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No effective screening tools for ovarian cancer (OC) exist, making it one of the
deadliest cancers among women. Considering that little is known about the
detailed progression and metastasis mechanism of OC at a molecular level, it is
crucial to gain more insights into how metabolic and signaling alterations
accompany its development. Herein, we present a comprehensive study using
ultra-high-resolution Fourier transform ion cyclotron resonance matrix-assisted
laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) to
investigate the spatial distribution and alterations of lipids in ovarian tissues
collected from double knockout (n = 4) and triple mutant mouse models (n =
4) of high-grade serous ovarian cancer (HGSOC). Lipids belonging to a total of
15 different classes were annotated and their abundance changes were
compared to those in healthy mouse reproductive tissue (n = 4), mapping
onto major lipid pathways involved in OC progression. From intermediate-
stage OC to advanced HGSC, we provide direct visualization of lipid
distributions and their biological links to inflammatory response, cellular stress,
cell proliferation, and other processes. We also show the ability to distinguish
tumors at different stages from healthy tissues via a number of highly specific lipid
biomarkers, providing targets for future panels that could be useful in diagnosis.
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Introduction

Ovarian cancer (OC) is one of the most lethal cancers among women, with patients
suffering from the highest mortality rate among all gynecological cancer patients
(Kandimalla et al., 2021; Cabasag et al., 2022). Due to the lack of symptoms at its early
(localized) stages, only a small portion of cases is diagnosed early enough for effective
treatment (Dilley et al., 2020). Current diagnostic tools, including transvaginal ultrasound
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and cancer antigen (CA)-125 blood tests do not provide sufficient
sensitivity and specificity, especially for early-stage OC diagnosis
(Kamal et al., 2018). Therefore, neither of the aforementioned
methods is used as a screening tool. Among all OC subtypes,
high-grade serous ovarian cancer, also known as high-grade
serous carcinoma (HGSC), causes 70%–80% of all OC deaths,
(Lisio et al., 2019) as it is typically diagnosed at distant (late)
stages. A more in-depth understanding of the molecular
pathogenesis of HGSC could help save lives by providing targets
of diagnostics and prognostic value.

Lipids play crucial roles in cancer pathogenesis and are critical
effectors in energy storage, cell signaling, and maintaining cell structures
(Butler et al., 2020; Ma and Fernández, 2022). Abnormal alterations in
lipid levels in the tumor microenvironment usually follow cancer
progression, making them informative cancer markers (Butler et al.,
2020). Lipid alterations in biofluids such as serum and plasma due to
HGSC pathogenesis have been measured via liquid
chromatography–tandem mass spectrometry (LC-MS/MS) in both
animals and humans (Li et al., 2016; Cheng et al., 2020; Mir et al.,
2021; Sah et al., 2022). These studies provide detailed descriptions of how
alterations of various lipid classes are reflected in various compartments
during OC development but fail to capture the specific spatial lipid
distributions as they are present in the tissue. Spatially resolved
lipidomics can provide such maps in tissues and organs, showcasing
the heterogeneity of cancer tumors and any uncommon lipids that could
potentially be shed into adjacent biofluids. These molecularly specific
maps are helpful in establishing the relationship between lipidome
changes at the tissue level with lipid alterations in the surrounding
biofluids (Petras et al., 2017; Sans et al., 2017).

Mass spectrometry imaging (MSI) is a powerful tool to study altered
metabolism in the context of cancer biology (Petras et al., 2017; Taylor
et al., 2021; Ma and Fernández, 2022). Amongst all MSI techniques,
matrix-assisted laser desorption/ionization (MALDI) MSI is by far the
most mature and widely used (Ma and Fernández, 2022). With proper
MALDI matrix selection, it provides excellent lipid class coverage with a
spatial resolution as low as 1 µm. Herein, we present the first ultrahigh
resolution Fourier transform ion cyclotron resonance (FTICR) MALDI
MSI study on tissue sections collected from the reproductive systems of
two types of HGSC mouse models, triple mutant (TKO) p53LSL−R172H/+

Dicer1flox/floxPtenflox/floxAmhr2cre/+ (Kim et al., 2015) and double knockout
(DKO) Dicer1flox/flox Ptenflox/flox Amhr2cre/+ mice (Kim et al., 2012). These
murinemodels reproduce humanHGSCwith high fidelity and therefore
have translational value (Kim et al., 2020). The ultrahighmass resolution
and excellent mass accuracy yielded by FTICRMSI enabled the creation
of lipid ion maps with exquisite specificity. Lipid distributions were
compared between cancerous and healthy tissues for lipids putatively
annotated with low false discovery rates (FDR < 10%). The findings
reported here lead to a more comprehensive understanding of lipidome
remodeling associated with HGSC and produce potential HGSC lipid
biomarkers that could be translated into human studies.

Materials and methods

Chemicals

MALDI matrix 1,5-diaminonaphthalene (1,5-DAN, ≥ 97%),
tissue-embedding media gelatin from bovine skin (type B),

sodium carboxymethyl cellulose (CMC), isopentane (≥95%),
acetonitrile, ethanol, methanol, and water for H&E staining were
purchased from Sigma Aldrich (St Louis, MO). Histological-grade
xylenes were purchased from Spectrum Chemical. Hematoxylin and
eosin were purchased from Cancer Diagnostics, Inc. and
FisherBrand (Pittsburgh, PA), respectively. All chemicals were
used as received.

Animal generation, tissue collection,
preservation, and sectioning

The animals used in this study included double-knockout
(DKO) mice and triple mutant (TKO) mice (collected at an
advanced stage). Matched controls were generated following
protocols previously described (Paine et al., 2016; Sah et al.,
2022). All animals were sacrificed in accordance with animal
protocol #21124 approved by the IACUC at Indiana University
School of Medicine (Indianapolis, IN, United States). Whole
reproductive systems collected from TKO, DKO, and control
mice were embedded in a 1% CMC and 5% gelatin aqueous
solution. The embedding temperature was maintained at −20°C
using an isopentane-dry ice bath. Embedded tissues were stored
at −80°C until further use and sectioned using a CryoStar
NX70 Cryostat operated at −20°C. The thickness of the sectioned
tissue slices was kept at 10 μm. Slices were transferred to
Fisherbrand™ Superfrost™ Plus microscope slides immediately
and stored for MALDI MSI experiments.

Matrix deposition

To yield 5 mg mL−1 solution, 1,5-DAN was dissolved in 90/
10 ACN/water (v/v). Tissue sections were sprayed with the MALDI
matrix solution by using an HTX TM-Sprayer™ (Chapel Hill, NC).
This sprayer was operated using the following parameters: the
nozzle temperature was set to 30°C; the flow rate of the matrix
solution and the N2 drying gas were 0.1 mL min−1 and 2 L min−1,
respectively; the nozzle moved at a velocity of 1,200 mmmin−1 and
the spray tracking space was 2.5 mm. The solution was sprayed in a
crisscross pattern for six cycles. No drying time was set between
each cycle.

Mass spectrometry

A Bruker SolariX 12-Tesla FTICR mass spectrometer (Bruker
Daltonics, Bremen, Germany) equipped with a MALDI ion source
was used for all MSI experiments. The mass spectrometer was
operated in negative ion mode in the 150–1,200m/z range. The
time domain data set size for the MSI experiments was set to
4,000,000, which was equivalent to a mass resolution of 410,000
(FWHM) at m/z 400. The free induction decay (FID) transient time
was 1.677 s. TheMALDI laser power was set to 30%, and the number
of laser shots accumulated on each pixel was 300. The laser
repetition frequency was 1,000 Hz and the laser beam focus was
set to small. The spatial resolution (defined as the scanned pixel size)
for MSI experiments was set to 50 μm× 50 μm, which led to 40–50 h
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of data acquisition time and 800 GB to 1 TB file size per tissue slice.
The mass spectrometer was calibrated externally with a sodium
trifluoroacetate aqueous solution and internally with the FA (18:1)
and PI (38:4) lipids to ensure a mass accuracy better than 1 ppm, on
average. For each animal model, four reproductive systems from
different mice were sectioned and imaged. A minimum of four
4 technical replicates were performed for each distinct reproductive
system in random order. Ionic signals were normalized to the total
ion current within each image. The mass isolation window used for
selecting extracted ion images was ±0.001 Da.

H&E staining

Following MSI experiments, the matrix was washed off with 100%
ethanol for hematoxylin and eosin (H&E) staining. For staining
purposes, slides were immersed in the following solvents/solutions in
a sequential fashion: 95% ethanol for 30 s, 70% ethanol for 30 s, water
for 30 s, hematoxylin stain for 2 min, water for 30 s (repeat twice in
different jars), 70% ethanol for 30 s, 95% ethanol for 30 s, eosin for 30 s,
95% ethanol for 30 s, 100% ethanol for 1 min (×2 in different jars), and
xylenes for 1 min. The stained slides were air-dried and covered with
Cytoseal and coverslips for optical imaging. Optical images were
obtained on a Hamamatsu NanoZoomer Scanner and exported with
the Hamamatsu NDP software.

Data processing

The measured accurate masses for features in the mean mass
spectra were subject to Lipid Maps and Human Metabolome
Database (HMDB) searches for putative lipid annotations using
METASPACE (Palmer et al., 2017; Wishart et al., 2022). Annotated
features with an FDR < 10% were chosen for further analysis. This
list of annotated features was then used for spatial segmentation,
which was performed using a bisecting k-means algorithm
(Alexandrov, 2012) with strong image denoising, using the SCiLS
Lab software (version 2023a Pro, Bruker Daltonics, Bremen,
Germany). Segmentation results were compared to H&E-stained
microscopic images and used iteratively to select regions of interest
(ROI). Tumor regions in TKO and DKO tissue sections and healthy
ovaries and fallopian tubes were selected as ROI for further analysis.
Lipid feature lists were exported for each ROI and used for the
development of statistical models and lipid pathway analysis.
Specifically, the average lipid peak areas in each ROI were
exported into MetaboAnalyst to perform univariate receiver
operating characteristic (ROC) analysis to select potential cancer
biomarkers based on their area under the curve (AUC) (Fawcett,
2006). Features with AUC ≥ 0.80 were chosen and used to build
principal component analysis (PCA) models for discriminating
HGSC from controls. Peak areas were normalized to the total ion
current and auto-scaled prior to statistical analysis. log2-fold
changes for all annotated features were calculated and plotted
prior to lipid pathway analysis. A pathway map was generated
using lipid pathway enrichment analysis (LIPEA) (Acevedo et al.,
2018) together with literature reports, which provided a rationale for
the observed alterations in different lipid classes and interactions
between different lipids.

Results and discussion

Choice of mouse models

Two different mouse models, TKO and DKO, were studied in
this work. These two models have been proven to reproduce the
clinical metastasis of human high-grade serous carcinoma (HGSC)
in 100% of cases (Kim et al., 2015). Therefore, tissues collected from
these mice were suitable models for spatially resolved lipidomic
studies in such cancers (Katz et al., 2021).

Lipid feature annotations and ROI selection

A total of 228 lipid features belonging to 15 lipid classes were
putatively annotated with an FDR <10%. Approximately one-third of
the annotated lipids belonged to the phosphatidylethanolamine and
ether-linked phosphatidylethanolamine classes in the 450–800m/z
range. Other significant annotated lipid classes included sphingolipids
(sphingomyelins, ceramides, and ceramide phosphates) in the
550–800m/z range, fatty acids in the 250–370m/z range,
phosphatidic acids in the 400–750m/z range, phosphatidylserines in
the 750–900m/z range, and phosphatidylglycerols and
phosphatidylinositols in the 750–950m/z range. For each tissue
section studied, regions of interest were selected with the assistance
of a spatial segmentation algorithm and co-registration with
hematoxylin and eosin (H&E)-stained optical images. For TKO tissue
sections, advanced-stage high-grade serous carcinoma (HGSC) had
developed in all four biological replicates studied; ROI corresponding
to these HGSC regions were selected and confirmed by spatial
segmentation and H&E staining (Figure 1). Region #3 of TKO-2
(Figure 1) presented not only an HGSC region but also a blood-filled
cyst. This part of the tissue was excluded from the HGSC ROI as its
molecular composition was very different from the HGSC regions, as
indicated by segmentation analysis. TKO mice present the most
aggressive form of HGSC due to the p53 mutation that results in a
mean survival of 6.6 months (Kim et al., 2020). All studied TKO tissues
were collected at the 85%–100% lifetime (defined as the ratio of the
mouse age when sacrificed and themean TKOmice survival lifetime; see
Supplementary Table S1 for detailed mice collection information). The
lipid phenotype of HGSC tumors in TKO animals was viewed as the
most advanced and aggressive compared to DKO and control animals.

HGSC in DKO mice is less aggressive compared to TKO mice due
to the preservation of the p53 gene (Kim et al., 2015). Previous studies
have shown that TKOmice die earlier than DKOmice and the median
survival for DKO mice is 9.1 months, which is 2.5 months longer than
that of TKOmice (Kim et al., 2020). DKO tissues used in this studywere
sacrificed at two different time points: two of them (DKO-1 andDKO-2
in Figure 2) were sacrificed 10 days earlier than the other two (DKO-
3 and DKO-4 in Figure 2), with a percentage lifetime of 77% and 83%,
respectively. Therefore, stages of OC in these DKO tissues were
significantly different from each other and from TKO tissues
(Supplementary Table S1). p53 mutations have been found in 96%
of HGSC in human OC cases, leading to enhanced tumor
aggressiveness and probability of metastasis, as observed in TKO
animals (Brosh and Rotter, 2009; Rivlin et al., 2011). Tumors in
DKO tissues were essentially less aggressive due to the preserved
normal p53 functions. Based on tumor aggressiveness, histology of
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the DKO tissue sections and the percentage lifetime of the mice at the
time of sacrifice for the two sub-groups were identified: DKO-I (DKO-
1 and DKO-2 animals where intact ovaries were retained and yet to be
invaded by the HGSC tumor; Regions 7 and 10 in DKO-1 and DKO-2,
respectively) and DKO-II (advanced-stage tumors including the DKO-
3 and DKO-4 animals). H&E optical images of DKO-I tissue sections
revealed that several blood- or fluid-filled cysts had developed adjacent
to the tumor region (Region 6, a thin region around the cyst where
obvious cell proliferation was observed in the H&E image), resulting in
a highly heterogeneous morphology compared to DKO-II and TKO
tissues. Cysts were excluded from HGSC ROIs and their lipidomic
profiling is discussed separately. In fact, we combined intact ovaries as
part of the control tissues (healthy fallopian tubes and ovaries) and
developed multivariate statistical models for the differentiation of
HGSC from healthy tissues. Figure 2 shows segmented MS images,
H&E images, and mean mass spectra for DKO-I and DKO-II tissues.
Blood-filled cysts (e.g., region 7 in Figure 2) showed significant
differences in the abundances of measured lipid ions compared to
the adjacent tumor regions (Region 6 in DKO-1), especially the lipid

ions in the 680–820m/z range, mainly consisting of
phosphatidylethanolamine (PE), phosphatidylserine (PS), and
phosphatidylinositol (PI).

Multivariate analysis

To examine the potential of the annotated lipid features as
discriminant OC tissue markers, we conducted a univariate receiver
operating characteristic (ROC) analysis to select the most promising
lipids from the 228 annotated features. ROC curves (sensitivity vs.
1–specificity) were plotted and the area under the curve (AUC) was
calculated for each annotated lipid. Lipid features withAUC≥ 0.80were
considered acceptable and preliminary selected (Mandrekar, 2010). For
differentiation of DKO vs. control tissues (healthy fallopian tubes and
ovaries), 92/228 lipid features passed this filter. For TKO vs. control
tissues, 108 lipid features were picked. By univariate ROC, 152 and
177 lipid features were selected, while DKO and TKO tumors were
compared to cysts in DKO tissues. Supplementary Table S2 shows the

FIGURE 1
Spatial segmentation and selected ROI for reproductive tissue sections of four different TKOmice. ROI are outlined with white dashed lines. Optical
images of H&E-stained selected sub-regions (labeled with numbers) are shown for each tissue sample. Themean ROImass spectra of each of the labeled
regions are also shown. Background ions are labeled with asterisks.
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features’AUC values, p-values, and log2-fold changes (FC). In addition,
to compare HGSC to healthy fallopian tubes and ovaries, we profiled
the significantly altered lipids in cysts in the DKO-1 tissues and
compared lipid alterations to HGSC regions. Filtered lipid feature
lists were used to develop principal component analysis (PCA)
models to examine the capabilities of these lipid panels for
differentiating tumor regions from healthy tissues (Figures 3A, B) or
non-tumor regions (necrotic cysts) in cancerous tissues (Figures 3C, D).
As illustrated in Figure 3, each tumor sub-group led to highly distinct
clusters and was successfully separated from the cluster of healthy
controls or necrotic cysts. For TKO tumors, tight clusters were formed,
suggesting the high homogeneity of the advanced-stage HGSC. For
DKO clusters, some sub-cluster finer structures were observed within
the groups, revealing differences between biological replicates (labeled
in Figures 3A, C).

Partial least squares-discriminant analysis (PLS-DA) models were
also developed to classify TKO/DKO tissues and control tissues. As
shown in Figure 4, tumor sub-groups from TKO and DKO tissues

showed distinct clustering and differentiation from the control tissues
and cyst regions selected from DKO-I tissues, indicating that these
models can be used as predictive classifiers for potential diagnosis of
HGSC. PLS-DA models were validated by permutation testing
(2,000 iterations) and 5-fold cross-validation (CV), yielding high
accuracy and Q2 values, as shown in Figure 4. For each PLS-DA
model, 15 lipids were identified as significantly altered compared to
control tissues.

Lipid alterations and their correlations with
OC progression

As a first approach to understanding lipid pathways altered in
HGSC, we investigated the alterations of all 228 annotated lipid
features in tumor and control tissues by calculating log2FC for
different lipid classes. The peak areas of the lipids within each class
were summed, and the log2FC were calculated, plotted, and

FIGURE 2
Spatial segmentation and selected ROI for reproductive tissue sections of four different DKO animals. The ROI are outlined with white dashed lines.
Optical images of H&E-stained selected sub-regions (labeled with numbers) are shown for each tissue sample; themean ROImass spectra of each of the
labeled regions are also shown. Background ions are labeled with asterisks.
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categorized based on tumor stage, as shown in Figure 5. Clear trends
were observed for most lipid classes except for FA and ether PE. We
estimated that for FA, the measured abundances may be biased due
to residual fat on the tissue sections, skewing the observed
relationship between FA alterations and OC progression.

A schematic lipid pathway map involving the major lipid classes
detected in MSI experiments is given in Figure 6 (corresponding
images and mass errors are provided in Figure 7; Supplementary
Figure S1). MS images of selected lipid ions from each lipid class are
displayed in Figure 7.We discuss each lipid class depicted in Figure 5
in detail below.

Sphingolipids
Sphingolipids, including ceramides (Cer), sphingomyelins (SM), and

ceramide 1-phosphates (CerP), were drastically altered in all tumor
regions, which is in agreement with their known roles in cell growth,
survival, and death during cancer progression (Hannun and Obeid,

2008). As HGSC developed, Cer were significantly accumulated in both
DKO and TKO tissues as OC progressed to HGSC (log2FC(DKO/
Control) = 1.95 and log2FC(TKO/Control) = 4.78). SM showed a slight
increase in DKO tissues, whereasmajor downregulation was observed in
TKO tissues. CerP were observed to decrease in both DKO and TKO
tissues, indicating their conversion to Cer asHGSC develops. Cer are key
substrates for many important enzymes such as ceramide synthase and
ceramidase (Kreitzburg et al., 2018) and can be generated de novo during
tumor necrosis processes occurring in cancer development (Takabe et al.,
2008). In tumor regions of DKO and TKO tissues, conversion from SM
and CerP to Cer suggested the pro-mitogenic properties of OC and the
increased drug resistance and proliferation probability of the cancer cells
(Sah et al., 2022). In particular, SM and CerP were found to be much
lower in abundance in HGSC regions of TKO tissues, likely due to their
conversion to Cer as a response to oxidative stress and other cellular
stresses that mediate cell death (Fekry et al., 2018). Sphingolipid
alterations in advanced-stage OC tissue sections were also in

FIGURE 3
PCA score plots for differentiation of (A)DKO and (B) TKO tumors from ovaries and fallopian tubes in healthy tissues (controls), and differentiation of
(C)DKO and (D) TKO tumors from cysts (non-tumor regions in tumor tissues). All PCA plots were constructed using the lipid features filtered by their AUC
values by ROC analysis. Data points of DKO-1 were circled and labeled.
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agreement with previous LC-MS longitudinal studies in serum from the
same animal model (Sah et al., 2022). Interestingly, in DKO-1 mice, Cer
were also found to accumulate in blood-filled cysts instead of tumor
regions, and as they eventually transformed to HGSC, Cer started to
show major accumulations (Figure 7).

Phosphatidic acids
Phosphatidic acids (PA) and cyclic PA (CPA) were found to

decrease in DKO tissues and increase in TKO tissues compared to

healthy fallopian tubes and ovaries. PA may also be generated from
MALDI in-source decay of phosphatidylserines (PS) (Hu et al., 2022).
Therefore, we first tested our experimental conditions by varying the
laser power applied inMALDI experiments (Supplementary Figure S2).
A stable PS/PA ratio indicated that in-source artifacts were not
significant under our chosen experimental conditions. A 30% laser
power was selected for all our experiments to ensure high ion
abundances and signal-to-noise ratios with minimal PS
fragmentation. As noted in Figure 6, PA serve as central precursors

FIGURE 4
PLS-DA score plots, 5-fold cross-validation, permutation test, and key lipids are significantly altered for (A) TKO tumors vs. control tissues and (B)
DKO tumors vs. control tissues.

FIGURE 5
log2-fold change (log2FC) plot for the total lipid abundances grouped by lipid classes for DKO vs. control (blue bars) and TKO vs. control (yellow bars).
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FIGURE 6
Major lipid pathways involved inOC progression as revealed byMSI experiments. Log2FCmagnitudes are shown next to each lipid class. The blue dot
represents log2FC(DKO/Control) and the yellow dot represents log2FC(TKO/Control). Red arrows indicate a negative log2FC and green arrows indicate a
positive log2FC. PLA: phospholipase A, PLD: phospholipase, DLPAAT: lysophosphatidyl acyltransferase, PSS: L-serine phosphatidyltransferase, PGP
synthase: glycerol phosphate synthase, PTPMT1: protein tyrosine phosphatase mitochondrion 1, CLS1: cardiolipin synthase 1.

FIGURE 7
Selected extracted ion images for key lipid ions in each lipid class altered in OC. The mass errors of each detected lipid ion are displayed at the
bottom left corner of each image, highlighting the highmass accuracy of the FTICRmass spectrometer employed. The scale bar of the images is provided
at the bottom right corner of the control image at m/z 536.5043.
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for biosynthesis of a variety of glycerophospholipids and are known to
be amajor lipid class for regulating cell proliferation (Dória et al., 2016).
Interestingly, PA were not observed in blood-filled cysts in DKO-1
tissues (Figure 7). On the contrary, ether-linked PA (PA O-) were
mainly accumulated in these cysts, together with PA O- in healthy
control tissues (Figure 7), indicating the conversion from PA O- to PA
as OC progresses.

Phosphatidylserines
Phosphatidylserines (PS) are key membrane lipids involved in

processes such as maintaining mitochondrial membrane integrity and
neurotransmitter release (Kaynak et al., 2022). During cancer
development, PS act as signaling molecules that indicate the presence
of apoptotic cells in cancer tissues (Birge et al., 2016). PS are also
responsible for immunosuppression of the tumor microenvironment,
increasing the activity of dendritic cells (Calianese andBirge, 2020). It has
been observed that PS are transported from the inner cell membranes to
the outer cell membranes as the cancer progresses (Nagata et al., 2020),
which agrees with our findings that PS were more abundant in the more
advanced TKO tissues.

Phosphatidylethanolamines
Alterations in phosphatidylethanolamines (PE) metabolism are

correlated with that of PS. As with PS, PE have also been found to
shuttle from the inner to the outer layers of cell membranes when
apoptotic and tumor cells are present (Stafford and Thorpe, 2011). PE
alterations in tumor cell membranes are known tomodulatemembrane
protein activity, leading to dysregulated response to extracellular signals
(Kitajka et al., 2002). However, unlike previous reports of PE and PS
being upregulated on cell surfaces (Leite et al., 2015), an opposite trend
was observed for these two lipid classes, i.e., PE were downregulated in
tumor regions of DKO and TKO, whereas PS were slightly
downregulated in DKO tissues (log2FC = −0.02) and upregulated in
TKO tissues (Figure 5), suggesting the inter-conversion between PE and
PS at different OC stages. On the other hand, ether-linked PE (PE O-)
were found to be increased (log2FC > 0, see Figure 5) in all tumor
regions, indicating the conversion of PE to PE O- via ether lipid
metabolism, which would also explain the observed PE decreases.
Interestingly, PE (O-40:X) such as PE (O-40:6) (see Figure 7)
showed different spatial distributions than other PE O- and were
mainly accumulated in the healthy fallopian tubes and ovaries and
the HGSC regions in DKO and TKO tissues. Other PE O- such as PE
(O-34:2) were found to be localized in cysts and, comparatively
speaking, much less in tumor regions.

Phosphatidylglycerols
We observed an accumulation of phosphatidylglycerols (PG) in

tumor regions as OC develops from intermediate to advanced stages.
As key intermediates of cardiolipin (CL) synthesis (Butler et al.,
2020), the upregulation of PG may indicate a significant
upregulation of CL in tumor cells. Alterations in CL abundances
are known to correlate to the regulation of the cell apoptosis rates
(Thorne et al., 2021). Literature reports indicate that CL formation is
inversely related to that of PE in the mitochondrial inner membrane
(Böttinger et al., 2012), which may explain the opposite trends
observed for PE and PG in our results. Because CL are not easily
detected under the MALDI conditions used in this experiment, no
definitive conclusions can be drawn.

Phosphatidylinositols
Overall lower levels of phosphatidylinositols (PI) were observed

in all tumor stages, with the intermediate stage being the lowest and
the more aggressive TKO tumors showing the highest abundances.
This indicates the consumption of PI in the more aggressive types of
HGSC. PI are involved in the PI3K/AKT pathway as key precursors
for phosphatidylinositol phosphates (PIP) (Osaki et al., 2004). This
pathway is altered significantly in various cancers including OC
(Osaki et al., 2004; Engelman, 2009). Dysregulation of this pathway
facilitates cancer progression and drug resistance (Mayer and
Arteaga, 2016). Therefore, cancer treatments targeting this
pathway have been the focus of much research effort, with
several drugs now in clinical trials (Mayer and Arteaga, 2016).

Comparison between TKO and DKO models

Lipid profiles were also compared between the two OC mouse
models, and log2FC(TKO/DKO) of observed lipids were plotted
(Figure 8). Specifically, a major upregulation of Cer and a
downregulation of CerP and SM was observed in TKO tissues,
which is in agreement with our findings while comparing TKO and
DKO tissues with control tissues, which corresponds to the immune
response to mediate OC cell death as the cancer develops (Ogretmen,
2018). A major upregulation was also observed for PA, PC/PE, PG, and
PS. The alterations of these key phospholipids (especially PC/PE) are
indications of cell mitogenesis, differentiation, and apoptosis as OC
progresses into late-stage HGSC (Iorio et al., 2010). Ether-linked
phospholipids, on the other hand, exhibited major downregulation
in TKO tissues. These lipids are believed to regulate ion channels in
cancers and are used as reservoirs for fatty acids involved in cancer
development (Herrera et al., 2017). Downregulation of these lipids in
TKO tissues suggested that they have been consumed to synthesize key
lipid species such as PA, PE, and polyunsaturated fatty acids (PUFA) in
HGSC cancer cells at advanced stages of OC (Fontaine et al., 2020).
Overall, the alterations of lipids further confirmed that more aggressive

FIGURE 8
log2-fold change (log2FC) plot grouped by lipid classes for TKO
vs. DKO.
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OCdevelops in TKO tissues due to the additional p53mutation induced
in the model.

Conclusion

In this study, we used ultra-high resolution mass spectrometry
imaging to map the spatial distributions of lipids in ovarian cancer
tissues originating from two different faithful mousemodels of HGSC. A
total of 228 lipids were annotated based on accurate m/zmeasurements
using an FTICR mass spectrometer. Significantly altered lipids included
sphingolipids that mainly reflected the response to cellular stresses
induced by OC progression and (ether) phosphatidic acids with
spatial distributions highly localized to the tumor (PA) or the cyst
regions (PA O-) linked to high rates of cell proliferation. Several other
glycerol phospholipids including phosphatidylserines,
phosphatidylethanolamines, and phosphatidylglycerols were strongly
correlated with each other, and their alterations reflected cell
signaling and immunosuppression in cancer cells and the occurrence
of apoptotic events. Phosphatidylinositol alterations in tumors suggest
the feasibility of cancer treatment approaches aiming at tuning the
dysregulated PI3K/AKT pathway. Although MALDI MSI experiments
have relatively lower lipid coverage when compared to LC-MS studies,
their ability to generate highly specific lipid distribution maps within the
tissues themselves provides invaluable biological information on OC
progression mechanisms.
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