthetic peptide
derived from Aβ17-36 that crystallizes to form trimers and further
aggregates to form other oligomers. This structure contains three β-
hairpins that assemble triangularly and interlock to create a trimer,
with each β-hairpin making up one side of the pseudo-equilateral
triangle (Figure 4). In the center of this pseudo-equilateral triangle
appears to be a potential binding pocket for small molecules with
hydrophobic F19/V36 residues exposed to solvents. These residues
are exclusively exposed to solvent in oligomers and are not present
in Aβ fibrils; therefore, several groups have suggested that
interaction with these hydrophobic residues can potentially be
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used to differentially target Aβ oligomers from Aβ fibrils (Lee and
Ham, 2011; Teoh et al., 2015; Lv et al., 2016).

Due to the lack of clear, rational design principles for the
development of oligomeric-specific Aβ probes, the Chang lab
generated a diversity-oriented fluorescence library and performed
high-throughput screening of 3,500 compounds (Teoh et al., 2015)
to screen for compounds that bound to Aβ oligomers. This study

resulted in the identification of BD-Oligo (Figure 2), which
exhibited a fluorescence increase at early time points in an Aβ
aggregation assay (where it is expected that oligomeric Aβ species
will be most prevalent in solution) and a decrease in fluorescence
signal at later time points when the solution was expected to contain
a high fraction of amyloid fibrils. Transmission electron microscopy
(TEM) experiments support the hypothesis that the fluorescence

FIGURE 2
Examples of fluorescent probes reported to detect Aβ oligomers.
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increase could be due to the binding of BD-Oligo to oligomeric
species that formed at early time points in this assay. In contrast, the
fluorescence decline of BD-Oligo followed the disappearance of
oligomers and the formation of fibrils in the sample. Molecular
docking studies with BD-Oligo in PDB 4NTR suggest that BD-
Oligo adopts a conformational transition from a planar to twisted
geometry to increase interactions with the Aβ trimer. In addition,
docking studies indicated that the BODIPY ring and phenyl ring
interact with F19/V36 (hydrophobic) residues, suggesting these
interactions may play a dominant role in the specificity of BD-
Oligo to recognize trimers (Lee and Ham, 2011). Despite showing
promise for oligomer specificity in solutions containing synthetic
Aβ, BD-Oligo was capable of staining Aβ plaques in brain slices
from mature 18-month-old APP/PS1 mice, which presumably have
mostly fibrillar species. It, therefore, remains to be seen whether BD-
Oligo will exhibit the specificity for Aβ oligomers that could reveal
new information than what is currently possible in a clinical setting.

In another study, the Pan lab developed JP-1 and JP-2, two
curcuminoid derivatives (Figure 2) (Li et al., 2021). Molecular
docking studies with PDB 4NTR suggest that interaction with Aβ
trimers was due to π-π stacking interactions between the pyrimidine
moieties and the benzene rings of three F19 residues in the binding

pocket of Aβ trimers (Figure 5). Solution-based studies with
synthetic Aβ and staining in a transgenic mouse model confirm
the ability of JP-1 and JP-2 to detect all species of Aβ. Interestingly,
the authors also observed the ability of JP-1 and JP-2 to inhibit fibril
growth, which was confirmed with TEM.

In addition to studying hydrogen-bonding and π-π stacking
interactions between probes and F19/V36 residues of PDB 4NTR,
another related strategy for designing fluorescent probes that bind to
Aβ oligomers is by also taking advantage of probe accessibility and
steric hindrance of the Aβ oligomer binding pocket. Many groups
hypothesized that creating fluorescent probes with steric bulk would
trap or increase probe interactions with the central cavity/binding
pocket of Aβ oligomers.

The Li and Wong labs published a study investigating three
naphthylamine-based cyanines: DBAN-SLM, DBAN-SLOH, and
DBAN-OSLM (Figure 2) (Wang et al., 2021). Of the three probes,
DBAN-SLM showed selective fluorescent responses to Aβ
monomers and oligomers. Molecular modeling studies with PDB
4NTR suggest interactions between the quinoline moiety ofDBAN-
SLM and hydrophobic F19/V36 residues. In addition, molecular
docking supports that DBAN-SLM conforms to a slightly twisted
geometry with the quinolinium ring freely entrapping in the
hydrophobic pocket.

Previously, the Yang lab reported on a family of fluorescent
probes with an amino naphthalenyl-2-cyanoacrylate (ANCA) motif
specific for higher ordered Aβ aggregates (Chang et al., 2011).
Drawing inspiration from ANCA and their previous work on
spiropyran (SP) derivatives, the Sun and Yi labs designed AN-SP,
which incorporated an SP moiety into the ANCA scaffold (Lv et al.,
2016). AN-SP showed the most considerable fluorescence
enhancement with Aβ oligomers, and very little fluorescence
enhancement was observed in the presence of Aβ fibrils, amylin
fibrils (an aggregation-prone peptide secreted with insulin), and
prion fibrils (another amyloid associated with prion disease) (Luca
et al., 2007; Colby and Prusiner, 2011). The authors hypothesized
that this specificity towards oligomers might be due to the SP moiety

FIGURE 3
Proposed complex between CRANAD-58 and an Aβ peptide
monomer. Adapted with permission from (Zhang et al., 2013).
Copyright 2013 American Chemical Society.

FIGURE 4
X-ray crystallographic structure of trimeric PDB model 4NTR of Aβ17-36 (A) trimeric peptide structure with ordered water molecules located in the
internal cavity; (B) the same trimeric structure as in (A), but in space-filling representation to highlight the internal cavity that may be targeted by small
molecules. Adapted with permission from (Spencer et al., 2014). Copyright ACS AuthorChoice License.
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providing rigidity and steric hindrance, precluding binding to
fibrillar binding pockets. To test this hypothesis, the authors also
synthesized AN, which replaced the SP moiety with a flexible chain,
and found that AN showed no specificity between Aβ oligomers and
fibrils. Molecular docking of AN-SP to PDB 4NTR suggested that
the SP unit intercalates with the hydrophobic region of the Aβ
trimer. Staining in a transgenic mouse line showed the ability ofAN-
SP to stain Aβ oligomers in the brain.

Similarly, the Li group reported on PTO-29 (Figure 2), which
exhibited high selectivity to Aβ oligomers (Yang et al., 2020). The
authors described the binding pocket of PDB 4NTR as “v-shaped”
and hypothesized that a “v-shaped” wedge probe would allow for
increased interactions with F19/V36 residues. Molecular docking
studies of PTO-29 suggest that the phenyl rings of PTO-29 stacked
between F19 and the N, N-dimethylbenzene inserts into the protein
cavity, which suggests tighter binding affinity to trimers. To improve
the biocompatibility of PTO-29, the same group modified PTO-29
to include a hydroxyethyl group as in PTO-41. Computational
studies with PDB 4NTR suggested that the hydroxyethyl group is
inserted into the binding pocket, presumably leading to increased
affinity towards trimers compared to probes that lacked this
hydroxyethyl group. In vivo imaging of PTO-41 in a 4-month
transgenic mouse, presumably containing a higher proportion of
Aβ oligomers, suggests that PTO-41 can detect Aβ oligomers.

In addition to studying interactions between probes and F19/
V36 residues of the Aβ trimer, another strategy employed by
researchers involved taking advantage of probe accessibility and
differences in binding pocket sizes of Aβ species. A comparison of
the binding pockets of Aβ oligomers (PDB 4NTR) with Aβ fibril
models (PDB 2LMN) suggests that the size of the binding pocket for
higher-ordered aggregates is narrower compared to the binding
pocket of oligomers. For example, the Ran lab tuned for stereo-
hindrance by introducing bulky functional groups that would
prevent binding to the more sterically hindered Aβ fibrils and
allow for the detection of oligomers. Building off previously
reported CRANAD-3, the authors synthesized CRANAD-65,

CRANAD-102, and CRANAD-75, presented in order of
increased steric bulk, to test this strategy (Li et al., 2017)
(Figure 6). The authors incorporated various phenoxy-alkyl
chains at the 4-position to introduce steric bulk. CRANAD-75
showed no fluorescence enhancement with oligomers, and the
authors hypothesize that the two isopropyl groups on the phenyl
ring of CRANAD-75 were too large to access the β-sheets of the
oligomers. Therefore, with CRANAD-102, the authors replaced the
isopropyl groups in CRANAD-75 with methyl groups and showed a
higher affinity for monomers, dimers, and oligomers than higher
ordered Aβ species in solution.

2.2 Summary of current efforts to develop Aβ
oligomeric fluorescent probes

While some progress has been made toward developing
fluorescent probes that can detect oligomeric species of Aβ,
fluorescent probes with improved specificity and biological
properties are still needed. In addition, currently there is no clear
identification of molecular determinants that dictate the binding of
probes to Aβ oligomers. Recent developments suggest the utility of
computer-aided design of molecules for improved predictability for
fluorescent probes that preferentially bind to soluble Aβ species.
While some research groups have focused on targeting fragments of
the Aβ peptide sequence, studies suggest that using this approach is
limiting for the development of oligomer-specific probes as these
fragments are present in all Aβ species. While PDBmodel 4NTR has
shown promise as a valuable structural model for developing probes
that bind to oligomeric Aβ, we caution the readers that structures
based on synthetic peptides or recombinantly expressed amyloids
have been observed to produce different structures from those
reported in patient-derived samples (Kollmer et al., 2019;
Varshavskaya et al., 2022). Many research groups have
highlighted the importance of probe interactions with F19/
V36 on this structural model as these residues are not exposed in

FIGURE 5
(A) JP-1 and (B) JP-2 docked into PDB 4NTR. Adapted with permission from (Li et al., 2021). Copyright from 2021 Elsevier.
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fibrils, allowing for potential specificity. In addition, groups have
also implemented strategies based on steric hindrance/bulk and
show that the increased size of the oligomer binding pocket
compared to the binding pocket in Aβ fibrils can play a useful
role in the potential design of an oligomer-specific probe.

3 The development of fluorescent
probes that target tau oligomers

With its earlier identification in AD patients, research in
biomarker detection for AD has historically focused on the
detection of amyloid plaques comprised mainly of Aβ peptides.
However, with recent evidence that tau accumulation and
aggregation better correlates with disease progression over Aβ,
there has been increased attention towards developing methods
to detect pathological tau species (Mohorko and Bresjana, 2008;
Iqbal et al., 2010; Sexton et al., 2022). While it remains to be seen if
this observation is universal for all scaffolds, a current hypothesis in
developing fluorescent probes for tau is that increasing the
fluorogenic core length of the π-network of Aβ probes leads to
binding to tau aggregates (Maruyama et al., 2013; Verwilst et al.,
2017). A previous review provides a detailed discussion of
fluorescent probes that can bind to highly aggregated tau in
neurofibrillary tangles (NFTs) (Verwilst et al., 2018). The
development of fluorescent probes that bind to NFTs remains
limited, and the development of tau probes that bind to
phosphorylated tau oligomers is even more scarce. Given the
reports on the toxicity of soluble, phosphorylated oligomeric tau
species, there is an urgent need to develop fluorescent probes that
can detect tau oligomers. The structure of fluorescent probes that
have been reported to detect tau oligomers are presented in Figure 7.
The two main strategies for the targeting of tau species include: 1)
the binding of phosphorylation sites using a zinc (Zn2+) recognition

motif, and 2) chemically modifying fluorescent probes previously
reported to detect tau aggregates in NFTs. While the utility of
computational studies was common for the development of
probes that can detect oligomeric Aβ, the use of molecular
docking to published structures of tau species is limited for the
development of probes that can bind to tau oligomers.

3.1 Fluorescent probes that detect
phosphorylation on tau proteins using a zinc
(Zn2+) recognition motif

Evidence in literature suggests that zinc contributes to tau
toxicity by increasing tau phosphorylation and directly binding to
tau (Boom et al., 2009; Sun et al., 2012; Huang et al., 2014; Fichou
et al., 2019). Therefore, one approach that many research groups
have attempted for detecting phosphorylated tau oligomers is to use
a Zn2+ recognition motif.

The Hamachi group, for instance, reported the detection of
soluble tau oligomers by developing fluorescent probes that targeted
protein hyperphosphorylation (Ishida et al., 2009; Ojida et al., 2009).
Ojida et al. reported on Probe 1 (Figure 7) with a BODIPY core and
two Zn(II)-2,2′-dipicolyamine (DPA) complexes that serve as a
binding site for phosphorylated amino acid residues. DPA
contains nitrogen atoms that can coordinate with Zn2+ to form a
chelate resulting in a change in the fluorescence properties of DPA
probes. Probe 1 showed a high sensitivity for hyperphosphorylated
full-length tau over non-phosphorylated tau and Aβ fibrils in
solution. Histological staining showed that Probe 1 can bind to
NFTs in brain sections from a confirmed AD patient; however,
further studies are needed to test if Probe 1 can also detect
phosphorylated tau oligomers in tissue. Ishida et al. later
developed diazastilbene analogs 1-2Zn(II) and 2-2Zn(II)
(Figure 7), which showed a fluorescence change when bound to

FIGURE 6
Proposed increase in stereo-hindrance of CRANAD analogs is accompanied by selectivity towards Aβ oligomers over insoluble Aβ species. Adapted
with permission from (Li et al., 2017). Copyright 2017 shared under CC BY 3.0.
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phosphorylated tau peptides in solution. However, studies with 1-
2Zn(II) and 2-2Zn(II) were limited to in vitro examination;
therefore, it remains to be seen whether these probes can label
phosphorylated tau oligomers in biological samples.

The Bai lab reported on CyDPA0, CyDPA1, and CyDPA2
(Figure 7). These probes have one or two DPA-Zn(II) complexes
and are designed based on indocyanine green, a near infra-red dye
(Kim et al., 2013). Of the three probes, CyDPA2 showed the best
affinity to recombinant phosphorylated tau. In gel staining of
CyDPA2 with homogenized samples from an AD patient, a
transgenic mouse that overexpresses tau, and recombinant
phosphorylated and non-phosphorylated tau proteins supported

the ability of this probe to detect hyperphosphorylated tau
oligomers (Ramsden et al., 2005; Guerrero et al., 2009). Ex vivo
staining of brain homogenates from a tau transgenic mouse and a
confirmed AD patient with CyDPA2 supported fluorescence signals
corresponding to only tau species and showed a reduction in
fluorescent signals with the addition of pyrophosphate (ppi), a
phosphate inhibitor.

Fluorescence lifetime imaging (FLIM) has gained increasing
attention as a new microscopy technique used in biological
research. When a fluorophore is excited with light, there is a
time delay before these probes relax to the ground state and
release a photon and this time delay is called the fluorescence

FIGURE 7
Examples of fluorescent probes that are reported to bind to phosphorylated tau.
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lifetime (τ). FLIM images of phosphorylated tau by a cyanine probe
(τ-p-tau, Figure 7) was reported by the Tian lab (Ge and Tian, 2019).
Similar to the previous groups, the authors used two DPA units to
recognize Zn2+ ions. τ-p-tau was shown to be selective for
phosphorylated tau over solutions of monomeric tau, Aβ
monomer, and Aβ fibril. FLIM imaging of a single neuron from
a mouse model showed that τ-p-tau was able to monitor (via
changes in lifetime) the increase in the concentration of
phosphorylated tau in live cells that were pre-incubated with
Okadaic acid (OA), which induces hyperphosphorylation
(Figure 8). However, evidence that this probe can detect tau
oligomers specifically was not reported.

3.2 Development of tau oligomer-
responsive fluorescent probes through
modification of NFT-binding dyes

In addition to attempts at targeting tau oligomers using a Zn2+

recognition motif, another design strategy involves modifying
fluorescent probes previously reported to bind to NFTs. The
Nilsson lab reported on a series of oligothiophene-based
fluorescent ligands that bind to Aβ and tau (Klingstedt et al.,
2013). These analogs were designed with minor variations in
their chemical structure to restrict or increase the conformation
flexibility of the conjugated backbone to allow for the detection of a
variety of amyloids. Of the probes reported, pFTAA (Figure 7)
detected both NFTs and Aβ aggregates in AD patient samples. While

pFTAA did not exhibit any apparent selectivity for various aggregate
forms of Aβ and tau (soluble or insoluble), the Aigbirhio lab drew
inspiration from pFTAA and made chemical modifications to
develop pentathiophene-trifluoroethanol (pTP-TFE, Figure 7), a
fluorescent probe that showed selectivity towards soluble,
aggregated tau (Y. Zhao et al., 2020). The authors hypothesized
that anionic dyes such as pFTAA interact with the positively
charged flexible polyelectrolyte brush, or fuzzy coat, that is found
on mature tau fibrils. Therefore, to minimize interactions with tau
fibrils, the authors replaced the carboxylic acids on pFTAA with
2,2,2,-trifluoroethan-1-ol groups to generate pTP-TFE. pTP-TFE
showed preferential binding to early soluble tau aggregates in
solution, which was supported by TEM imaging experiments.
The authors then tested the ability of pTP-TFE to bind to
soluble tau in a confirmed AD patient and a confirmed patient
with progressive supranuclear palsy (PSP), another ND that involves
tau, and found that pTP-TFE colocalized with an antibody that
detects phosphorylated tau in both patients (Figure 9).

The Yu lab designed tau-selective and aggregation-induced-
emission probes, JL-3 and JL-6 (Figure 7) (Ji et al., 2023). JL-3
and JL-6 have a triphenylamine (TPA) electron-donating unit
conjugated with -CN and N, N′-dimethylaminobenzene groups
to form a Donor-Acceptor-Donor scaffold. Both probes showed
the ability to discriminate between tau and Aβ aggregates; however,
JL-3 and JL-6 are not oligomer-specific and bind to tau fibrils as well.

While universal rational design principles for targeting tauNFTS do
not currently exist, the Kim lab showed that extending the π-network of
Aβ probes enabled binding to tau NFTs (Verwilst et al., 2017). Tau 1

FIGURE 8
Fluorescence lifetime imaging (FLIM) of a single neuron. Neurons from amouse model were preincubated with 50 nMOkadaic Acid (OA) to induce
hyperphosphorylation prior to incubation with τ-p-tau. The longer lifetime (ns) of τ-p-tau with increased incubation of OA suggests that this probe can
distinguish hyperphosphorylated tau from non-phosphorylated tau. Scale bar = 25 μm. The lifetime decay curves with the increase of
hyperphosphorylation reveal their respective average fluorescence lifetime for the selected areas (ROI 1–4). Adapted with permission from (Ge and
Tian, 2019). Copyright 2019 American Chemical Society.
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and Tau 2 (Figure 7) showed preferential binding to tau NFTs over Aβ
fibrils in a transgenic mouse model. Molecular docking studies
suggested that these probes interacted with amino acid residues on
tau along the crystallographic structure of hexapeptide PHF6 fragment
306VQIVYK311 (Fitzpatrick et al., 2017). This hexapeptide was identified
as responsible for nucleation of tau and was used in computational
studies to study binding to NFTs. To target phosphorylated tau, the
Boffi lab drew inspiration from Tau 1 and further extended the π
conjugation on position 3 of the BODIPY core to synthesize a family of
fluorescent probes (Figure 7) (Soloperto et al., 2022). Docking to a
published structure of aggregated PHF6 fragment showed that all
probes interacted with tau and were docked into the central cavity
of the binding site, suggesting a preference for lipophilic regions of tau.
Of the probes that were designed, BT1 showed the ability to bind to
hyperphosphorylated and oligomeric tau in OA-treated human-
induced Pluripotent Stem cells (hIPSC) derived neurons.

3.3 Summary of current efforts to develop
oligomeric tau binding fluorescent probes

This section discusses recent progress and attempts at the rational
design of probes that detect various tau species, including
hyperphosphorylated tau oligomers. A survey of the literature
suggests that there are still no clear molecular features that can be
used for designing probes that specifically target soluble tau oligomers.
However, one common approach for developing probes that can detect
tau oligomers includes a Zn2+ recognition motif such as DPA, which
allows for the detection of all tau species, as non-pathological tau and
NFTs are also phosphorylated to a various extent. Another strategy for
designing oligomeric tau targeting fluorescent probes involves making
chemical modifications on probes previously reported to target NFTs;
however, to the best of our knowledge, the specific detection of

oligomeric species of tau in tissue has yet to be achieved and it
remains to be seen whether these probes will show specificity in
tissue. As with developing probes that target Aβ oligomers, we
hypothesize that incorporating computer-aided design would allow
researchers to pre-screen probes in silico, which could help advance the
field in developing tau oligomer-specific fluorescent probes. While
protein models for higher-ordered tau aggregates from AD patients
exist, a proteinmodel of hyperphosphorylated tau oligomers has not yet
been reported (Fitzpatrick et al., 2017). A model for phosphorylated tau
oligomers would be of great utility; however, until one is available, a pre-
screening of molecules that can bind to the published structure of
aggregated PHF6 fragment of tau may represent a reasonable starting
point.

4 α-Synuclein and its significance in
Parkinson’s disease

α-Synuclein is another amyloidogenic protein that has gathered
strong research interests due to its association with Parkinson’s Disease
(PD) (Chiti and Dobson, 2006). In PD patients, α-Synuclein monomers
aggregate to form soluble oligomers, then β-sheet rich fibrils, and
eventually large insoluble deposits known as Lewy bodies and Lewy
neurites based on their circular and fibril structure (Spillantini et al.,
1997; Baba et al., 1998). These amyloid aggregates cause cellular toxicity,
inflammation, and eventually cell death, which all lead to clinical
symptoms such as tremor, loss of motor function, and executive
dysfunction (Sharon et al., 2003). Due to our lack of understanding
of PDmechanisms and the function of α-synuclein, it is critical for both
scientists and clinicians to better characterize α-Synuclein aggregation
and be able to identify α-Synuclein aggregates in the brain. Historically,
like other amyloid aggregates implicated in NDs such as tau or Aβ, α-
synuclein can be detected by small fluorescent molecules such as

FIGURE 9
Staining of pTP-TFE in human progressive supranuclear palsy (PSP) and Alzheimer’s Disease (AD) brain tissue. (A) Representative images of pTP-TFE
staining of PSP and AD human brain sections show overlap with an antibody (AT8) that detects phosphorylation at Ser202 and Thr205. Scale bar = 50 µm.
(B) Confocal images of pTP-TFE in a PSP and an AD brain slice showing overlap with a phosphorylated tau-specific antibody (AT8) and poor overlap with
filamentous tau antibody (AT100). Adapted with permission from (Y. Zhao et al., 2020). Copyright 2020 shared under CC BY-NC 3.0.
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Thioflavin-T (ThT) and Congo Red (CR) (Naiki et al., 1989; LeVine,
1999; Campioni et al., 2010; Fernandez-Flores, 2011). Recent studies
showed the importance of oligomeric species, as opposed to fibrils, in
PD progression and their role in detrimental neuronal death. PD
oligomers are shown to damage synaptic functions in dopaminergic
neurons, causing calcium influx, and neuronal death in both cell culture
and mouse models (Danzer et al., 2007; Bengoa-Vergniory et al., 2017).
Despite the biological and clinical significance of α-Synuclein oligomers,
many conventional probes cannot detect α-Synuclein oligomeric
aggregates with high specificity, (Ingelsson, 2016; Bengoa-Vergniory
et al., 2017), and limited progress has been made in this endeavor. α-
Synuclein oligomers are structurally heterogeneous, and no high-
resolution structure is available, hindering rational design of
oligomer-specific probes. Many α-Synuclein oligomers share β-sheet-
rich secondary structure with fibrils, resulting in poor discrimination of
different aggregate species (Celej et al., 2008; Ghosh et al., 2015; Pieri
et al., 2016; Yoo et al., 2022). In this section, we summarize recent
developments of fluorescent probes that are reported to be able to detect
α-Synuclein oligomers (Figure 10).

4.1 The development of fluorescent probes
that target α-synuclein oligomers

Numerous probes have been developed to detect α-synuclein
deposits in tissue (Xu et al., 2020; Haque and Maity, 2023).

Although most of these probes show improved binding affinity for
α-Synuclein compared to the micromolar affinity of ThT, they do not
distinguish the different aggregation states among α-Synuclein species
(e.g., monomer vs. oligomer vs. fibril). Despite the lack of aggregation
specificity, these probes remain valuable as the foundation for the
development of future α-Synuclein oligomer-specific probes. For more
information regarding α-Synuclein probe development in general, we
refer readers to other reviews that summarize reported α-Synuclein
binding fluorescent probes (Xu et al., 2020; Haque andMaity, 2023). In
this section, we will review the recent α-Synuclein fluorescent probe
development, with a highlight on oligomer-binding probes.

4.2 State-specific α-synuclein detection
probes

Due to recent revelations about α-Synuclein oligomer toxicity
and aforementioned difficulties in developing oligomer-specific α-
Synuclein probes, only a few papers in recent years have reported on
probes that bind to α-Synuclein oligomers. Most of these probes are
phrased as aggregation monitoring probes, which means they bind
to diverse α-Synuclein aggregate species as their photophysical
properties change during the monomer to fibril aggregation
process. One such example was developed by the Jovin group
where they screened derivatives of the hydrophobicity-sensitive
fluorescent probe N-arylaminonaphthalene sulfonate (NAS).

FIGURE 10
Examples of fluorescent probes reported to detect α-Synuclein oligomers.
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(Celej et al., 2008). As α-Synuclein aggregates, the polarity of binding
sites putatively changes; therefore, a polarity-sensitive probe can
monitor changes in aggregation states. By incubating NAS
derivatives with monomeric α-Synuclein, the researchers found
several molecules that exhibited fluorescence enhancement during
aggregation. One such molecule, bis-TNS (Figure 10), also showed a
shift in its emission. Other photophysical properties were also
measured, and they found two molecules, bis-TNS and bis-ANS,
that report changes in fluorescence lifetime (τ) as the aggregation
process proceeds. The researchers claim that such changes in
emission wavelength and τ could be used to show different
aggregation states and binding to diverse α-Synuclein aggregation
species. The Jovin group further explored probes that have different
properties during aggregation and developed a 3-
hydroxychromones (3HC) probe AS140-MFC (Yushchenko
et al., 2010). AS140-MFC is prepared by introducing sensor
molecules with covalent adducts of Ala-to-Cys mutants of α-
Synuclein with a thiol-reactive maleimide probe (MFC)
(Figure 10). AS140-MFC probe has two excited states, and when
incubated with α-Synuclein, the ratio of these two states changes due
to polarity differences which reflect the transition of aggregation
states. A similar approach for finding α-Synuclein oligomer probes
through enhancing hydrophobic interactions has been adopted by
other groups as well. The Yarmoluk group published a series of tri-
and pentamethine cyanine probes with bulky phenol and alkyl
groups and tested binding with different α-Synuclein aggregates
in solution (Kovalska et al., 2012). Of the reported probes, SL-631
and SH-299 (Figure 10) showed strong fluorescence enhancement
when bound to α-Synuclein oligomers and less enhancement for
fibrils in solution. Despite these two probes showing promise for
detection of α-Synuclein oligomers, it remains to be seen if they can
detect α-Synuclein oligomers specifically in tissue.

A common strategy to develop fluorescent probes for protein
aggregates is aggregation-induced emission (AIE). These molecules
show weak fluorescence when unbound in solution but become
fluorescent upon interacting with targets (Hong et al., 2009; Z; Zhao
et al., 2020). Tetraphenylethene tethered with
triphenylphosphonium (TPE-TPP, Figure 10) was designed based
on known π-stacking and hydrophobic interactions between ThT
and higher-ordered amyloid aggregates. TPE-TPP was incubated
during α-Synuclein aggregation and showed fluorescence
enhancement at earlier time points compared to ThT, indicating
potential binding with α-Synuclein oligomers. Comparison with
immunoblotting of TPE-TPP with an α-Synuclein oligomer
antibody also confirmed oligomer binding. This probe was later
tested with other aggregated proteins derived from α-lactalbumin, κ-
casein, and hen egg white lysozyme (HEWL), showing potential to
be an aggregation monitoring probe for various amyloidogenic
proteins in addition to α-Synuclein (Kumar et al., 2017).

Since ThT is a traditional amyloid dye to detect aggregates,
researchers have used it as inspiration for developing oligomer-
specific probes. One such ThT derivative, ThX, was shown to bind to
α-Synuclein oligomers by showing early fluorescence enhancement
during aggregation of α-Synuclein in solution. (Yap et al., 2011).
Further studies suggested ThX might bind to heterogeneous α-
Synuclein oligomers not detected by ThT.

Few reports have been made towards detection of α-Synuclein
oligomers in biologically relevant conditions such as tissue or cell

culture. Inspired by GFP, a widely used genetically encoded
fluorescence protein, the Zhang group created probes based on
GFP’s fluorescent chromophore 4-hydroxybenzylidene-
imidazolinone (HBI, Figure 10). (Liu et al., 2018) The Zhang lab
synthesized derivatives of HBI to improve aggregated protein
detection by increasing π conjugation, restricting bond rotation,
and substituting the phenol group with electron-donating
substituents. The probes were incubated in solution with α-
Synuclein and fluorescence intensity increase was detected early
in the aggregation process, which the authors suggest is due to
binding to α-Synuclein oligomers. The authors then incubated the
HBI derivative probes in cell culture and visualized Huntingtin exon
1 protein (Htt) and superoxide dismutase 1 (SOD1) aggregation in
vivo. Although the ability of HBI derivatives to detect α-Synuclein
was not tested in cell culture, this work showed the potential of
fluorescent probes to visualize and study the function of oligomers in
a living system.

4.3 Summary of current efforts to develop α-
synuclein oligomeric fluorescent probes

The development of fluorescent probes for oligomeric α-Synuclein
has gained attention from many researchers in recent years as studies
show that α-Synuclein oligomers are more toxic to neurons and are
important in the pathology of many synucleinopathies. Currently, most
design routes are based on existing probes for higher-ordered α-
Synuclein aggregates, and the focus has been to monitor the α-
Synuclein aggregation process rather than an oligomeric-specific
probe. These aggregation-monitoring probes bind to both oligomeric
and higher-ordered α-Synuclein aggregates but can also respond earlier
during the aggregation process or show slightly different photophysical
properties when bound to oligomers versus fibrils in solution. These
probes have advanced our understanding of α-Synuclein oligomers, but
they still lack binding specificity and significant contrast between
different states of α-Synuclein aggregate species. Furthermore, most
of the probes reported have only been tested with in vitro assays with
minimal validation of the presence or characterization of α-Synuclein
oligomers in these experiments.

Moving forward, many directions can be taken for developing α-
Synuclein oligomer-specific probes. Chemical modifications to
probes that detect higher-ordered α-Synuclein aggregates
represents an actionable starting point. Furthermore, chemical
modifications in tandem with computer-aided design and pre-
screening of fluorescent probes can further advance the field.
While models for α-Synuclein oligomers do not currently exist,
structures of α-Synuclein fibrils have been reported and may allow
for development of rational design principles for targeting α-
Synuclein in general (Guerrero-Ferreira et al., 2018). In addition,
hydrophobicity differences between various aggregation states of α-
Synuclein may allow for new design principles for chemical probes
that specifically detect α-Synuclein oligomers (Lee et al., 2018).

5 Conclusion

Developing fluorescent probes that can selectively detect oligomers
of amyloidogenic proteins has proven to be a challenging yet exciting
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task for chemists to pursue. With numerous studies that suggest
increased pathological activity of oligomers over higher-ordered
aggregates in many NDs, there has been a recent shift in the focus of
many research laboratories towards developing fluorophores that can
detect these oligomeric species across different NDs. While rational
design principles for oligomers are not fully established andmore robust
probes with improved biological properties are still needed, we have
summarized probes that have been reported to bind to oligomers in
literature and discussed potential design guidelines based on literature
precedence. Towards the development of fluorescent probes that bind to
Aβ oligomers, the pre-screening of fluorescent probes that can bind to a
trimeric structural model for Aβ (PDB 4NTR) may lead to novel probes
that target oligomers over fibrils. In addition, the use of increased steric
bulk on the probe has shown to increase interactionwith the cavity of Aβ
oligomers over fibrils and allows for improved specificity over fibrils.
While exciting advances have been made towards the development of
fluorescent probes that can specifically target Aβ oligomers, the
development of probes that can detect phosphorylated tau oligomers
is more limited. Some research groups have shown that using a Zn2+

recognition motif and chemical modifications of existing tau probes can
lead to the recognition of phosphorylated tau in solution studies.
However, many of these tau probes have yet to be evaluated in
biologically relevant samples such as brain tissue or biological fluids
such as cerebrospinal fluid (CSF). Elevated levels of soluble aggregates of
amyloidogenic proteins in CSF have been reported in patients with AD,
therefore the detection of endogenous levels of these aggregates in CSF
may complement AD diagnosis as a less invasive avenue that can
potentially allow for monitoring of AD progression (Blennow, 2004;
De et al., 2019; Povala et al., 2021). The design of fluorescent probes that
can detect oligomeric α-Synuclein are currently based on scaffolds that
showed promise as a probe for detecting Lewy bodies and neurites and
have been limited to experiments in vitro. In analogy to the promising
work done with targeting Aβ oligomers, the pre-screening of fluorescent
probes that can bind to oligomeric models of tau and α-Synuclein in
silicomay provide a starting point for developing fluorescent probes that
can bind to phosphorylated tau oligomers and oligomeric α-Synuclein.
While models for higher-ordered aggregates of tau and α-Synuclein exist
and were identified using various techniques such as x-ray
crystallography, nuclear magnetic resonance, and cryo-electron
microscopy, there is an urgent need for high-resolution structures of
tau and α-Synuclein oligomers.Molecular docking studies to a published
trimeric structure of synthetic Aβ played an instrumental role in the
rational design of several probes for Aβ oligomers, and analogous
methods may prove useful for developing probes that can detect tau
and α-Synuclein oligomers if reliable structures are available. However,
asmentioned earlier, aggregated synthetic and recombinant proteins can
produce structures that are different from patient-derived samples.
Furthermore, due to the lack of standardized protocols for
aggregation it has been reported that different structures can arise
depending on several factors including choice of added reagents and
procedures for aggregation (Zhang et al., 2019; Al-Azzani et al., 2022).
Therefore, if possible, the use of structures obtained frompatient-derived
samples for docking studies may serve as a better predictive model for
the development of oligomer binding probes. Lastly, more rigorous, and
unambiguous assays that confirm the aggregation state of amyloidogenic
proteins in solution using common techniques such as TEM, Western
blot, gel-staining, and the verification in cells/tissue with appropriate
antibodies would improve the standard in the field and pave the way for

the development of improved fluorescent probes that are specific to
oligomers. Furthermore, the development of fluorescent probes that can
detect oligomers for in vivo imaging in pre-clinical animal models for
NDs could serve as valuable proof-of-concept for future in vivo imaging
of oligomeric aggregates in humans.Wehope that this reviewwill engage
a wide range of chemists who are enthusiastic about developing
oligomer-specific fluorescent probes for NDs that may aid in the
earlier diagnosis of amyloid-associated diseases.
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